タイヤチップおよびその砂との混合土の 動的変形特性および地震応答特性

金子 崇¹・兵動 正幸²・中田 幸男³・吉本 憲正⁴・Hemanta HAZARIKA⁵

¹正会員 港湾空港技術研究所 地盤研究領域 (〒239-0826 神奈川県横須賀市長瀬3-1-1) E-mail: kaneko-t@pari.go.jp

²正会員 山口大学大学院教授 理工学研究科環境共生系専攻 (〒755-8611 山口県宇部市常盤台2-16-1) E-mail: hyodo@yamaguchi-u.ac.jp

³正会員 山口大学大学院教授 理工学研究科環境共生系専攻 (〒755-8611 山口県宇部市常盤台2-16-1) E-mail: nakata@yamaguchi-u.ac.jp

⁴正会員 山口大学大学院助教 理工学研究科環境共生系専攻 (〒755-8611 山口県宇部市常盤台2-16-1) E-mail: nyoshi@yamaguchi-u.ac.jp

⁵正会員 九州大学教授 工学部地球環境工学科 (〒819-0395 福岡県福岡市西区元岡744番地) E-mail: hazarika@civil.kyushu-u.ac.jp

本研究では、砂とタイヤチップを様々な割合で混合した土に対し、中空ねじりせん断試験機による動的 変形試験を行った.その結果、タイヤチップを混合した場合、せん断弾性係数は非常に小さくなるが、大 きなひずみ域においても弾性的性質を示し、履歴減衰率は微小ひずみ域においても高い値を示すことが明 らかとなった.また、その結果を用いて、タイヤチップを地盤材料として用いた地盤を想定し、全応力解 析であるSHAKEと有効応力解析であるオンライン地震応答解析を行った結果、両解析において、タイヤ チップの存在による応答加速度波形の減衰・長周期化の傾向や最大応答加速度・最大応答変位の深度分布 の形状が比較的よく対応することが確認された.

Key Words : tire chip, recycle, dynamic deformation, hollow cylindrical torsional shear test, seismic response analysis, pseudo-dynamic test

1. はじめに

現在,我が国では年間約100万tの廃タイヤが発生して おり,その約88%がリサイクルされている.しかし,そ の大半は燃料として利用するサーマルリサイクルであり, 二酸化炭素や焼却灰の発生などの課題が残っている.主 に利用されているセメント分野での需要も頭打ちであり, 今後はサーマルリサイクル率の低下が予想されている. そのため,土木分野では大量消費が可能なマテリアルリ サイクルの方法として,新しい地盤材料としての利用が 検討されている.廃タイヤは用途によって裁断される大 きさが異なるが,それらは粒径の大きいものから,ホー ルタイヤ,タイヤシュレッズ,タイヤチップ,ゴム粉と 分類される.

アメリカでは1990年代より廃タイヤの地盤材料として の利用に関する研究が進められており、廃タイヤのサイ ズや処理の方法によるASTM規格¹が定められている. 具体的な例としては、アスファルト舗装への適用^{3~4}や 擁壁の軽量裏込め材への利用^{5~8}などが挙げられる.日 本における廃タイヤの地盤材料としての利用に関する研 究では、菊池ら⁹が、固化処理土にタイヤチップを混合 して脆性的破壊を余儀なくされていた固化処理土に大き な靭性を賦与することに成功した.また、ハザリカら¹⁰ はタイヤの高い変形追随性を利用してケーソン式岸壁の 裏込め材としてタイヤチップを用いることを検討し、タ イヤチップの裏込め材としての利用が、地震時の土圧低 減、残留変位抑制、液状化防止等に効果的であることか ら、港湾・空港構造物の耐震補強工法としての有用性を 示した.

タイヤチップ混合砂の力学特性について、圧縮特性や 透水性、せん断特性、ヤング率やポアソン比等、数多く の研究^{8,11)~13}が行われている. Zheng-Yi & Sutter¹⁴は、ね じり共振法試験による実験を行い、微小ひずみ域におけ る動的変形特性について明らかとしている. さらに、近 年タイヤチップを砂中に混合することにより,砂の液状 化を防止または軽減することが考えられた.山田ら¹⁵は 種々の割合で混合したタイヤチップ混合砂に対し一連の 非排水繰返し三軸試験を行った. その結果, タイヤチッ プは繰返しせん断による過剰間隙水圧の蓄積を抑制する 効果を有し、その程度はタイヤチップの割合が大きいほ ど顕著であることを確認した.

このようなタイヤチップの液状化抑止効果と高いダン ピング性能、振動吸収性能に着目することで、地震時の 飽和砂地盤の液状化防止と免震効果が期待できる. Tsang¹⁶は、基礎周辺の砂地盤にタイヤチップを75%混合 した地盤モデルを想定し、混合砂の層厚や動的変形特性, 構造物の階層数や幅、基礎の根入れ長を変えて一連の数 値シミュレーションを行った. その結果, 地震時の水平 および鉛直加速度を未改良地盤に比べて、それぞれ60% ~70%,および80%~90%抑えられることを示した.さ らに、筆者ら^{DD}は、タイヤチップと砂とを混合した地盤 またはタイヤチップと砂の互層地盤を想定し、要素試験 と応答計算を併用したオンライン地震応答解析を行い、 応答加速度低減に対するタイヤチップと砂のより適切な 混合率および配置について検討を行った. また、御代田 ら¹⁸は著者らのタイヤチップを用いたオンライン地震応 答解析の結果¹⁷を参考に、裏込め地盤の下部にタイヤチッ プを敷設した岸壁を想定して1g場振動台模型実験を行い, 地震時の地盤の変形および液状化が低減することを確認 した.

本研究では、まず中空ねじりせん断試験機を用いるこ とにより、より広い範囲のひずみ域におけるタイヤチッ プ混合砂の動的変形特性を調べた. 求めた動的変形特性 を用いて、一次元等価線形地震応答解析SHAKEによる 解析を行い、オンライン地震応答解析との比較を行うこ とで、タイヤチップを利用することによる、減震効果、 免震効果について検討を行った. SHAKEは全応力解析 であるのに対し、オンライン地震応答解析は、間隙水圧 の発生を考慮できる有効応力解析であり、両者の結果が 異なることは当然であるが、いずれも地盤のせん断弾性 係数のひずみ依存性を考慮できることから、本研究では これら2つの方法で、タイヤチップ利用の効果を検討し た.

2. 実験に用いた試料

本研究では、廃タイヤの金属・繊維類を除去し、粒径 が1mm以下となるように裁断したタイヤチップと相馬珪 砂を用い、タイヤチップ単体、相馬珪砂単体、タイヤチ ップと相馬珪砂の混合砂を対象に実験を行った. 各試料 の物理的性質を表-1に示す. タイヤチップ混合砂は体積

表-1 試料の物理的性質

比で相馬珪砂:タイヤチップ=7:3,5:5となるように 混合して作製した.このとき、乾燥質量比は相馬珪砂: タイヤチップ=84:16,70:30となる.図-1に粒径加積 曲線を示すが、これらの配合割合によるタイヤチップ混 合砂の粒度分布は相馬珪砂のそれとさほどの違いは見ら れない. これはタイヤチップの単位体積質量が相馬珪砂 に比べ小さいことによる.

Compaction energy, Ec (kJ/m3)

図-2 相対密度と突固めエネルギーの関係

100

10

1000

動的変形試験 3.

20

0 L

(1) 供試体および実験条件

供試体は所定の初期含水比のもと湿潤突固め法によっ て作製した.まず,乾燥した相馬珪砂とタイヤチップを 所定の体積比で混合し、含水比10%となるように水を加 え、均一になるように十分にかき混ぜた、次に、ペデス タルにゴムスリーブを装着し、高さ10cm、外径10cm、

内径6cmの中空円筒モールドに試料を5等分に投入し, 次式の突固めエネルギーEcが所定の大きさとなるよう制 御して作製した.

$$Ec = \frac{W_R \cdot H \cdot N_L \cdot N_B}{V} \tag{1}$$

ここに, *W_R*: ランマー重量, *H*: 落下高さ, *N_L*: 層数, *N_B*: 1層毎の突固め回数, *V*: 供試体の体積である.

図-2に相対密度と突固めエネルギーの関係を示す.本研究において設定した突固めエネルギーは、相馬珪砂単体の供試体の相対密度が50%となるものとした.作製した供試体に対し、二酸化炭素注入後脱気水の通水を行い、いずれの方法で作製した供試体も間隙圧係数b値が0.95以上であることを確認した.動的変形試験は、地盤工学会基準「土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験方法」(JIS 0543-2000)に定められる方法で行った.すなわち、各試料に対し有効拘束圧。す。=50,100,150kPaの3通りとなるよう等方圧密を行い、それぞれの供試体に非排水条件で、各せん断ひずみステップ毎に周波数f=0.1Hzの正弦波形の繰返し荷重を11回与えて行った.各ステップの繰返しせん断後は、排水状態にして過剰間隙水圧を消散させた.

(2) 試験結果

相馬珪砂、タイヤチップ、相馬珪砂とタイヤチップの 混合砂の等価せん断弾性係数 G_{eq} と片振幅せん断ひずみ (y)saの関係を図-3(a)-(c)に、それらの履歴減衰率hと片振 幅せん断ひずみ(y)saの関係を図-4(a)-(c)に、それぞれ有効 拘束圧毎に示す.また、図-3には、それぞれの曲線から (y)sa=0.0001%に対する G_{eq} を読み取った値を初期せん断弾 性係数 G_0 として示している.

図-3より、タイヤチップの初期せん断弾性係数は非常 に小さく, 珪砂の約0.01倍の値を示している. タイヤチ ップ単体においては、剛性が極めて低いために0.01%以 下のひずみレベルの試験が不可能であったが、0.1%のひ ずみまで、せん断弾性係数がほぼ変わらなかったことか ら、微小ひずみ域においても同じせん断弾性係数であっ たと判断した. また, 珪砂にタイヤチップを混合すると 初期せん断弾性係数は著しく低下し、タイヤチップを 30%混合した場合で珪砂単体の約0.3倍,50%混合した場 合で約0.1倍の値となっている.図-4より履歴減衰率は、 タイヤチップにおいては低いひずみ領域においても高い 値を示し、混合砂においてもタイヤチップの割合が高く なるほど低いひずみ領域で高い履歴減衰率が得られてい る.一方,相馬珪砂および混合砂においては、片振幅せ ん断ひずみ(y)&=0.01%程から履歴減衰率が急激に増加を 示すが、これは有効応力の低下に伴う剛性の低下によ

図-3 等価せん断弾性係数と片振幅せん断ひずみの関係

る履歴ループの拡大によるものと考えられる. 図-5に等価せん断弾性係数 G_{eq} を初期せん断弾性係数 G_0 で正規化した G_{eq}/G_0 と片振幅せん断ひずみ(y) x_0 の関係を有効拘束圧毎に示す.タイヤチップは、大ひずみ域に至ってもせ

ん断弾性係数が低下せず、(y)₃₄=10%でもせん断弾性係数 は半分程度までしか低下していないなど,顕著な弾性的 性質を示している.混合砂もタイヤチップの割合が高く なるほど弾性域は増加し,等価せん断弾性係数の低下

も抑えられている.図-6(a)-(c)に,正弦波10波目開始時 における過剰間隙水圧を有効拘束圧で正規化した値と片 振幅せん断ひずみ(y)&の関係を有効拘束圧毎に示す.珪 砂にタイヤチップを混合した場合,タイヤチップの混

合割合が高くなるほど間隙水圧が上昇しはじめるひずみ が大きくなり、大ひずみ域における間隙水圧も抑えられ ている.このような液状化特性の違いによって混合砂や タイヤチップ単体の場合は、せん断ひずみ振幅の増加に

伴うせん断弾性係数の低下傾向および履歴減衰率の増加 傾向は緩やかとなっていると推察される.

図-7に正規化した等価せん断弾性係数 G_{α}/G_0 と片振幅 せん断ひずみ(y)saの関係をタイヤチップの混合率毎に示 す.既往の研究においてきれいな砂の場合,有効拘束圧 が $G_{\alpha}/G_0 \sim (y)sa$ および $h \sim (y)sa$ 関係に影響を与えること¹⁹が 明らかとなっている.本研究では、図-7(a)において,相 馬珪砂の $G_{\alpha}/G_0 \sim (y)sa$ および $h \sim (y)sa$ 関係は有効拘束圧の影 響を受けていることが確認できるが、図-7(b),(c)のよう にタイヤチップを混合すると、その影響は小さくなり、 図-7(d)に示すようにタイヤチップ単体の場合,有効拘 束圧は $G_{\alpha}/G_0 \sim (y)sa$ および $h \sim (y)sa$ 関係に影響を与えないこ とが確認される.

4. 地震応答解析

(1) SHAKEによる地震応答解析

SHAKEはSchnabelら²⁰⁾により開発された等価線形化手 法を用いた一次元地震応答全応力解析プログラムである. SHAKEによる解析に必要なパラメータは層厚,湿潤単 位体積重量 γ , $G_{eq}/G_0 \sim \gamma$ 及び $h \sim \gamma$ 曲線,初期せん断弾性 率 G_0 及び初期減衰率 h_0 ,有効ひずみ算定のための係数で ある.層厚, γ は後述するオンライン地震応答解析と同 様とし, $G_{eq}/G_0 \sim \gamma$ 及び $h \sim \gamma$ 曲線は図-7に示した中空ねじ りせん断試験による結果を用いた. G_0 は図-8に示す初期 せん断弾性係数と有効拘束圧の関係を用いて,以下に示 す式より拘束圧の影響を考慮した値を求めた.

$$G_0 = A \cdot (\sigma_c')^n \tag{2}$$

また,初期減衰率h=5%,有効ひずみ算定のための係数 は0.65とした.

(2) オンライン地震応答解析

オンライン地震応答解析の概要²⁰を図-9に示す.オン ライン地震応答解析とは、要素試験としての単純せん断 試験と地震応答解析を同時に行うものであり、応答解析 から得られた応答変位を単純せん断試験に与え、単純せ ん断で求められた復元力を応答解析にフィードバックす る操作を逐次行っていくものである.オンライン地震応 答解析は以下のように行う.本研究では、6連の単純せ ん断試験機を用い、図-10のように多質点系にモデル化 した地盤を対象とした.まず、オンライン層各層の初期 応力を各単純せん断試験機に与える.次に基盤面から地 震動を入力し、支配運動方程式を時系列で解き、各時間 ステップで応答変位を求める.得られた応答変位に相当

図-9 オンライン地震応答実験の概要

するせん断ひずみを供試体に与え,試験により得られた 復元力を運動方程式にフィードバックして,次のステッ プの応答変位を算出する.すなわち,本手法はこれらの 過程を地震動が継続する間繰り返す事で,時々刻々に変 化する地盤の非線形な復元力を要素試験の供試体から直 接求め,それをオンラインで応答解析に結びつけて地震 時の地盤挙動を再現するものである.本システムの要素 実験部分は,日下部ら²⁰により開発された簡易単純せ ん断試験機を用いている.

Layer	Test Case						
		∆ S:T=7:3	▼ S:T=5:5	♦ TTT	SST2m	▲ SST4m	▼ SST6m
L1	不飽和解析層(γ ₁ =17.64kN/m ³ G ₀ =52MPa τ ₁ =12kPa α=2.31 β=2.21)						
L2	相馬珪砂	混合砂(T30%)	混合砂(T50%)	タイヤチップ	相馬珪砂	相馬珪砂	相馬珪砂
L3	相馬珪砂	混合砂(T30%)	混合砂(T50%)	タイヤチップ	相馬珪砂	相馬珪砂	相馬珪砂
L4	相馬珪砂	混合砂(T30%)	混合砂(T50%)	タイヤチップ	相馬珪砂	相馬珪砂	相馬珪砂
L5	相馬珪砂	混合砂(T30%)	混合砂(T50%)	タイヤチップ	相馬珪砂	相馬珪砂	タイヤチップ
L6	相馬珪砂	混合砂(T30%)	混合砂(T50%)	タイヤチップ	相馬珪砂	タイヤチップ	タイヤチップ
L7	相馬珪砂	混合砂(T30%)	混合砂(T50%)	タイヤチップ	タイヤチップ	タイヤチップ	タイヤチップ

表-2 実験ケース

オンライン地震応答解析には次の運動方程式を用いた.

$$M\ddot{X} + C\dot{X} + F = -MA \tag{3}$$

$$C = \alpha M + \beta K \tag{4}$$

ここにM: 質量マトリックス, C: 減衰マトリックス, F: 復元カベクトル, A: 入力加速度, K: 剛性マトリッ クス, α , β : レイリー減衰の係数である. レーリー減衰 の係数はそれぞれ1次及び2次の固有振動数 $\omega_1 \cdot \omega_2$ と減衰 定数 $h_1 \cdot h_2$ から次式で求められる²³.

$$\alpha = 2\omega_1 \cdot \omega_2 \cdot \frac{h_1 \cdot \omega_2 - h_2 \cdot \omega_1}{\left(\omega_2^2 - \omega_1^2\right)}$$
(5)

$$\beta = 2 \frac{h_2 \cdot \omega_2 - h_1 \cdot \omega_1}{\left(\omega_2^2 - \omega_1^2\right)} \tag{6}$$

ここでは、対象とする多層地盤を等価な均質一様地盤に 置換し、「1/4波長則」に基づいて次式により1次・2次 の固有振動数ωを求め²⁴、土の粘性減衰定数hについては 厳密に決定する方法がないため、ここでは1次・2次とも に0.05と仮定した.

$$\omega_1 = 2\pi \frac{1}{T_1} = 2\pi \frac{\sum V_{si} \cdot H_i}{4\sum H_i \cdot \sum H_i}$$
(7)

$$\omega_2 = 2\pi \frac{1}{T_2} = 2\pi \frac{1}{T_1/3} = 3\omega_1 \tag{8}$$

$$h_1 = h_2 = 0.05 \tag{9}$$

ここに $T_1 \cdot T_2$: 1次・2次の固有周期, V_s : 多層地盤にお ける各層のせん断弾性波速度, H_i : 各層の層厚である. 数値積分法には第1ステップでは線形加速度法を用い, 第2ステップ以降では衝撃加速度法を採用した²⁹. ステ ップにより積分法を変えた理由は、第1ステップでは衝 撃加速度法に必要なそれ以前の変位やせん断応力が未知 であるためであり、第2ステップ以降では線形加速度法 の接線剛性の精度の信頼性が低いためである. 積分時間 間隔は0.02秒とした.

供試体は動的変形試験と同様に、初期含水比10%のも と湿潤突固め法によって作製した.まず、乾燥した相馬 珪砂とタイヤチップを所定の体積比で混合し、含水比 10%となるように水を加え、均一になるように十分に混 ぜた.次に、ペデスタルにゴムスリーブを装着し、高さ 4cm、直径6cmのモールドを取り付け、試料を2層に分け て投入し、式(1)で表される突固めエネルギー Ec を制御 して作製し、相馬珪砂の供試体において相対密度が50% となる条件を選択した.

(3) 解析条件

地震応答解析は,表-2に示すようにオンライン地震応 答解析において要素試験を行うL2~L7層を対象として, 砂とタイヤチップの混合割合や層序,層厚を変化させて 実施した.表中の実験ケース名はL2~L7層における土 質を表しており,SとTの表記は,それぞれ砂とタイヤ チップを表している.不飽和解析層は修正R-Oモデル²⁰ を用い,必要なパラメータは神戸ポートアイランドの地 盤データ²⁰を基に表-2に示すように決定した.また,基 盤は剛基盤とし,入力波には加速度の最大値を500Galに 調整した八戸波を用いた.

5. 砂・タイヤチップ混合地盤の応答

本章では、砂とタイヤチップの混合地盤に対する地震 応答について検討した.タイヤチップの混合率は表-2に 示すように0%、30%、50%、100%とし、実験ケース SSS、S:T=7:3、S:T=5:5、TTTについて比較を行った.

図-11 有効応力経路

図-12 応力 - ひずみ関係

(1) 有効応力経路およびせん断応力 - せん断ひずみ関係

オンライン地震応答解析では、地震応答解析と同時 に要素試験を行う.図-11に各実験ケースにおけるL2~ L7層の有効応力経路を示す.図より、全層砂とした場 合SSSでは、いずれの層においても地震動が主要動に差 し掛かった際の有効応力の低下が大きくなり、特にL3 層では過剰間隙水圧比が0.67まで上昇している.混合砂 の場合、全層砂とした場合SSSと比較して地震動初期の 有効応力の低下が大きいが、その後は漸減するのみで、 特にタイヤチップを50%混合した場合S:T=5:5では、有効 応力の低下が抑制されており、過剰間隙水圧比は全ての 層で0.3程度となっている.また、全層タイヤチップと した場合TTTでは有効応力の低下はほとんど起きておら ず、過剰間隙水圧比は0.1程度となっている.

図-12に同一層のせん断応カーひずみ関係を示す.図 より、タイヤチップの混合率の増加に伴い、最初から剛 性が低い、扁平な応力ひずみ曲線ループに変わる様子が 観察される.

(2) 加速度応答時刻歴

図-13に地表面における応答加速度と入力波である八 戸波の加速度時刻歴を示す.地表面における応答加速度 において,破線はSHAKEによる解析結果,実線はオン ライン地震応答解析の結果を示す.

SHAKEによる解析,オンライン地震応答解析ともに, 全層砂の場合SSSで応答加速度が最も大きく,タイヤチ

ップを混合することで地震波が減衰・長周期化している. これは、タイヤチップを混合することで剛性が大きく低 下したため、入力波の主たる周波数成分や低周波成分の 波動の伝搬を抑制したためと考えられる.タイヤチップ の混合率が高いほど剛性はより大きく低下するため、そ の効果を強く発揮し、全層タイヤチップの場合TTTでは 地表面における応答加速度は最も低下している.

SHAKEによる解析とオンライン地震応答解析を比較 すると、応答値に約2倍の差があるが、応答加速度波形 の長周期化の傾向に関しては良い一致が見られる.

(3) 地表面応答加速度のフーリエスペクトル

図-14に地表面での応答加速度のフーリエスペクトル と入力波である八戸波の加速度フーリエスペクトルを示 す.地表面における応答加速度のフーリエスペクトルに おいて,破線はSHAKEによる解析結果,実線はオンラ イン地震応答解析の結果を示す. 応答値に大きな差が あるが,SHAKEによる解析もオンライン地震応答解析 も,全層砂の場合SSSに入力波に比べて1Hz付近での振 幅の増加がみられる点,タイヤチップを混合することで 1Hz付近での振幅が減少し,地震波が長周期化している 点が一致している.また,タイヤチップの割合が高くな るほど長周期化の傾向は強くなり、全層タイヤチップの 場合TTTでは短周期成分はほとんど消失している.これ らの結果から、タイヤチップの存在により地盤の固有周 期が長周期化し、周波数帯域も狭まったことにより、入 力波の特に高周波成分が除去され、振動全体が低減され たと考えられる.

(4) 応答結果の深度分布

SHAKEおよびオンライン地震応答解析からえられた 最大応答加速度・最大応答水平変位・最大せん断応力の 深度分布を図-15,図-16に示す.いずれも,図(a)の最大 応答加速度はタイヤチップを混合することで著しく低下 していることが確認できる.一方,図(b)の最大応答水 平変位は、タイヤチップを混合した場合に混合率が増え るほど剛性が低下するため値は大きくなる傾向にある. すなわち、タイヤチップを利用することで、変位は大き くなる.この点では一見、埋設管等の地中構造物への影 響の不安がある.しかし、これはオンライン地震応答実 験が一次元の条件で実施されるためであり、実地盤では、 周囲にタイヤチップ以外の地盤が存在しており、変位は それほど大きくならないものと予想される.また、図 (c)の最大せん断応力は、タイヤチップを利用すること

図-17 有効応力経路

図-18 応力 - ひずみ関係

で、全層砂とした場合SSSと比較して半分以下に低減されており、結果として地中構造物などへの影響は砂に比べ軽減されると考える.

図-16に示したオンライン地震応答解析と比較して, SHAKEによる解析結果は全応力解析であることから, 図(a)の最大応答加速度,図(b)の最大応答水平変位,図 (c)の最大せん断応力ともに応答値が大きくなっている が,タイヤチップを利用することで最大応答加速度が減 衰することや,タイヤチップの混合率が増加するほど変 位が大きくなること,タイヤチップを利用することでせ ん断応力が低減されることなど,オンライン地震応答解 析の結果と同様の傾向を示すことが確認できる.

6. 砂・タイヤチップ互層地盤の応答

次に、砂とタイヤチップの互層地盤に対して、タイヤ チップ層の層厚が地震応答に与える影響について検討す る.表-2に示すように、層厚の影響を検討するため、最 下層にタイヤチップ層を配置し、その層厚を2m,4m, 6mに変化させた場合について実験を行い、全層砂とし た場合SSS、および全層タイヤチップとした場合TTTと あわせて比較した.なお、実験ケース名SSTにおいて後 ろに続く数字は最下層のタイヤチップ層の層厚を表して いる.

(1) 有効応力経路およびせん断応力 - せん断ひずみ関係

図-17に全層砂とした場合SSSと最下層をタイヤチップ 層として、タイヤチップ層の層厚を2m、4m、6mと変化 させた場合SST2m・SST4m・SST6mのL2~L7層の有効応

カ経路をそれぞれ示す.全層砂とした場合SSSにおいて は、いずれの層においても地震動の主要動における間隙 水圧の上昇による有効応力の低下が確認できるのに対し、 タイヤチップを最下層に配置した場合は、いずれの実験 ケースにおいても、タイヤチップ層で有効応力の低下が 抑制されているだけでなく、上部の砂層でも有効応力の 低下傾向はみられない.

図-18に同一層のせん断応力-ひずみ関係を示す.図より、いずれの実験ケースにおいても、タイヤチップ層

で大きなせん断ひずみが生じている.しかし、タイヤチ ップを最下層に配置した場合、上部の砂層ではせん断ひ ずみはほとんど生じないことが確認できる.

(2) 加速度応答時刻歴

図-19に最下層をタイヤチップ層とし、その層厚を変 化させた場合SST2m・SST4m・SST6mの地表面における 応答加速度の時刻歴を示す.タイヤチップ層の層厚を変 化させた場合、層厚が大きいほど地震波が減衰・長周期 化している.また、SST4m・SST6mはL2~L7層に占める タイヤチップの割合がそれぞれ、33%・50%であり、タ イヤチップを混合した場合S:T=7:3、S:T=5:5とほぼ同じ タイヤチップ使用量となる.両者を比較すると、タイヤ チップを層として配置した場合SST4m・SST6mの方がよ り地震波を減衰していることが確認できる

(3) 地表面応答加速度のフーリエスペクトル

図-20に最下層をタイヤチップ層とし、その層厚を変 化させた場合SST2m・SST4m・SST6mの地表面における 応答加速度のフーリエスペクトルを示す.タイヤチップ を層として配置することで1Hz以上の振幅が著しく減少 し、地震波が長周期化していることが確認できる.また、 タイヤチップを混合した場合S:T=7:3, S:T=5:5と比較す ると,長周期化の傾向は顕著となっており,地表面にお ける加速度時刻歴の結果と合わせて考えると,同量のタ イヤチップを用いる場合,混合するよりも最下層に層と して配置する方がより大きな効果が期待できる.

(4) 応答結果の深度分布

図-21にSHAKEによる最大応答加速度・最大過剰間隙 水圧比・最大応答水平変位の深度分布を示す.図(a)の 最大応答加速度はタイヤチップ層で大きく減衰し,地表 面での値はタイヤチップ層の層厚が大きいほど小さくな っている.図(b)の最大応答水平変位はタイヤチップ層 で値が著しく変化している.これは、剛性の低いタイヤ チップ層でのみひずみが集中したためと考えられ、最下 層のタイヤチップ層の層厚が厚いほど値が大きくなって いる.図(c)の最大せん断応力はタイヤチップ層の層厚 が大きいほど低下している.

図-22にオンライン地震応答解析より得られたそれぞれの結果を示す.砂・タイヤチップ混合地盤の解析と同じく,SHAKEによる解析結果はオンライン地震応答解析結果に比べ応答値そのものは大きいが,オンライン地震応答解析の結果と同様の傾向を示すことが確認できる.

7. まとめ

本研究では、中空ねじりせん断試験機を用いてタイヤ チップ混合砂の動的変形特性について検討するとともに、 砂とタイヤチップの混合地盤および互層地盤を想定して SHAKEによる等価線形応答解析およびオンライン地震 応答解析により、それらから成る地盤の地震応答特性を 把握することを目的とした.本研究で得られた知見は以 下の通りである.

- (1) タイヤチップのせん断弾性係数は砂に比べ非常に 小さく、砂のせん断弾性係数もタイヤチップを混合 することで著しく低下するが、ひずみの増加に伴う せん断弾性係数の低下は抑えられ、大きなひずみ域 まで弾性的性質を示す.
- (2) タイヤチップの混合率が高いほど微小ひずみ域において高い履歴減衰率が発揮され、せん断ひずみの増加に伴う履歴減衰率の増加傾向は緩やかとなる.
- タイヤチップはG_{el}/G₀~yおよびh~y関係に対する有 効拘束圧の影響を受けない.
- (4) 地盤内にタイヤチップを打設・混入することで、 減震・免震効果が期待できる.タイヤチップを砂と 混合する場合は、タイヤチップの混合率が高いほど、 タイヤチップを層状に打設する場合は、その層厚が 厚いほどより大きな効果が期待できる.
- (5) 同量のタイヤチップを用いる場合,混合するより も最下層に層として配置することで,より大きな効 果が期待できる.
- (6) SHAKEによる解析は、オンライン地震応答解析と 比較して、応答値に違いがあるものの、地震波の減 衰・長周期化の傾向や深度分布の形状など比較的う まく再現できる。特に、最下層にタイヤチップを配 置した場合のタイヤチップ層の弾性的な挙動の影響 などうまく再現している。

参考文献

- ASTM : Standard practice for use of scrap tires in civil engineering applications, *Annual Book of ASTM Standards*, Vol. 22, No. 6, pp. 501-520, 1998.
- Eleazer, W. E. and Barlaz, M. B. : Technologies for utilization of waste tires in asphalt pavement, *Utilization of Waste Materials in Civil Engineering Construction*, pp. 193-201, 1992.
- Liang, R. Y. and Lee, S. : Short-term and long-term aging behavior of rubber modified asphalt paving mixture, *Recycled Rubber, Aggregate, and Filler in Asphalt Paving Mixtures*, No. 1530, pp. 11-17, 1996.
- Maupin, G. W., Jr. : Hot mix asphalt rubber applications in Virginia, *Recycled Rubber*, *Aggregate*, and *Filler in Asphalt Paving Mixtures*, No. 1530, pp. 18-24, 1996.
- 5) Ahmed, I. and Lovell, C. W. : Rubber soils as lightweight geomaterials, *Lightweight Artificial and Waste Materials*

for Embankments Over Soft Soils, No. 1422, pp. 61-70, 1993.

- 6) Humphrey, D. N., Standford, T. C., Cribbs, M. M. and Manion, W. P. : Shear strength and compressibility of tire chips for use as retaining wall backfill, *Lightweight Artificial and Waste Materials for Embankments Over Soft Soils*, No. 1422, pp. 29-35, 1993.
- Upton, R. J. and Machan, G. : Use of shredded tires for lightweight fill, *Lightweight Artificial and Waste Materials for Embankments Over Soft Soils*, No. 1422, pp. 36-45, 1993.
- Lee, J. H., Salgado, R., Bernal, A. and Lovell, C. W. : Shredded tires and rubber-sand as lightweight backfill, *Journal of Geotechnical and Geoenvironmental Engineering*, Vol. 125, No. 2, pp. 132-141, 1999.
- 9) 菊池喜昭,永留健,御手洗義夫:ゴムチップ混合固 化処理土のせん断時の破壊メカニズム,港湾空港技 術研究所報告,第45巻,第2号,pp.87-103,2006.
- 10) ハザリカヘマンタ、小濱英司、鈴木嘉秀、菅野高 弘:緩衝材としてタイヤチップを用いた構造物の耐 震性評価、港湾空港技術研究所報告、第45巻、第1 号、pp.1-28,2006.
- 11) Humphrey, D. N. and Manion, W. : Properties of tire chips for lightweight fill, *Grouting, Soil Improvement, and Geosynthetics*, No. 30, pp. 1344-1355, 1992.
- Edil, T. B. and Bosscher, P. J. : Engineering properties of tire chips and soil mixtures, *Geotechnical Testing Journal*, Vol. 17, No. 4, pp. 453-464, 1994.
- 13) Mased, E. M., Taha, R., Ho, C. and Papagiannakis, T. : Engineering properties of tire/soil mixtures as a lightweight fill material, *Geotechnical Testing Journal*, Vol. 19, No. 3, pp. 297-304, 1996.
- 14) Zheng-Yi, F. and Sutter, K. G. : Dynamic properties of granulated rubber/sand mixtures, *Geotechnical Testing Journal*, Vol. 23, No. 3, pp. 338-344, 2000.
- 15) 山田卓,兵動正幸,岡本真紀,ハザリカへマンタ, 中田幸男,吉本憲正:タイヤチップ・砂混合土の非 排水繰返しせん断特性,第7回環境地盤工学シンポ ジウム発表論文集,pp.311-316,2007.
- 16) Tsang, H. H. : Seismic isolation by rubber-soil mixture for developing countries, *Earthquake Engineering and Structural Dynamics*, Vol. 37, pp. 283-303, 2008.
- 17) 金子崇,兵動正幸,中田幸男,吉本憲正,ハザリカ ヘマンタ:タイヤチップによる飽和砂地盤の免震効 果に関するオンライン地震応答解析,材料, Vol. 59, No. 1, pp. 20-25, 2010.
- 18) 御代田早紀,村上哲,小峯秀雄,安原一哉,ヘマン タハザリカ:港湾護岸構造物の地震時安定性向上を 目指したタイヤチップス水平敷設裏込め地盤の適用 性,第9回環境地盤工学シンポジウム論文集,pp. 333-338,2011.
- 19) 千葉隆仁,山下聡,土岐祥介:三軸試験と中空ねじり試験による砂の繰返し変形特性,地盤および土構造物の動的問題における地盤材料の変形特性に関する国内シンポジウム発表論文集,pp.181-186,1994.
- 20) Schnabel, P. B., Lysmer, J. and Seed, H. B. : SHAKE a computer program for earthquake response analysis of horizontally layered sites, Report No. EERC75-30, University of California, Berkeley, 1975.

土木学会論文集C(地圈工学), Vol. 69, No. 1, 91-107, 2013.

- 日下部伸,森尾敏,有本勝二:オンライン地震応答 解析による2層系砂質地盤の液状化挙動,土質工学 会論文報告集, Vol. 30, No. 3, pp. 174-184, 1990.
- 22) 日下部伸,森尾敏,岡林巧,藤井照久,兵動正幸: 簡易単純せん断試験装置の試作と種々の液状化試験 への適用,土木学会論文集,No. 617/III-46, pp. 299-304, 1999.
- 23) 柴田明徳:最新建築学シリーズ 9 最新耐震構造解析, pp. 69-72,森北出版, 1981.
- 24) 社団法人土木学会:実務に役立つ耐震設計入門, p. 128, 丸善, 2011.

- 25) 柴田明徳:最新建築学シリーズ 9 最新耐震構造解析, pp. 79-108,森北出版, 1981.
- 26) 大崎順彦,原昭夫,清田芳治:地盤振動解析のための土の動力学モデルの提案,第13回土質工学研究発表会,pp.1057-1060,1978.
- 27) 山口晶: 1995 年兵庫県南部地震における神戸沖合人 工島の地震時挙動,東北大学大学院工学研究科学位 論文, pp. 63-64, 2001.

(2012.5.2 受付)

DYNAMIC DEFORMATION CHARACTERISTICS AND SEISMIC RESPONSE OF TIRE CHIPS AND MIXTURES WITH SAND

Takashi KANEKO, Masayuki HYODO, Yukio NAKATA, Norimasa YOSHIMOTO and Hemanta HAZARIKA

A series of dynamic deformation tests was performed on tire chips and their mixtures with sand with various proportion of tire chips by hollow cylindrical torsional shear testing apparatus. The shear stiffness of the sand specimen decreased drastically by mixing with the tire chips. However, the degradation of the stiffness dependent on magnitude of shear strain did not appear up to large strain level reflecting the elastic characteristics of the tire chips. Based on the findings, the seismic response analyses were carried out on the mixtures and alternating layers of sand and tire chips. Both the equivalent linear response analysis 'SHAKE' and the on-line pseudo-dynamic response analysis were performed aimed at clarifying the earthquake response characteristics of tire chips and tire chips-sand mixtures. The analyses results confirmed the quake-absorbing excess pore water pressure control and seismic isolation effects of tire chips as a geomaterial.