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SUMMARY 

Integration of time series data, multi sensor analysis and statistical models are 

important for accurate mapping for open ocean tuna habitat and precipitation studies. In this 

study, habitat characteristics of bigeye tuna were investigated as a representative for open 

ocean tuna habitat studies and validation and correction of Global Satellite Mapping 

Precipitation (GSMaP) were performed as representative for precipitation studies. Tuna 

habitat is an important issue to study because global tuna catches have increased steadily 

from a half million tonnes in 1950 to almost 4 million tonnes in 1999. In addition, validation 

and correction of GSMaP is necessary to study because GSMaP precipitation amount 

generally has been underestimated and it will cause high bias for flood forecasting.

Historical data of open ocean tuna habitat and precipitation studies were derived by open 

access multi sensor satellite remote sensing data and were conducted in the two study areas: 

Southern Waters off Java-Bali in Indonesia for open ocean habitat studies and Kyushu 

Island in Japan for precipitation studies.

The aims of this research are to introduce the simple method to analyze the 

relationship between bigeye tuna and environmental variable by using linear regression, to 

introduce Generalized Additive Model (GAM) for dealing with nonlinear data, to determine 

the best model for bigeye tuna habitat in the study area, to evaluate the ability of GSMaP 

data as satellite precipitation during rainy season and to reduce the bias of GSMaP product 

during heavy rainfall.  

This study was divided into two main parts. First is the introduction and explanation 

of the analysis method, and second is the application of multi-sensor satellite data for open 

ocean tuna habitat and precipitation studies. In the first application for open ocean tuna 

habitat studies, scatterplot smoother method was used to analyze a relationship between 

environmental variables and fisheries data. Then, simple predicted map can be determined. 
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The second application, GAM was conducted to measure the relationship between 

environmental variables and fisheries data and then to build the habitat suitability index.

In the first application for open ocean tuna habitat studies, satellite remote sensing 

data of sea surface temperature (SST), sea surface chlorophyll (SSC) and sea surface height 

deviation (SSHD) as environmental data variables and daily fish catch data from PT 

Perikanan Nusantara, Bali during 2006-2010 were used. To determine the relationship 

between environmental variables and bigeye tuna, scatterplot smoother were conducted. The 

results clearly showed that SST, SSC, SSHD which derived from satellite observation, 

confirmed a strong relationship with the abundance of bigeye tuna. However, the parameters 

which give the dominant effect bigeye tuna cannot be distinguished.

In the second application, GAM as the recent development of regression model was 

applied. By GAM, the data did not force to be linear and parameters which give the 

dominant effect bigeye tuna can be distinguished. In this study, seven models were 

constructed from the simplest form by using only one independent variable (i.e., SST, SSC, 

SSHD) and combination of all the variables (i.e., SST+SSC, SST+SSHD, SSC+SSHD and 

SST+SSC+SSHD). Then, GAM and geographic information system (GIS) method were 

combined to determine the spatial distribution of bigeye tuna habitat. The results showed 

that SST was the most important habitat predictor for bigeye tuna migration in the Southern 

Waters off Java and Bali, followed by SSHD and SSC. The spatial pattern of bigeye tuna 

habitat characteristic gave typical low SST, negative to low SSHD and extreme value of 

SSHD and low to moderate SSC. 

For precipitation studies, we evaluated and corrected GSMaP_MVK at daily time 

scales with a spatial resolution of 0.1o latitude/longitude. The reference data came from 

thirty four rain gauges over Kyushu Island, Japan. This study focused on the GSMaP_MVK 

ability to detect heavy rainfall pattern that may lead to flooding. Statistical analysis was used 
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to evaluate the GSMaP_MVK data both quantitative and qualitative. The statistical analysis 

included the relative bias (B), the mean error (E), the Nash-Sutcliffe (CNS), the Root Mean 

Square Error (RMSE) and the correlation coefficient (r). In addition, GAM was conducted 

for GSMaP_MVK data correction. The results of these analyses indicate that GSMaP_MVK 

data have lower values than observed data and have serious underestimate during heavy 

rainfall. By applying GAM for bias correction, GSMaP_MVK ability was improved to 

detect heavy rainfall. In addition, GAM for bias correction is well applied for ser ious 

underestimate of GSMaP_MVK (i.e., bias more than 55%). Thus, GAM is a promising way 

to predict the rainfall amount for flood and landslide monitoring, especially in the area 

where rain gauge data are limited. 

The advantage of this research is all the satellite remote sensing data which we used 

are open access and it can be applied in the developing countries. For the future research for 

tuna habitat, developing a method which measures the interaction of predictor variables to 

the fish catch data is necessary to develop. In precipitation studies, correction of 

GSMaP_MVK data product is the first step to make a model for flood prediction map more 

accurate.



7 

TABLE OF CONTENT 

SUMMARY ......................................................................................................................................... 4 

CHAPTER 1. INTRODUCTION .................................................................................................. 14 

1.1 Background .............................................................................................................................. 14 

1.2 Research Motivation ................................................................................................................ 16 

1.3 Research Problem .................................................................................................................... 17 

1.4 Research Scope and Objective ................................................................................................ 17 

1.5 Research Outline ...................................................................................................................... 18 

1.6 Overview of the study area ..................................................................................................... 21 
1.6.1Southern waters off Java-Bali, Indonesia ......................................................................... 21 

1.6.2 Kyushu island, Japan ........................................................................................................ 23 

CHAPTER 2. ANALYSIS METHODS ........................................................................................ 25 

2.1 Multi sensor of satellite remote sensing ................................................................................. 25 

2.2 Multi sensor images for Open Ocean Tuna habitat studies................................................... 27 
2.2.1 Open Ocean Ecosystem .................................................................................................... 27 

2.2.2 Bigeye Tuna Characteristics ............................................................................................. 28 

2.2.3 Satellite Remote Sensing Characteristics for Bigeye tuna Habitat ................................ 30 

2.3 Multi sensor images for precipitation studies ........................................................................ 34 
2.3.1Global Satellite Mapping Precipitation (GSMaP)............................................................ 35 

2.4 Generalized Additive Model (GAMs) .................................................................................... 39 
2.4.1 A framework for use of statistical models ....................................................................... 39 

2.4.2 GAM .................................................................................................................................. 39 

CHAPTER 3. APPLICATION FOR OPEN OCEAN TUNA HABITAT 1 ........................... 43 

Utilization of Scatterplot smoothers to Understand the Link Between Bigeye Tuna 

Catches And Remote Sensing Environmental Data in The Southern Waters Off Java

Bali ...................................................................................................................................................... 43 



8 

3.1 Introduction .............................................................................................................................. 43 

3.2 Study area ................................................................................................................................. 45 

3.3 Materials and Methods ............................................................................................................ 46 
3.3.1 Fisheries data and remotely sensed environmental data ................................................. 46 

3.3.2 Classification of fisheries data ......................................................................................... 48 

3.3.3 Scatterplot Smoothers ....................................................................................................... 49 

3.3.4 Generating the optimum range of environmental variables ........................................... 51 

3.3.4 Generating a simple predicted map .................................................................................. 52 

3.4 Results ...................................................................................................................................... 52 
3.4.1.Distribution of number of bigeye tuna caught and environmental data ........................ 49 

3.4.2 Classification of fisheries data ......................................................................................... 54 

3.4.3 Scatterplot smoothers ........................................................................................................ 56 

3.4.4 Relationship between environmental factors and bigeye tuna caught ........................... 58 

3.5 Relationship between ocean dynamics and preferred habitat for bigeye tuna ..................... 64 

3.6 Conclusions .............................................................................................................................. 66 

CHAPTER 4. APPLICATION FOR OPEN OCEAN TUNA HABITAT 2  .......................... 68 

Characterization of Bigeye Tuna Habitat in the Southern Waters Off Java-Bali Using 

Remote Sensing Data ....................................................................................................................... 68 

4.1 Introduction .............................................................................................................................. 68 

4.2 Materials and Methods ............................................................................................................ 69 
4.2.1 Study Area ......................................................................................................................... 69 

4.2.2 Fisheries data and classification ....................................................................................... 71 

4.2.3 Remote sensing data ......................................................................................................... 71 

4.2.4. Application of Generalized Additive Model (GAM) .................................................... 71 

4.2.5 Habitat Suitability Index ................................................................................................... 76 

4.3 Results ...................................................................................................................................... 77 
4.3.1 Analysis of habitat characteristics for bigeye tuna by using GAM ............................... 77 

4.3.2 Model validation and bigeye tuna habitat prediction ...................................................... 79 



9 

4.4 Discussion ................................................................................................................................ 81 

4.5 Conclusions .............................................................................................................................. 90 

CHAPTER 5. APPLICATION FOR PRECIPITATION STUDIES ....................................... 91 

Evaluation and Bias Correction of GSMaP Daily Rainfall Satellite Data for Flood 

Monitoring In Kyushu Island, Japan by Generalized Additive Model Approach ................ 91 

5.1 Introduction .............................................................................................................................. 91 

5.2 Materials and Methods ............................................................................................................ 93 
5.2.1 Study Area ......................................................................................................................... 93 

5.2.2 Rain Gauge Data ............................................................................................................... 94 

5.2.3 GSMaP Data ...................................................................................................................... 95 

5.2.4 Validation and Intercomparison ....................................................................................... 96 

5.2.5 Determining a bias correction by power function ........................................................... 99 

5.2.6 Determining a bias correction by Generalized Additive Models (GAM) ..................... 99 

5.3 Results and Discussion .......................................................................................................... 100 
5.3.1 General comparison of daily rain gauges with GSMaP_MVK data ............................ 100 

5.3.2 Validation and correction of GSMaP_MVK in the highland and lowland ................. 102 

5.3.3 Validation and correction of GSMaP_MVK in the eastern part and western part of 
Kyushu ............................................................................................................................. 105 

5.3.4 Validation and Correction of GSMaP MVK during rainy days ................................... 108 

5.3.5 Validation and Correction of GSMaP MVK during heavy rainfall ............................. 109 

5.4 Conclusions ............................................................................................................................ 112 

CHAPTER 6. CONCLUSIONS ................................................................................................... 114 

ACKNOWLEDGEMENT ............................................................................................................ 116 

REFERENCES ............................................................................................................................... 117



10 

LIST OF FIGURES 

Figure 1.1 Outline of the dissertation .............................................................................................. 20

Figure 1. 2 (A) Map of the Indonesian seas, with the inset box representing the study area. 

(B) Map of the study area in the eastern Indian Ocean (EIO) off Java 

(Syamsudin et al., 2013). ............................................................................................... 22

Figure1.3 Map of Kyushu Island...................................................................................................... 23

Figure 2.1 Data collection by remote sensing (Joseph, 2005)........................................................ 25

Figure 2.2 An Example of multi sensor analysis which distinguishes habitat suitability index 

(Mugo et al., 2011) ......................................................................................................... 26

Figure 2.3 Food web in open ocean (www.studyblue.com) ........................................................... 28

Figure 2.4 Tuna fishing methods (WWF, 2014) ............................................................................. 29

Figure 2.5 The electromagnetic spectrum (https://engineering.purdue.edu) ................................. 31

Figure 2.6 How altimetry measures SSHD (http://www.aviso.altimetry.fr) ................................. 33

Figure 2.7 Flow chart of the GSMaP algorithm (Ushio et al., 2009) ............................................ 36

Figure 2.8 Schematic illustration combining the precipitation field forward and backward in 

time. The white belts denote the coverage of the microwave sensor. ......................... 37

Figure 3.1 Study area ........................................................................................................................ 45

Figure 3.2 The relation between number of tuna and hook rate .................................................... 47

Figure 3.3 Data illustration ............................................................................................................... 50

Figure 3.4 Histograms of number of bigeye tuna and environmental data: (a) distribution of 

number of bigeye tuna, (b) distribution of log-transformed number of bigeye 

tuna, (c) SST, (d) SSC, (e) SSHD. ................................................................................ 53

Figure 3.5 Frequency of fishing days in relation to (a) SST, (b) SSC, (c) SSHD and (d) 

month from 2006 to 2010. They were grouped according to the way used by 

Andrade and Garcia (1999)............................................................................................ 55



11 

Figure 3.6   Number of bigeye tuna in relation to SST during 2006-2010 .................................... 56

Figure 3.7   Number of bigeye tuna in relation to SSC during 2006-2010 ................................... 57

Figure 3.8   Number of bigeye tuna in relation to SSHD during 2006-2010 ................................ 57

Figure 3.9   Average number of bigeye tuna SST from 2006-2010............................................... 58

Figure 3.10 Average number of bigeye tuna in relation to SSC from 2006-2010 ........................ 59

Figure 3.11 Average number of bigeye tuna in relation to SSHD from 2006-2010 ..................... 60

Figure 3.12 Empirical cumulative distribution frequencies for (a) SST, (b) SSC and (c) 

SSHD as weighted by bigeye tuna catch during the period of 2006-2010............... 62

Figure 3.13 Spatial distribution of longline fisheries in July from 2006 to 2010 overlaid with 

simple prediction map generated from combination of SST, SSC and SSHD ........ 63

Figure 4.1  The study area in the Southern Waters off Java-Bali. This area has been passed 

by five dominant waves and current  systems, namely, South Java Current 

(SJC), Indonesia Through Flow (ITF), Indian Ocean Kelvin Waves (IOKW), 

Rossby Waves (RW), and the Indian Ocean South Equatorial Current (SEC). 

(Modified from Syamsudin et al., 2013) .................................................................... 70

Figure 4.2  Effect of three oceanographic variables on the number of bigeye tuna (a) SST, 

(b) SSC and (c) SSHD. Tick marks at abscissa axis represent the observed data 

points. Full line is the GAMs function. Dashed dot lines indicate the 95% 

confidence level. .......................................................................................................... 79

Figure 4.3 (a) A Scatter plot between the average observed values and GAM model 

predicted ones. (b) A Scatter plot between all ranges observed values and 

GAM model predicted ones. ....................................................................................... 80

Figure 4.4 Habitat suitability index for bigeye tuna from January to December 2009 

overlaid with bigeye tuna fishing location (continue to the next page).................... 83



12 

Figure 4.4 Habitat suitability index for bigeye tuna from January to December 2009 

overlaid with bigeye tuna fishing location (from the previous page) ....................... 84

Figure 4.5 The spatial distribution of SSC and bigeye tuna catches in Southern Waters off 

Java-Bali in 2009 (continue to the next page). ........................................................... 88

Figure 4.5 The spatial distribution of SSC and bigeye tuna catches in Southern Waters off 

Java-Bali in 2009 (from the previous page) ............................................................... 89

Figure 5.1 The study area, Kyushu Island, and its topography. Black triangle indicates the 

rain gauge locations ..................................................................................................... 94

Figure 5.2 Scatter plot of daily rain gauge data versus GSMaP_MVK product during rainy 

season from 2005 to 2007.......................................................................................... 101

Figure 5.3  Long term mean of daily rainfall measured by AMEDAS and GSMaP_MVK for 

three years during rainy season. Daily rainfall is spatially averaged over 34 rain 

gauges. ........................................................................................................................ 102

Figure 5.4   Comparison of the performance GSMaP_MVK in the highland (a), lowland (b), 

corrected highland (c), corrected lowland (d) .......................................................... 104

Figure 5.5   Smoothing function of GSMaP_MVK ...................................................................... 105

Figure 5.6 The wind direction of southern part of Japan in June 2006 (source: ASCAT, 

2014) ........................................................................................................................... 107

Figure 5.7 Comparison of the performance GSMaP_MVK in the Eastern part (a), western 

part (b), corrected Eastern part (c), corrected western part (d) ............................... 108

Figure 5.8  The performance of GSMaP_MVK during rainy days (a), corrected by GAM (b) 109

Figure 5.9  Heavy rainfall measurement by AMEDAS, GSMaP and corrected by GAM for 

three years................................................................................................................... 111

Figure 5.10 Extreme rainfall, which caused flood in Miyazaki 2006 (a), Kagoshima 2006 

(b), Kumamoto 2006 (c), Kumamoto 2007 (d) ........................................................ 112



13 

LIST OF TABLES 

Table 1.1 Climatological (1961-1990) annual precipitation totals and percentage of 

precipitation during each season for four stations on Kyushu Island (Uvo et al., 

2001)................................................................................................................................ 24

Table 2.1 Coefficient for SST MODIS band 31 and 32 (Brown and Minnet., 1999) ................... 32

Table 2.2 Characteristic of microwave radiometer of GSMaP data product  ..... 35_Toc427146772

Table 3.1 The full matrix of high catches data ................................................................................ 48

Table 4.1 Data structure of environmental variables and fish catch .............................................. 72

Table 4.2 Iteration process ................................................................................................................ 74

Table 4.3 GAM models used in this study and obtained values for P-value, percent DE, AIC 

value, and DF, respectively (N=7751). ........................................................................... 76

Table  5.1 Contingency table of yes or no events/ with rain or no rain. ........................................ 98

Table 5.2 Validation statistics of daily GSMaP_MVK product during rainy season from 

2005 to 2007. ................................................................................................................... 102

Table 5.3 Validation statistics over the highland and lowland before and after corrected by 

GAM ................................................................................................................................ 104

Table 5.4 Validation statistics over the eastern part and western part part before and after 

corrected by GAM .......................................................................................................... 107

Table 5.5 Validation statistics during rainy days .......................................................................... 109

Table 5.6 Validation statistics during heavy rainfall..................................................................... 111



14 

CHAPTER 1 

 INTRODUCTION 

1.1 Background 

Remote sensing offers the ability to observe and collect data for large areas 

relatively quickly, and is an important source of improving natural resources management, 

land use and protection of the environment. In this study, open ocean tuna habitat and 

precipitation were concerned for remote sensing application because open ocean is the 

largest area of marine ecosystem which is the main resources for human being and 

precipitation plays a primary role in the global water and energy cycle. Integration of time 

series data, multi sensor analysis and statistical models are important for accurate mapping 

for open ocean tuna habitat and precipitation studies. One of the common situations we deal 

with in ecological data and precipitation pattern is that the relationship between response 

variables (Y) and predictor variables (X) are nonlinear. One of the methods for dealing with 

nonlinearity in regression problem is Generalized Additive Models (GAM) which fits a 

smoothing curve through the data and keeps the requirements of independence, normal 

errors and constant variance (Hastie and Tibshirani, 1990).  

In this study, habitat characteristics of bigeye tuna in the Southern Waters off Java-Bali, 

Indian Ocean were investigated as a representative for open ocean tuna habitat studies. It is 

an important issue to study because global tuna catches have increased steadily from a half 

million tonnes in 1950 to almost 4 million tonnes in 1999 (Miyake et al., 2004). In addition, 

the Pacific Ocean has the highest proportion of catches (65%) then the second rank of the 

proportion of catches (20%) is the Indian Ocean (Miyake et al., 2004). Bigeye tuna is one of 

the tuna species which widely traded and fully exploited in the Indian Ocean (IOTC, 2006a) 

and overfishing in the Atlantic (ICCAT, 2006a) and in the Pacific Ocean (WCPFC, 2006a). 

Without swift and effective management action, the status of bigeye tuna stocks is likely to 
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deteriorate in the same way as stocks of Atlantic Bluefin Tuna (Thunnus thynnus) and 

Southern Bluefin Tuna (Thunnus macoyii), which are now considered by the world 

conservation union to be critically endangered or endangered (WWF, 2007).  By combining 

multi-sensor satellite data and statistical analysis, the habitat models can be built with the 

certain error values. In the first application for open tuna habitat studies, the scatter 

smoothers method to analyze a relationship between environmental variables and fisheries 

data was introduced. Then, simple predicted map can be determined. The second application, 

according to scatter smoothers concept, GAM was conducted by adding smoothing function 

to measure the relationship between environmental variables and fisheries data and then to 

build the habitat suitability index. 

In precipitation studies, validation and correction of Global Satellite Mapping 

Precipitation (GSMaP) were conducted. Satellite precipitation data contribute significantly 

to the improvement of meteorological reanalysis products that are widely used for climate 

change, agriculture, and disaster prevention research (Saha et al., 2010). The suitability of 

satellite data for monitoring therefore should be considered (Trenberth and Hurrel., 1997) 

because satellite data often contain uncertainties caused by biases in sensors and retrieval 

algorithms, as well as inconsistencies between continuing satellite missions with the same 

sensors. In other words, satellite precipitation observations should be calibrated /validated to 

provide adequate temporal and spatial sampling over a long period of time (Karl et al., 2010). 

The GSMaP data, as the highest temporal and spatial resolution satellite data, can detect a 

precipitation event with the same trend as rain gauge data, but the precipitation amount 

generally has underestimated (Fukami 2010, Kubota et al. 2009, Makino 2012, Seto et al. 

2009, Shrestha et al. 2011). Underestimated precipitation can cause underestimated 

discharge and it cause high bias for flood forecasting (Kabold and Suselj 2005, Pauwels and 

Lannoy 2005). Hence, validation and correction of GSMaP data are necessary. Because of 
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the nonlinear pattern of precipitation data, GAM model was introduced to reduce the bias of 

GSMaP data in this study.  

1.2 Research Motivation 

Historical data of open ocean tuna habitat and precipitation studies over a wide area are 

necessary to distinguish the dynamic change of them. Satellite imaginary is the best source 

of such data, because observations need to be extensive, regular and consistent to establish 

baseline and trends. In many cases, satellite data are restricted and charged for, but for ocean 

and atmospheric observation, satellite data are open-access (i.e., NASA, precipitation 

satellite, altimetry satellite). In this study open access satellite data are used to analyze the 

characteristic of bigeye tuna habitat in case of open ocean ecosystem studies and to correct 

GSMaP satellite precipitation product in case of precipitation studies.   

Open-access remote sensing data have three significant impacts for tracking and 

understanding the environmental and climate change studies, namely continuity , 

affordability , and access  (Turner et al., 2014). Data continuity  relates to the 

maintenance of long-term satellite data products. It will give a knowledge of how the 

environmental variables have changed and why. Data affordability  arises from the cost of 

imaginary, but some of them are free of charge like data from ocean color and altimetry 

satellite to monitor the environmental parameter in the ocean and the GSMaP satellite 

precipitation product to monitor the rain rate with high temporal resolution. Data access

means the ability of the researchers to discover, retrieve, manipulate, and extract value from 

satellite imagery as well as link it with other types of information. Thus, open access 

satellite with long term records are necessary to be processed in interdisciplinary application 

(i.e habitat studies and satellite data product correction for flood monitoring). Due to data 

continuity records of satellite data, validation and calibration is important step which 

requires insitu data information as a reference.  
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Nonlinearity is another problem of ecological data and precipitation data. For that 

reason, the modern regression analysis was introduced which called GAM. This statistical 

method does not force data into unnatural scales, and allow for non-linearity and non-

constant variance structures in the data (Hastie and Tibshirani, 1990).  In addition, GAM has 

the ability to handle a large data sample which is very useful for open ocean tuna habitat and 

precipitation studies. 

1.3 Research Problem 

The research was conducted to use open access global coverage of satellite data by long 

term analysis for some environmental problems. Problems were found as follows: 

1) Both of open ocean tuna habitat and precipitation studies have typical nonlinear data. 

2) Southern Waters off Java and Bali is known as spawning area for tuna species and 

the habitat characteristic studies in that area are very limited. 

3) The rain gauge availability is limited in the isolated area or in developing countries. 

Thus satellite precipitation data is necessary. GSMaP is one of the satellite 

precipitation data, however, it has error value in its system.  

4) GSMaP has a serious underestimate during heavy rainfall. In addition, the heavy 

rainfall amount which close to rain gauge data is important to predict the accurate 

flood occurrence.  

1.4 Research Scope and Objective 

The objectives of this research are: 

1) To introduce scatter smoothers method to analyze the relationship between bigeye 

tuna habitat and environmental variables in the study area by using linear regression. 

2) To determine the best model for bigeye tuna habitat in the study area by introducing 

GAM for dealing with nonlinear data. 
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3) To evaluate the ability of GSMaP data as satellite precipitation data during rainy 

season. 

4) To reduce the bias of GSMaP product during heavy rainfall. 

1.5 Research Outline 

This research is divided into two parts. First is the introduction and explanation of 

satellite remote sensing and GAM and second is the application of multi sensor satellite data 

and GAM for open ocean tuna habitat and precipitation studies. Figure 1.1 describes the 

outline of the dissertation. The dissertation is constructed by six chapters, as follows:  

Chapter 1 

Introduction of the research is described in this chapter. The chapter discusses the general 

introduction and basic motivation of this research. The research problem and research scope 

are listed and the research objectives are given 

Chapter 2 

This chapter explains the concept of multi sensor of remote sensing data, GAM and the 

theoretical background of research topic and the application for open ocean tuna habitat 

studies and precipitation. 

Chapter 3 

This chapter describes the application of multi sensor satellite data for open ocean tuna 

habitat study part one . Relationship studies between environmental data derived from 

satellite remote sensing and bigeye tuna using scatterplot smoothers method were selected as 

representative of this case. The background, method, technical process, result and discussion, 

and conclusion were explained.  

Chapter 4 

This chapter discusses about the application of multi sensor satellite data and GAM for open 

ocean tuna habitat study part two  and bigeye tuna characterization was chosen as 
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representative of this case. The background, method, technical process, result and discussion, 

and conclusion were explained.  

Chapter 5 

This chapter discussed about the application of multi sensor satellite data and GAM for 

precipitation studies. Validation and bias correction of GSMaP was chosen as representative 

of this case. The background, method, technical process, result and discussion, and 

conclusion are explained.  

Chapter 6 

Chapter 6 presents the conclusions and the future work of the research. 
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Figure 1.1 Outline of the dissertation 
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1.6 Overview of the study area 

The research was conducted in two study areas: Southern waters off Java-Bali in Indonesia 

and Kyushu Island in Japan. These areas were selected for open ocean tuna habitat studies 

and precipitation studies.  

1.6.1 Southern waters off Java-Bali, Indonesia 

As explained in the outline of dissertation, Southern waters off Java-Bali is the 

representative for study area 1. Southern waters off Java-Bali as part of the Indian Ocean 

which locates between Indonesia and Australia. This area is the unique water because of its 

geography influenced by water masses in the Western Indian Ocean (WIO) and the outflow 

water masses from the Pacific Ocean. Both of these water masses affect the variability of 

oceanographic conditions in this area. In addition, the location of its waters is in a monsoon 

wind system, causing conditions of oceanographic which is affected by monsoon winds 

system (Wyrtki, 1961). Winds over the Indonesian maritime continent and the position of 

the Intertropical Convergence Zone (ICZ) are dominant features of strong monsoon 

signatures in this area. During the southeast monsoon (May to October), southeasterly winds 

from Australia generate upwelling along the southern coasts of Java and Bali. Upwelling 

events lead to the concentration of chlorophyll-a increase that causes the primary 

productivity (Wyrtki, 1962; Purba, 1995). These conditions are reversed during the 

northwest monsoon (November to April) (Gordon, 2005). This area has complex dynamic 

currents and wave systems (Syamsuddin et al, 2013). The dominant current and wave 

features consist of are shown in Figure 1.2 : 1) Indonesia throughflow (ITF), outflow water 

from the Pacific Ocean (Molcard et al., 2001; Gordon et al., 2010); 2) the seasonally 

reversing South Java Current (SJC) along the southern coast of the Indonesian Sea (Sprintall 

et al., 2010); 3) the Indian Ocean South Equatorial Current (SEC) flows from the southern 

Indian Ocean to an area off southern Java (Zhou et al., 2008); 4) downwelling Indian Ocean 
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Kelvin Waves (IOKWs) that propagate to the east along the coasts of west Sumatra, Java, 

and the Lesser Sunda Islands (Syamsudin et al., 2004); and 5) westward Rossby Waves 

(RW) propagation at 12 15°S (Gordon, 2005; Sprintall et al., 2009). Besides these current 

and wave systems, winds over the Indonesian maritime continent and the position of the ICZ 

are dominant features of strong monsoon signatures.  

Figure 1. 2 (A) Map of the Indonesian seas, with the inset box representing the study area. 
(B) Map of the study area in the eastern Indian Ocean (EIO) off Java (Syamsudin et al., 

2013). 

 In Figure 1.2B, the wave and current systems in the Eastern Indian Ocean (EIO) off 

Java are indicated by the dotted line for the South Java Current (SJC), solid lines for ITF, the 

line with dashes and 2 dots for IOKWs, the line with dashes and 1 dot for the Rossby Waves 

(RW), and the dashed line for SEC.

(A) 

(B) 
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1.6.2 Kyushu island, Japan 

As explained in the outline of dissertation, Kyushu island is the representative for 

study area 2. Kyushu is the third largest island of Japan and was located in the 

southwesternly of its four main island (Fig 1.3).  

Figure1.3 Map of Kyushu Island 

This island has an area of 35,640km2 from latitude 31o N to 34oN and longitude 

129o30 2oE. The most important topographic feature of Kyushu Island is the Kyushu 

mountains aligned in a north-south direction at the centre of the island. The spatial 

distribution of precipitation depends largely on the direction of prevailing winds relative to 

the orientation of this mountain range. The annual precipitation and its seasonal distribution 

at four meteorological stations are shown in Table 1.1. According to Table 1.1, the highest 

annual precipitation occurred during summer season, which mostly caused flood and debris 

flow. Since it is in southern Japan, Kyushu has a subtropical climate and its inhabitants 
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produce a variety of agricultural products. In addition, most of Kyushu's population is 

concentrated along the northwest, in the cities of Fukuoka and Kitakyushu.  

Table 1.1 Climatological (1961-1990) annual precipitation totals and percentage of 
precipitation during each season for four stations in Kyushu Island (Uvo et al., 2001) 
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CHAPTER 2 

ANALYSIS METHODS 

2.1 Multi sensor of satellite remote sensing 

Remote sensing is the science to get the information about the E

instruments which are remote to the Earth's surface (Joseph, 2005). To denote identification 

of earth features, the characteristic of electromagnetic radiation, which is reflected/emitted 

by the earth system is distinguished. A device to detect the electromagnetic radiation 

reflected or emitted from an object is called a sensor which is located on the platform (e.g, 

satellite, aircraft, etc). These explanations are described in Figure 2.1. 

Figure 2.1 Data collection by remote sensing (Joseph, 2005) 

The output of this technique can be an image/ binary data which displays in the digital 

format. For some remote sensing instruments, the distance between the target being imaged 

and the platform, plays a large role in determining the detail of information obtained and the 

total area imaged by the sensor. The detail information of an image depends on the spatial 

resolution of the sensor and refers to the size of the smallest possible feature that can be 
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detected. In addition, the temporal resolution is also important for the satellite remote 

sensing system, which refers to the period of the satellite passes on the same territory.  

Remote sensing offers the ability to observe and collect data for wide areas relatively 

quickly, and is an important source of improving natural resources management, land use 

and protection of the environment. An increased utilization of satellite remote sensing data 

will increase the demand for harmonizing heterogenous data by using multi sensor analysis 

approach (Mergey and Mockness., 2009). Figure 2.2 shows an example of multi sensor 

analysis. 

Figure 2.2 An Example of multi sensor analysis which distinguishes habitat suitability index 

(Mugo et al., 2011) 

Multi-sensor analysis is often used to determine a certain phenomenon/ characteristics 

by combining some multi-sensor image. The advantage of this approach is multi-sensor 

analysis may provide increased interpretation capabilities and more reliable results since 
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data with different characteristics are combined and can achieve improved accuracies, better 

temporal coverage, and better inference about the environment than could be achieved by 

the use of a single sensor alone (Von and Huang., 2005). In addition, multi-temporal 

analysis is an underway methodology for handling and analyzing the time series of data (e.g. 

time series of sea surface temperature (SST) image observed from satellite). This approach 

is able to characterize the dynamic change during a certain period. A combination of multi-

sensor image data may also be used to examine large-scale spatial patterns on the earth`s 

surface.  

2.2 Multi sensor images for Open Ocean Tuna habitat studies 

2.2.1 Open Ocean Ecosystem 

The interaction between animal, plant and the environment is known as ecosystem. 

contain some of the most diverse organisms and least known habitats of our planet. The 

open ocean consists of water column (pelagic) and sea floor (the benthic realm) in 

international waters that is beyond 200 miles from a nation coastline (Mills and Carlton, 

1998). Food web in the open ocean is shown in Figure 2.3. It describes that phytoplankton as 

primary producer and tuna as the third level of carnivore. From the point of view of 

conservation, the declined pelagic fisheries has been recognized, especially for tuna fisheries 

(Mills and Carlton, 1998).  
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Figure 2.3 Food web in open ocean (www.studyblue.com) 

2.2.2 Bigeye Tuna Characteristics 

Bigeye tuna is one of the tuna species which widely traded and fully exploited in the 

Indian Ocean (IOTC, 2006a) and overfished in the Atlantic Ocean(ICCAT, 2006a) and in 

the Pacific Ocean (WCPFC, 2006a). Bigeye tuna mostly are caught by purse seine and long 

line fleets (Figure 2.3). Juvenile bigeye tuna are taken by purse seine fleets for canning 

industry, while adult bigeye tuna are taken by longline fleets for sashimi and sushi market. 

Even though longline fleets only catch adult bigeye tuna, it also has an impact on a range of 

bycatch species (i.e., sharks, marlin, swordfish, turtle, marine mammals, finfish, and 

seabirds). In addition, by longline fleets methods, the proportion of the bycatch reached 76% 

in 2005 in the Indian Ocean and it was the highest bycatch proportion of all (Oceanic 

Fisheries Programe, 2006). 
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Figure 2.4 Tuna fishing methods (WWF, 2014) 

Bigeye tuna is a member of the Scombridae Family in the Order Perciformes and it is 

classified as a highly migratory species which spread globally. Bigeye tuna is relatively long 

lived species, later to spawn and of lower biological productivity compared with other tuna 

species (Froese and Paully, 2007). As a result, bigeye tuna is more vulnerable to overfishing 

than species such as skipjack tuna and yellow fin tuna.  Bigeye tuna fisheries have not only 

impacted to bycatch species, but also have the impact for the food webs and habitat (WWF, 

2007). Bigeye tuna, like other tuna species, is a high level predator in the marine food chain, 

while there is a little research on the role of bigeye tuna explicitly in the food webs (Kitchell 

et al., 1999). Purse seine fishing method which is used to catch bigeye tuna have the impact 

for bigeye tuna existence and have some localised impacts on benthic habitats (MRAG 

Americas Inc., 2002).  
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Bigeye tuna periodically stay near the surface pelagic environment (Brill et al., 2005), 

hence satellite data provide appropriate observations for their horizontal habitats. Bigeye 

tuna are known to associate with the temperature conditions (Brill et al., 2005 and Howell et 

al., 2010), thermocline layer (Brill et al., 2005)  and water clarity (Sund et al., 1981; 

Blackburn et al., 1968; and Bertrand et al., 2002) which are features that can be 

distinguished from satellite remotely-sensed SST, ocean color and altimetry data. Studying 

bigeye emotely-sensed environmental data provides a scientific basis 

for understanding their response to externalities such as climate change and fishing pressure. 

Habitat models based on remotely-sensed data can facilitate fishery forecasting, effort 

control or design of dynamic marine protected areas. To build a habitat model, multi-sensor 

satellite data, time series data and statistical model are needed.  

2.2.3 Satellite Remote Sensing Characteristics for Bigeye tuna Habitat 

In this study, Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) sensor 

and altimeter sensor (NRA and SSALT) were used. Aqua MODIS sensor has spectral 

coverage from 405nm to 14385nm (IOCCG, 2014) and altimeter sensor has spectral 

coverage from 1cm to 1m (Aviso, 1996). By Aqua MODIS sensor, SST and Sea Surface 

Chlorophyll (SSC) can be obtained and by altimeter sensor Sea Surface Height Deviation 

(SSHD) can be obtained. In relation with bigeye tuna habitat parameter, SST, SSC, and 

SSHD were used as a representative for temperature, water clarity and thermocline layer.  

By Aqua MODIS sensor, SST and SSC observation can be measured in the near 

infrared band (750nm - 950nm) and visible band (450 nm  690 nm), while altimeter sensor 

can be measured in the microwave band (Figure 2.5). Due to the difference of the 

electromagnetic spectrum, Aqua MODIS data and altimeter data have a different spatial 

resolution.  
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Figure 2.5 The electromagnetic spectrum (https://engineering.purdue.edu) 

Ocean properties are always changing, so temporal resolution is more important than 

spatial resolution. Thus, time series data were applied. In addition, time series data is 

important to build the habitat models for bigeye tuna. Time series data cause large numbers 

of data, therefore the higher level data of Aqua MODIS sensor (level 3) and altimeter sensor 

(4) were selected for efficiency data processing. Higher level data were defined as the 

conversion of raw data to physical property data, i.e., SST ( C), SSC (mg/m3) and SSHD 

(cm). The raw data of SST and SSC are radiance (w/m2/cm4/sr ) and SSHD is telemetry data 

record (m). The conversion algorithm of SST, SSC and SSHD are described as follows: 

To obtain SST, two algorithms were conducted, first conversion from radiance to 

brightness temperature ( K) and second conversion from brightness temperature to SST 

(Brown and Minnet., 1999). 

                                                                                         (2.1) 
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 Where, T is the brightness temperature ( K), h is Plank constant (6.6260755 x 10-34 J s), 

c is speed of light (2.99792458 x 108 m/s), L is wavelength (cm), k is Boltzmann constant 

(1.380658 x 10-23J/K), and R is the radiance value (w/m2/cm4/sr). After brightness 

temperature was obtained, SST can be calculated as follow: 

                              (2.2)  

Where T31 is brightness temperature of band 31, T3132 is brightness temperature difference of 

band 32 and band 31 (band 32 - band 31) and C1, C2, C3, C4 are coefficient for MODIS band 

31 and 32 which are listed in Table 2.1. 

Table 2.1. Coefficient for SST MODIS band 31 and 32 (Brown and Minnet., 1999) 
Coefficient T32-T31  0.7 K T32-T31  0.7 K 

C1

C2

C3

C4

1.228552 

0.976555 

0.1182196 

1.774631 

1.692521 

0.9558419 

0.0873754 

1.199584 

To obtain SSC, OC3M algorithm was applied (Werdell and Bailley., 2005) as follows:  

                                   (2.3)  

where 

               (2.4)           

Where a0, a1, a2, a3 and a4 are the coefficients with the value of 0.283, -2.753, 1.457, 0.659 

and -1.403. Rs (443), Rs (489) and Rs (555) are remote sensing reflectance in the 

wavelength 443nm (band 9), 489nm (band10) and 555nm (band 11). The Rs values can be 

obtained by the following equation: 
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                               (2.5) 

Where Lw is water leaving radiance, Es is downwelling surface iradiance which derived 

from buoys measurements and  is wavelength. 

Figure 2.6 shows how altimetry measures SSHD. First, altimeters emits signals to the 

earth and receive the echo from the sea surface, after its reflection. The sea height is 

represented by the distance satellite minus the surface and the satellite's position relative to 

an arbitrary reference surface (the reference ellipsoid). 

Figure 2.6 How altimetry measures SSHD (http://www.aviso.altimetry.fr) 

To obtain SSHD, the algorithms were applied as follows:  

                 (2.6) 

Where MSS is the mean sea surface height with 20 years reference, SSH is sea surface 

height which can obtained by following equations: 

 - bias              (2.7)            
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Where, geoid is equal to  0.3mm, surface echo is the value from telemetry data (m), R is 

the range between satellite position and surface (2 cm) and bias is the error value after 

calibration. 

 To build the model, time series data of SST, SSC and SSHD were integrated by 

using statistical analysis, such as empirical cumulative distribution function (EDF) and 

GAM (Generalized Additive Models). It is explained in Chapter 3 and 4. To create spatial 

distribution of habitat map, habitat suitability index (HSI) was applied as explained in the 

Chapter 4. By applying this method, habitat characteristic of bigeye tuna can be recognized 

during a certain time. 

2.3 Multi sensor images for precipitation studies 

There are many climate parameters, which are measured by satellite remote sensing such 

as SST, aerosol, precipitation, sea ice, mean sea level, and solar radiation and so forth. In 

this study, precipitation is concerned because it plays a primary role in the global water and 

energy cycle (Yang et al., 2013). The spatial and temporal variability of precipitation on the 

global scale can be obtained from observations made by satellite precipitation. Although 

studies using longer satellite time series produced smaller rate of precipitation increase, 

these results are still regarded as unconfirmed result due to the shortness of the series 

(Liepert et al., 2009). A survey of available satellite-based long-term precipitation products 

showed mostly no trend in global precipitation (Grubber et al., 2008). These divergent 

findings represent the problems of detecting a robust global mean trend of precipitation, 

which lead to high variability of precipitation, systematic biases associated with instruments, 

and inadequate interpretation of the surface and atmospheric properties in the retrieval 

algorithms (Liu et.al., 2012). Hence, validation and correction of satellite precipitation data 

is necessary. Although there is still uncertainty regarding a general trend, satellite 
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observations have greatly enhanced our understanding of the climate processes that control 

the variability of precipitation.  

2.3.1Global Satellite Mapping Precipitation (GSMaP) 

The Global Satellite Mapping of Precipitation (GSMaP) is a recent addition to the 

repository of satellite-based high-resolution precipitation estimates which supported by 

Japan Science and Technology Agency (JST) and Japan Aerospace Exploration Agency 

(JAXA). GSMaP seeks to produce a high-precision, high resolution precipitation map using 

satellite data. For that reason, GSMaP combined two main sensors that are microwave 

radiometer (MWR) sensor from low orbit satellite and infrared radiometer (IR) sensor from 

geostationary satellite (Ushio et al., 2009). The MWR sensor consists of special sensor 

microwave/ imager (SSMI), Tropical Rainfall Measuring Mission (TRMM) microwave 

imager (TMI) and advanced microwave scanning radiometer (AMSR-E) for Earth 

Observing System (EOS), which characteristic are listed in Table 2.2. In addition, SSM/I 

sensors consist of three platform namely, Defense Meteorological Satellite Program  

Satellite F13 (DMSP-F13),  DMSP-F14 and DMSP-F15  

Table 2.2 Characteristic of microwave radiometer of GSMaP data product (Aonashi et al., 
2009) 

Name Altitude (km) Sensor Frequency (GHz) 

TRMM 402 TMI 10, 19, 21, 37, 85 
AQUA 705 AMSRE 7, 10, 19, 24, 37, 89 

DMSP-F13 803 SSM/I 19, 37, 85 

DMSP-F14 803 SSM/I 19, 37, 85 

DMSP-F15 803 SSM/I 19, 37, 85 
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The MWR sensors emit brightness temperature, then converts into surface precipitation 

according to the algorithm of Aonoshi et al. (1996) and Kubota et al. (2007). In contrast, 

infrared radiometer sensor from geostationary satellite do not measure directly the 

precipitation, but their measurements are located in the cloud height top which directly 

correlate with surface precipitation by large variance (Ushio et al., 2009). Thus, Kalman 

filter was used to provide better feedback information for temporal variations. The original 

spatial resolution of infrared sensor is 0.036 degrees and the limited spatial resolution for 

microwave radiometer is 0.1 degrees. So, by integrating algorithm between MWR sensor 

and infrared sensor based on morphing technique, 0.1 degrees/1 hour resolution is produced 

(Joyce et al., 2004). This product was called GSMaP_MVK and it was used for this study. 

More detail about the algorithm is shown in Figure 2.7. 

Figure 2.7 Flow chart of the GSMaP algorithm (Ushio et al., 2009) 

GSMaP algorithm contains two main processes, namely advection system and rainfall 

propagation and Kalman filter. There are two processes to determine the advection vector. 

First, two dimensional cross correlation coefficient of images of IR brightness temperature 
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with one hour resolution at t = 0 and t = 1 is calculated. Second, if the image at t = 1 is 

lagged to t = 0 image spatially in longitude and latitude direction, the correlation is 

calculated for given spatial offset. By repeating this procedure for various offset and 

searching for horizontal offset which generates a maximum correlation and advection vector 

was determined. After maximum correlation was determined, the rainfall area from MWR is 

propagated forward in time by the advection vector derived from infrared image. In addition, 

the rainfall area is spatially propagated backward using the same advection vector. And then, 

the optimum estimates of rainfall rate are computed by calculating the weighted average 

from backward and forward propagation rainfall rates as explained in Figure 2.8 called as 

Kalman filter processes. This algorithm is used because in the previous one, the rain rate of 

surface precipitation has large variance and this algorithm can improve the accuracy of 

temporal variation of precipitation system (Ushio et al., 2009). 

Figure 2.8 Schematic illustration combining the precipitation field forward and backward in 
time. The white belts denote the coverage of the microwave sensor. 

The description about advection system, rainfall propagation and Kalman filter equation 

can be explained as follows: 

                                         (2.8) 
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Where, Xk is precipitation rate at time k which is propagated precipitation rate forward 

in time and w is called system noise. After a pixel propagated along with moving vector, the 

predicted the precipitation rate at time k+1 is not necessary as same as the actual rain rate at 

the time. If its uncertainty is represented as w which is called as system noise. In addition, 

the actual relationship between the infrared brightness temperature and surface precipitation 

rate is quite nonlinear (Ushio et al., 2009) with large variance. To apply Kalman filter into a 

linear basis, the linearization approximation is needed as explained in equation (2.9). 

                          (2.9)               

Where Yk is brightness temperature at the time k, Xk is precipitation rate at the time k, v 

is noise and H is coefficient constant. After applying the kalman filter to the propagated 

rainy pixel stated above, the same propagation and Kalman filter is applied to the rainy pixel 

backward propagation (Figure 2.7). To obtain the optimal rain rate, the weighted average 

equation is applied: 

                   (2.10) 

Where is optimal rainfall at the time t,  is the forward refines precipitation rate by 

Kalman filter after i hours,  is the backward refines precipitation rate by Kalman filter 

after j hours and  is the root mean square of the uncertainty estimates after i and j hours 

from microwave radiometer overpass.  

 GSMaP as multi sensor satellite, which tends to underestimate values especially 

when heavy rainfall occurs. In addition, the ability of GSMaP to observe heavy rainfall is 

necessary to predict the probability of flood occurrence. For that reason, validation of 

GSMaP data is important to estimate the error value (i.e., root mean square and bias) which 

is necessary to improve the GSMaP algorithm. In addition, bias correction is necessary to 
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reduce the underestimate value during heavy rainfall. Long term analysis is necessary to 

obtain the error value and to create the solution for its correction. Thus, multi satellite data 

were used.  

2.4 Generalized Additive Model (GAMs) 

2.4.1 A framework for use of statistical models  

The purpose of the statistical model is to provide a mathematical basis for 

interpretation, examining such parameters 

explain the  association (Is the relationship between the response 

and the predictors significant?), and to ascertain the contributions and roles of the different 

variables. Regression analyses have been broadly applied in ecology to determine the 

relationship between response and explanatory variables. Linear regression (LR) is one of 

the oldest statistical techniques, and has long been used in biological research. However, LR 

has limitation of its assumption. Then, one field where the use of modern regression 

(i.e.Generalized linear model (GLM) and Generalized Additive Model (GAM)) approaches 

has proven particularly useful is the modeling of the spatial distribution of species and 

communities (Guisan and Zimmermann, 2000; Scott et al., 2002). In addition, GLM is more 

flexible than LR and GAM is the wider generalization of GLM. That is; 

LR  GLM  GAM                       (2.11) 

2.4.2 GAM 

GAMs are semi-parametric extensions of GLMs (Generalized Linear Models) which 

do not force data into unnatural scales, and thereby allow for non-linearity and non-constant 

variance structures in the data (Hastie and Tibshirani, 1990). GAM has the ability to handle 

a larger class of distributions for the response variable Y. Data may be assumed to be from 
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several families of probability distributions, including the normal, binomial, Poisson, 

negative binomial, or gamma distribution, many of which better fit the non-normal error 

structures of most ecological data (Guissan et al., 2002). Thus, GAMs are more flexible and 

better suited for analyzing ecological relationships, which can be poorly represented by 

classical Gaussian distributions (Austin, 1987). In addition, the underlying assumption made 

is that the functions are additive by smooth  function. GAM uses a link function to 

establish a relationship between the mean of the 

of the explanatory variable(s). The strength of GAMs is their ability to deal with highly non-

linear and non-monotonic relationships between the response and the set of explanatory 

variables. GAMs are sometimes referred to as data- rather than model driven. This is 

because the data determine the nature of the relationship between the response and the set of 

explanatory variables rather than assuming some form of parametric relationship (Yee and 

Mitchell, 1991). The ability of GAM to handle nonlinear data structures can aid in the 

development of ecological models that better represent the underlying data, and hence 

increase our understanding of ecological systems. 

Generalized Additive Model (GAM) can be summarized by the flowing components: 

(2.12)

Where, g is link function (i.e., log link, inverse link and identity link), µ is a response 

variable,  is a constant value, fi are spline smooth function 

tendencies, and Xi is the predictor variables. A smoothers is a tool for summarizing the trend 

of a dependent variable µ as a function of one or more independent variables X1, X2,.., Xp.  

In addition, smoothers estimate the dependence of the mean of µ in the predictors.  
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Figure 2.9. cubic spline function 

To determine spline smoothers piecewise polynomial was applied.  As seen in 

Fig.2.9 predictor variable (x) was divided into intervals. Each interval (i.e cubic polynomial) 

is fitted and then fitted values per segment are glue together (i.e point where the intervals 

connect was called by knots).In addition, f(x) at first and second derivative are continues at 

each xi, so the cubic polynomial in each intervals can be determined. After each smoother 

line was calculated in each predictor variables, then all predictor variables were combined 

using multiple regressions. The main output of GAM is partial residual plot in each predictor 

variables which also represents smoothing functions. 

                            (2.13) 

Where, Rj is partial residual,  is a response variable with link function,  is a 

constant value, fk(Xk) are smoothing functions of other predictor variables. In other words, 

partial residual means the residuals after removing the effect of all predictor variables (i.e., 

smoothing function in each predictor variables). 

GAM was widely applied to several studies related to ecology and meteorological 

applications. Simon Barry and Alan Welsh (Guissan et al., 2002) present alternative flexible 

GAMs for predicting species distributions when observed count data include a larger 
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proportion of zeros than expected (i.e., zero inflated) in a Poisson distribution. Zagaglia et al. 

(2004),  Zainuddin et al. (2008), Mugo et al. (2010), Syamsudin et al. (2013) and Setiawati 

et al. (2015) present the application of GAM to predict tuna distribution in oceans by 

environmental variables. Hastie and Tibshirani (1984) present the application of GAM by 

using Gaussian model for large meteorological data set. 
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CHAPTER 3 

APPLICATION FOR OPEN OCEAN TUNA HABITAT 1 

Utilization of Scatterplot smoothers to Understand the Link Between Bigeye Tuna 

Catches And Remote Sensing Environmental Data in The Southern Waters Off Java

Bali 

3.1 Introduction 

 Tuna fisheries play an important role in the economic sector related to the fisheries 

resources utilization in Indonesia and its exports reached U.S. $ 400 million in 2011 and 

continues to increase every year (MMAF, 2011). Southern waters off Java and Bali, part of 

Indian Ocean are identified as potential fishing grounds of tuna fisheries (Bailey et al., 1987; 

Osawa and Julimantoro, 2010). In addition, the waters of the Indian Ocean, between 

Indonesia and Australia, are known as important spawning grounds for commercial tuna and 

tuna-like species (Nishikawa et al., 1985). Hence, the availability of biological and 

environmental data around the Indian Ocean becomes an essential step to conserve and 

manage bigeye tuna resources.  

Bigeye tuna are species highly migratory that are distributed between 40 N and 40 S, 

especially in the tropical waters (Laevastu and Rossa 1962, Kikawa and Ferraro 1966, 

Collette and Nauen 1983, Fonteneau et al., 2004). They prefer to stay at the temperature 

around the thermocline layers (Brill et al., 2005) and they have large tolerance of water 

temperature (Brill et al., 2015). The main depth of fishing activity for bigeye tuna in the 

Indian Ocean is between 161 280 m (Mohri and Nishida, 1999), while they can stay in the 

surface layer (0-100 m) in the night time (Howell et al., 2010). Moreover, bigeye tuna are 

considered as a visual predator which means that they favor to stay in the clear water with 

low chlorophyll-a concentration (Sund et al., 1981).  
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The biophysical environment plays an important role in controlling tuna distribution 

and abundance (Zainuddin et al., 2006), including those of bigeye tuna. The near real time 

data of biophysical environment by global coverage can be derived from satellite remote 

sensing. Recent decades, the satellite remote sensing has become an instrumental ecology 

for environmental monitoring (Chassot et al., 2011) and is used to manage fisheries 

sustainable levels (Klemas et al., 2013).  

Satellite remote sensing data provide reliable global ocean coverage of sea surface 

temperature (SST), sea surface height deviation (SSHD), surface winds, and sea surface 

chlorophyll (SSC), with relatively high spatial and temporal resolution (Polovina and 

Howell, 2005). Application of satellite remote sensing  in fisheries is increasing worldwide 

(e.g. Laurs et al., 1984; Laurs, 1986; Stretta, 1991; Lehodey et al., 1997; Santos, 2000; 

Zagaglia et al., 2004; Zainuddin et al., 2006; Druon, 2010; Yen et al., 2012; Perez et al., 

2013; Kamei et al., 2014). Oceanographic phenomena are often used to understand preferred 

habitat and to estimate the potential of fishing grounds (Mohri, 1999; Mohri and Nishida, 

1999; Lennert-Cody et al., 2008; Song et al., 2009; Osawa and Julimantoro, 2010). However, 

there have been relatively few tuna fisheries ecology studies using satellite remote sensing 

data in the Southern Waters off Java and Bali (Natih et al., 2010, Osawa and Julimantoro, 

2010; Arief et al., 2011, Syamsuddin et al., 2013). Natih et al., (2010), Osawa and 

Julimantoro (2010) and Arief et al., (2011) reported that environmental variables had not 

significant to the abundance of bigeye tuna while Syamsuddin et al. (2013) reported that El 

Nino gave the significant effect to bigeye tuna abundance in the Southern waters of Java-

Bali. 

 The aims of this study are to determine the relationship between bigeye tuna catches 

and environmental data derived from satellite remote sensing and to determine the optimum 

value of each variable. SST, SSC and SHD were used as the environmental factors in this 
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study. SST has been used to investigate productive frontal zones (Hanamoto, 1987; Andrade 

and Garcia, 1999; Lu et al., 2001), SSH can be used to infer oceanic features such as current 

dynamics, fronts, eddies, and convergences (Polovina and Howell, 2005), while SSC can 

also be used as a valuable indicator of water mass boundaries and may identify upwelling 

which can influence tuna distribution in the region. We applied scatterplot smoother method 

to analyze the relationship among the data and empirical cumulative distribution function to 

find the optimum value after data were classified into high catches data.  

3.2 Study area 

 The Southern Waters off Java-Bali as a part of the eastern Indian Ocean are selected 

as a study area and are located between latitude from 10°S to 18°S and longitude from 

110°E to 118°E as shown in Figure 3.1. 

Figure 3.1 Study area 

  The study area has a tropical monsoon type of climate, resulting from the Asia-

Australian monsoon wind systems, which change the wind direction according to the 

seasons. In July September, the prevailing southeast monsoon favours upwelling along the 
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coast off Java-Bali and Sumatra (Du et al., 2008). These conditions are reversed during the 

northwest monsoon (November to April; Susanto et al., 2006). The Southern waters off 

Java-Bali is not only forced by intense annually reversing monsoonal winds, but also 

Physically, the study 

area and the surroundings have some complex dynamic currents and wave systems (Feng 

and Wijffels, 2002). The range value of SST depends on the seasonal monsoon (Soman and 

Slingo, 1997). The surface layer of the tropical ocean is warm and the annual variation of 

temperature is normally small (Wyrtki, 1961). In addition, range of SSC inversely 

proportional with SST. Every year, higher concentrations of SSC occur in June to September 

and lower concentrations in December, January and February (Hendiarti et al., 2005; 

Swardika et al., 2012). These conditions directly affect the amount of fishing catches 

(Syamsuddin et al., 2013). 

3.3 Materials and Methods 

3.3.1 Fisheries data and remotely sensed environmental data 

 We analyzed daily catch data of bigeye tuna and remotely sensed environmental data 

for the period of 2006 2010. Data set for bigeye tuna catch was used to examine the link 

between the number of bigeye tuna caught and environmental data in the study area. The in-

situ bigeye tuna catch data were obtained from nineteen longline fishing logbooks provided 

by PT Perikanan Nusantara, an incorporated company of the Indonesian government, at 

Benoa, Bali. Most of fishing operations were run by medium-sized vessels (100 gross 

tonnage). Each month, 19 20 vessels were operated with the same fishing gear (longline 

sets) and similar fishing technique (Syamsudin et al., 2013). The data sets consist of 

geographic positions of fishing activities (latitude and longitude), operational days, vessel 

numbers, and the number of tuna caught per day. We compiled and digitized them into the 
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monthly database.  The unit of daily catch data was the number of bigeye tuna caught. 

Although most researchers have used catch per unit effort (CPUE) as an index of fish 

abundance (Zagaglia et al., 2004; Zainuddin et al., 2008; Lan et al., 2011; Mugo et al., 2010), 

we used number of bigeye tuna caught as an index of fish abundance due to its trend which 

almost same with hook rate (i.e hook rate can be referred as CPUE) data as shown in the 

Figure 3.2. Moreover. We assume that fish catch was caught one boat in one location. So, it 

is proportional to fish density in one location. 

Figure 3.2 The relation between number of tuna and hook rate 

 SST, SSC, SSHD were used as indices for remote sensing environmental data. 

Monthly SST (°C) and SSC (mg/m3) Level 3 Standard Mapped Images (SMI) with 4 km 

spatial resolution were downloaded from Aqua MODIS satellite data 

(http://oceancolor.gsfc.nasa.gov/). The SSC data correction was carried out to remove noise 

which was mainly due to clouds (Maritorena et al., 2010), removing unexpected value of 

SSC concentration (<0 and> 10 mg/m3) (Abbott and Letelier, 1999).  SSHD were 

downloaded from aviso homepage by using environmental data connector (EDC) which has 

0.25 spatial resolution and then resampled to fit the SST and SSC spatial resolution. The 

EDC is compatible with ArcGIS software and can be downloaded for free from the National 
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Oceanic and Atmospheric Administration (NOAA) website 

(http://www.pfeg.noaa.gov/products/edc/). Monthly values of SST, SSC and SSHD data 

were extracted from each pixel corresponding to the location of fishing activities by using 

spatial analysis tool of Arc GIS software. The outcome was a full matrix of number of 

bigeye tuna caught and environmental variables. The full matrix was used for classification 

of fisheries data and for scatterplot smoothers. 

3.3.2 Classification of fisheries data  

  Classification of fisheries data is very useful for inferring the type of fish catch data 

and for determining the optimum range of environmental variables and also can reduce the 

bias due to null catches (Andrade and Garcia, 1999; Zainuddin et al., 2008; Setiawati et al., 

2015). The classification of fisheries data was divided into three groups based on Quartile 

method (Andrade and Garcia, 1999): (a) null catches (0); (b) positive catches (1~3); and (c) 

high catches ( 4). The high catches number of four was estimated from the lower limit of 

the upper quartile (Q3) of the number of bigeye tuna caught. The Q3 was obtained from 

7750 observational data. The result of this analysis was the full matrix of high catches data 

of bigeye tuna and environmental variables. Table 3.1 is a part of the full matrix. This result 

was used to generate the optimum range by using ECDF (section 3.3.4) 

 Table 3.1 The full matrix of high catches data 

Date Month Year Latitude Longitude
Number of 

bigeye tuna  
SST SSC SSHD 

9 2 2006 -14.333 112.167 4 28.19 0.055 -10.3 

9 2 2006 -13.350 114.667 4 28.610 0.0905 0.3 

10 2 2006 -14.167 113.167 4 28.8 0.085 -6.53 

. . . . . . . . . 

. . . . . . . . . 

Di Mi 2010 Lat i Lon i max SSTi SSCi SSHDi
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3.3.3 Scatterplot Smoothers  

Scatterplot smoothers method was employed to analyze the relationship between 

number of bigeye tuna and environmental variables (i.e SST, SSC and SSHD) according to 

Tibshirani and Hastie, 1986. In this method, each environmental variables as predictor 

variables were analyzed separately.  

  E (Y|X) = s(X)                                           (3.1) 

Where Y is number of bigeye tuna, X is SST or SSC or SSHD and s is smooth functions of 

X. First, logarithmic transformation was applied (i.e log10 (number of bigeye tuna +1)). 

Transformation was conducted because the data type is integer and asymetric. A factor 1 

was added before log-transformation to account zero number of bigeye tuna. To estimate 

s(x) from the data, we can use any reasonable estimate of E (Y|X=x).  One class estimates 

are the local average estimates: 

                               (3.2) 

Where, Ave represents averaging operator (mean) of yj of Ni data. To calculate Ni, the data 

points are sorted by increasing x value, a formal definition is: 

                                   (3.3) 

Where, the total number of class (knots) was determined that is 50, w is span/ window/ 

interval which has the same total points in each interval. In addition, point in each interval 

was determined by total number observation divided by total number of class. 

Due to all data observation were used, the span size (w) is different depend on the data rank 

as shown in the Fig. 3.3.  
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Figure 3.3 Data illustration 

The span w controls the smoothness of the resulting estimate, and it is chosen 

according to the data distribution of each predictor variables. The Ave in eq.3.2 of this 

chapter stands for polynomial estimates as defined by : 

                                     (3.4) 

                      (3.5) 

Where f1=1, f2=x, f3=x2, fi=xn , x is the average in each wi span and yk the average of log10 

(number of bigeye tuna+1) in wi span, the bracket symbols means all the calculation was 

determined by using matrix. This model was evaluated by using Pvalue (i.e the probability 

that our data would be at least this inconsistent with the hypothesis) and coefficient 

determination (R2) was calculated to analyze the influence of predictor variables to the 

number of bigeye tuna as defined below: 

                                        (3.6) 
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Where  is the total average of the number of bigeye tuna. High number of R2 means high 

relation of both data. By applying scatter plot function, 2 of each span was almost same, so 

that the trend can be determined. 

3.3.4 Generating the optimum range of environmental variables 

 Preferred environmental conditions were obtained by considering confidence ranges 

of high catches data of ECDF. The stronger association between the two environmental 

variables and number of bigeye tuna were analyzed using ECDF. In this analysis, three 

functions, f(t), l(xi), g(t), were used (Perry and Smith, 1994; Andrade and Garcia, 1999) as 

follows: 

 (3.7) 

with the indicator functions 

         (3.8) 

   (3.9) 

           (3.10) 

Where f(t) is empirical cumulative distribution function of the environmental variables (i.e. 

SST, SSC, SSHD), t signifies an index ranking the ordered observations from the lowest to 

highest value of the environmental variables, n represents the number of fishing trips, l(xi) is 

indication function, and xi denotes the measurement for satellite-derived environmental 

variables in a fishing trip i.  The relationship between the number of bigeye tuna caught and 

environmental variables was characterized by catch weighted cumulative distribution 

function which was denoted as g(t) , where yi is the number of bigeye tuna caught in a 
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fishing trip i, and   is the estimated mean value of the number of bigeye tuna for all fishing 

trips. Furthermore, D(t) is the absolute value of the difference between the two curves f(t) 

and g(t) at any point t, and assessed by the standard Kolmogorov Smirnov test. The 

difference between the two curves  was maximum. In this approach, the 

optimum range was determined if the D(t) value is larger than Dcritical (i.e. Dcritical was 

obtained from the Kolmogorov-Smirnov Table). 

3.3.4 Generating a simple predicted map 

 The optimum range of environmental variables from ECDF were considered to 

determine the preferred habitat of bigeye tuna. A simple predicted map was computed by 

combining both environmental variables range (SST, SSC and SSHD) into a single map 

with the same spatial and temporal resolution using spatial analyst toolbox in Arc.GIS 

software. This map was composed by two binary output in which white color indicates a 

predicted area of preferred habitat and blue color indicates low probability area (non 

potential habitat). Catch data were then overlaid on the map. 

3.4 Results 

3.4.1 Distribution of number of bigeye tuna caught and environmental data  

The distribution of number of bigeye tuna caught and the three environmental variables 

in the Southern Waters off Java and Bali from 2006 to 2010 are shown in Figure 3.4. The 

distribution of the number of bigeye tuna caught was asymmetrical (Figure 3.4a). A log 

transformation of the number of bigeye tuna caught indicated Poisson distribution (Figure 

3.4b). Bigeye tuna were caught at SST between 24.6 and 30.8°C, with the highest frequency 

at 28.5°C (Figure 3.4c). The range of SSC for the fishing sets was 0.02  0.46 mg m-3 and 

the preferable concentration ranged from 0.05 to 0.17 mg m-3 (Figure 4.3d). The SSHD 
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ranged from -20 to 30 cm and values of -5 to 15 cm were preferable for the fishing sets, with 

the peak at 10 cm (Figure 4.3e). The preferable environmental factors for fishing sets can be 

distinguished using these histograms of Figure 3.4 

Figure 3.4 Histograms of number of bigeye tuna and environmental data: (a) distribution of 
number of bigeye tuna, (b) distribution of log-transformed number of bigeye tuna, (c) SST, 

(d) SSC, (e) SSHD. 

a b 

c 
d 

e 
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3.4.2 Classification of fisheries data   

The frequency of fishing days in relation to SST, SSC, SSHD and month is shown in 

Figure 3.5. For the SST, SSC and SSHD, high catches, positive catches and null catches had 

similar patterns, except that positive catch was the predominant group of bigeye tuna catch 

in the Southern Waters off Java and Bali from 2006 to 2010. The average null catch during 

this 5-year period was almost 19% and the highest was approximately 30% in 2010. The 

average positive catch frequency was approximately 53% and the frequency of high catches 

was approximately 28%. The average SST values for the null, positive and high catches 

were 28.4± 1.3, 28.1± 1.3, and 27.8 ± 1.2°C, respectively; the average SSC values for the 

null, positive and high catches were 0.1±0. 06, 0.11±0. 05, and 0.11 ±0. 05 mg/m3, 

respectively. In addition, the average SSHD values of the null, positive and high catches 

were 8± 6, 8 ± 7 and 8± 8 cm, respectively. Judging from the distribution of high catches 

data the optimum ranges of SST, SSC and SSHD were 26.6 29°C, 0.06  0.16 mg/m3 and 0 - 

16 cm, respectively.  

By using high catches data, the preferable time to catch bigeye tuna can be determined. 

High catches can be found from January to December (i.e., year round), with the highest 

frequency in July and the lowest in March (Figure 3.5d). The distribution of high catches 

data is significantly different from that of the other distributions (positive and null catches), 

which was confirmed using a t-test with significance level of 95%.
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Figure 3.5 Frequency of fishing days in relation to (a) SST, (b) SSC, (c) SSHD and (d) 
month from 2006 to 2010. They were grouped according to the way used by Andrade and 

Garcia (1999). 

(a) SST 

(b) SSC

(c) SSHD 

(d) Month 
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3.4.3 Scatterplot smoothers 

 The relationship between the average, variance ( 2), maximum value of bigeye tuna 

and SST in are shown in Figure 3.6. The average, variance and maximum value of Y axis is 

the transformation of number of bigeye tuna into log10(BE +1), where BE indicates number 

of bigeye tuna caught. The average and variance value were conducted by scatterplot 

smoother method (i.e by averaging the value of BE in each interval/span) in this figure. The 

solid line represents the average of BE in each span w, the dash line represents 2 (variance) 

and dot dash line represents maximum value in each span. This figure indicates that bigeye 

tuna exist in the area when SST was from 24.6°C to 30.8°C. Moreover, as the variance value 

is almost constant so that the trend of bigeye tuna caught is reliable. According Figure 3.6 

bigeye tuna tend to decrease when SST is increased, especially when SST is higher than 

29.4oC. 

Figure 3.6 Number of bigeye tuna in relation to SST during 2006-2010 

Figure 3.7 describe the relationship between SSC and number of bigeye tuna. This 

figure indicates that bigeye tuna exist in the area where SSC was from 0.02-0.34 mg/m3. 
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Because we used the same sample number in each span, variance is constant as shown in the 

dash line, so that the trend can be observed. Moreover, bigeye tuna tend to increased as SSC 

is increases until 0.151 mg/m3, but more than it number of bigeye tuna tend to decrease. 

However, generally speaking,  the maximum value tend to increase when SSC increases. 

Figure 3.7 Number of bigeye tuna in relation to SSC during 2006-2010 

Figure 3.8 Number of bigeye tuna in relation to SSHD during 2006-2010 
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Figure 3.8 shows the relationship between the number of bigeye tuna and SSHD.

Bigeye tuna were found in the area that had the SSHD range from  18.46 to 31.76 cm. In 

addition, the variance is also constant as shown in the dash line with the average of SSHD is 

fluctuated as shown in the solid line and maximum value is high when it reach extreme 

positive of SSHD.    

3.4.4 Relationship between environmental factors and bigeye tuna caught 

 Figure 3.9 shows the relationship between the average number of bigeye tuna caught 

and SST in each span w. The average number of bigeye tuna in each span was explained in 

the section 3.3.3. From Fig 3.9, it can be said that SST has strong relationship with bigeye 

tuna with the R2 is 0.85. In addition, the number of bigeye tuna tends to decrease when SST 

increases, especially when SST is equal and more than 29 C. In other words, bigeye tuna 

increases when SST is less than 29 C. That is bigeye tuna prefer to remain in the low SST in 

the study area.

Figure 3.9 Average number of bigeye tuna SST from 2006-2010.  
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Figure 3.10 shows the relationship between the average number of bigeye tuna 

caught and SSC in each span w. It can be seen that SSC has strong relationship with bigeye 

tuna with the R2 is 0.78. In addition, the number of bigeye tuna tend to increased when SSC 

is increased until 0.16mg/m3, but number of bigeye tuna gradually decreases when SSC 

concentration is more than 0.17mg/m3.  

Figure 3.10 Average number of bigeye tuna in relation to SSC from 2006-2010  

Figure 3.11 shows the relationship between the average number of bigeye tuna 

caught and SSHD in each span w. This figure states that SSHD has strong relationship with 

bigeye tuna with R2 of 0.72. From this figure, we can see that the number of bigeye tuna is 

fluctuated. Number of bigeye tuna is high when SSHD is in the extreme negative value, low 

positive value and extreme positive value. However in the both side of extreme negative and 

positive value, the standard error of SSHD is also high (i.e., it is related with wide span size 

in the extreme values). 
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Figure 3.11 Average number of bigeye tuna in relation to SSHD from 2006-2010 

The result of the polynomial regression analysis using scatter smoothers function is 

summarized in Table 3.2. In this chapter, we analyzed each parameter separately.  

Table 3.2 Regression analysis result 

Model P-value R2

SST  3.7x10-19 0.85 

SSC  3.12x10-14 0.78 

SSHD  1.53x10-11 0.73 

According to Table 3.2, three parameters (SST, SSC, SSHD) were highly significant 

as shown with low P-value (P-value < 0.01). Furthermore, SST, SSC, SSHD  influenced the 

number of bigeye tuna caught with the  range of R2 equal to 73 to 82 % which means the 

strong relationships.  



61 

 Polynomial regression can estimate how important the impact of environmental 

variables to the number of bigeye tuna, but it has difficulty to estimate the optimum value of 

environmental variables for bigeye tuna preference. Hence, ECDF was applied by using 

high catches data groups. Using the ECDF, the relationship between bigeye tuna and the 

three environmental variables were obtained. The results are shown in Figure 3.12  

a 

b 
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Figure 3.12 Empirical cumulative distribution frequencies for (a) SST, (b) SSC and (c) 
SSHD as weighted by bigeye tuna catch during the period of 2006-2010. 

 The cumulative distribution curves of the variables are different and the degrees of 

the difference (D (t)) between two curves (i.e., SSHD-catch-weight) are highly significant (P 

< 0.01). The results showed a stronger association between the number of bigeye tuna 

caught and the variables, with SST ranging from 25.2 to 27.5 C (Figure 3.11a), SSC 

ranging from 0.11 to 0.17 mg/m3 (Figure 3.12b) and SSHD ranging from -6.7 cm to 4.8 cm 

(Figure 3.12c). The optimum ranges were obtained from the ranges when calculated D (t) is 

bigger than critical D (t) (i.e., Kolmogorov-Smirnov Table). The strongest associations 

between the number of bigeye tuna caught and the variables occurred at 26.4 C of SST,  

0.14 mg/m3 of SSC and -1.1 cm of SSHD, respectively (i.e. the strongest associations means 

the highest value of D(t)). The number of bigeye tuna caught tended to decrease in the 

ranges of outside these preferable ones. Based on these results, the preferred environmental 

conditions for bigeye tuna can be in the areas of SST: 25.2 to 27.5 C, SSC: 0.11 to 0.17 

mg/m3, and SSHD: -6.7 cm to 4.8 cm. 

c 



63 

 Then, those preferred environmental conditions of bigeye tuna were plotted into 

simple predicted map as shown in Figure 3.12.  

Figure 3.13 Spatial distribution of longline fisheries in July from 2006 to 2010 overlaid with 
simple prediction map generated from combination of SST, SSC and SSHD 

The figure describes the preferred location of bigeye tuna in July from 2006 to 2010.  

July was selected for predicted map due to the highest frequency of high catches data as 

shown in Figure 3.5d. The simple predicted map and the spatial distribution of bigeye tuna 

were not same. Bigeye tuna mostly found in the area around 12 S to 15 S and in the western 

part of the study area.  The predicted area of occurrence (i.e., potential habitat) was the 
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widest in July 2009 and it associated with the El-Nino phenomenon in the Indian Ocean 

(Kim et al., 2011). In addition, the El-Nino phenomenon affected oceanographic condition 

in the southern waters of Java and Bali and the El-Nino had a positive effect on catch rate of 

bigeye tuna (Syamsuddin et al., 2013).  

3.5 Relationship between ocean dynamics and preferred habitat for bigeye tuna 

 Combining observations of ocean dynamics from satellite and in-situ observations 

related to the fisheries abundant is necessary because they are complimentary types of data 

each other. In this study, we combined remote sensing data and catch data of bigeye tuna in 

the southern waters off Java-Bali in order to examine the relevance between the number of 

bigeye tuna and environmental variables. The availability of bigeye tuna catch data from one 

of the biggest tuna fishing industry in Indonesia helped much in providing the fish catch data 

in the southern waters off Java-Bali. According to the distribution of fishing activity, the 

fishing effort of the tuna longliner was distributed in 10°S - 18° S and 110° E - 118° E and it 

had not changed significantly for 5 years. Hence, the change of environmental variables is 

important to evaluate bigeye tuna existence in the study area. 

Bigeye tuna catch rate varied as time and environmental variables changed (Figure 3.5).

The highest fishing activity was from June to October because of low null catches and rich 

high catches (Figure 3.5d). Most of the null catches occurred during the northwest monsoon 

season, especially from February to April (Figure 3.5d). This condition imposed high costs 

on fishermen. According to the classification of fisheries data, the average frequency of null 

catches over five years was 19% and it reached almost 30% in 2010, when a strong La Nina 

event was observed (Feng et al., 2013).

 Like other pelagic species, bigeye tuna has their preferred living environment. Then 

bigeye tuna catch statistics should have some correlation with the ocean environmental 

parameters, such as SST, SSC and SSHD. According to the SST, SSC and SSHD trend line 
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which were described in Figure 3.9, Figure 3.10 and Figure 3.11 stated that bigeye tuna has 

high correlation with environmental variables and tend to stay low of SST, low SSC and low 

positive of SSHD and extreme SSHD. These conditions are related to bigeye tuna behavior. 

Bigeye tuna prefer to stay in low SST to prevent overheating (Brill et al., 1994), thus it 

would need to curtail heat retention to avoid thermal limits of activity and distribution (Neill 

et al., 1976). This condition mostly occurs in the tropical waters which has almost same of 

SST. 

  The other environmental variable which influenced bigeye tuna distribution is SSC. 

Bigeye tuna is a visual predator which depends on the water clarity to forage their prey 

(Sund et al., 1981). They remain to stay in the clear water to increase the efficiency of prey 

foraging. Clear water means poor of nutrient which can be reworded as low SSC 

concentration. Hence, most of the fishing activities were found in the low SSC.  Even 

though fishing data was not free from bias based on the fishermen`s choice of fishing 

locations, it was the low cost of bigeye tuna distribution data sets which available to fishery 

scientists (Mugo et al., 2010).

SSHD also influence bigeye tuna behaviour, because bigeye tuna migration was 

influenced by the thermocline layer and its can be measured by calculating SSHD 

(Syamsudin et al., 2013). According to Syamsudin et al., 2013, extreme negative SSHD 

gave the positive effect to bigeye tuna because it make the thermocline layer is closer to the 

surface. In this chapter, extreme negative SSHD also give the positive effect to the number 

of bigeye tuna but it has high standard error. In this chapter, low positive SSHD give the 

lowest standard error of SSHD and gave the positive effect to the number of bigeye tuna in 

the study area. 

 Frequency distribution of each environment variable was used to evaluate the 

descriptive influence of each parameter to the bigeye tuna, which was classified into three 
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catagories, null catches , positive catches  and high catches , and then ECDF were 

applied to find the optimum range of environmental variables for bigeye tuna only for high 

catches. 

This chapter showed that the highest number of bigeye tuna caught corresponds to 

the area of about 26.4oC of SST, 0.14 mg/m3 of SSC and -1.1 cm of SSHD (Figure 3.12). 

Hence, these areas were referred to as potential habitat for bigeye tuna (Figure 3.13). It is 

interesting to define that these biologically important areas can be plotted over a map to 

detect their spatial pattern. Moreover, bigeye tuna distributions were associated with the 

spatial pattern of productive habitat every year (Setiawati et al., 2015). Therefore, all 

environmental variables could be regarded as reasonable indices of environmental 

conditions used to find areas with the highest probability of bigeye tuna. 

 Overall, SST, SSC and SSHD ranges in the study area are relatively small compared 

with the subtropical area, and it makes difficult to understand the relationship of these data 

and bigeye tuna fisheries data by using statistical analysis. For that reason, some data 

treatment was used to minimize the large variance of the data. The advantage of this 

research is simple method can analyze the relationship of environmental remote sensing data 

and fisheries data which can be displayed both numerically and in graphics. However, all the 

predictor variables were analyzed separately and the functions need more smoothness. Then, 

we applied cubic spline smoother function in the Chapter 4. 

3.6 Conclusions 

 The results showed that SST, SSC and SSHD had a high correlation with the bigeye 

tuna abundance. Therefore, all of environmental factor could be regarded as reasonable 

indices to study the bigeye tuna preferred habitat. The spatial patterns of bigeye tuna 

preference have a typical characteristic of low SST, low SSC and low positive SSHD and 

extreme SSHD values.  



67 

 In the future research, more predictor variable are necessary to improve our 

understanding about the relationship between environmental variables and bigeye tuna 

fisheries and other statistical analysis should be used to analyze the interaction of 

environmental variables and bigeye tuna such as Generalized Additive Model (GAM) in 

which the data are not always necessary to be linear. Moreover, the combination of satellite 

remote sensing techniques and fisheries catches data could be used to identify habitat 

preference and migration movements of bigeye tuna. 
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CHAPTER 4 

APPLICATION FOR OPEN OCEAN TUNA HABITAT 2 

Characterization of Bigeye Tuna Habitat in the Southern Waters Off Java-Bali 

Using Remote Sensing Data 

4.1 Introduction 

 The Southern Waters off Java and Bali, part of the Indian Ocean, are known as 

important spawning grounds for commercial tuna and tuna-like species (Nishikawa et al., 

1985) and are identified as a potential fishing ground for large pelagic fish (Bailey et al., 

1987; Osawa and Julimantoro, 2010). Biological and environmental data from the study area 

are needed to understand the preferred habitat for sustainable management of bigeye tuna 

resources. In this chapter, the same remote sensing environmental data (i.e., SST, SSH, 

SSC) and fisheries data as in Chapter 3 were used. In the previous chapter, all environmental 

variables have high correlation with the number of bigeye tuna. However, all the predictor 

variables were analyzed separately and the functions was conducted by averaging the 

predictor variable in each interval. In this chapter, we applied spline smoother function as an 

additive and all predictor variables were combined with the assumption interactions between 

predictor variables were excluded. This method is called Generalized Additive Model 

(GAM) which can deal with nonlinear data. 

A GAM is a semi-parametric extension of a generalized linear model, which has the 

smooth components of the explanatory variables (Guisan et al., 2002) and has capacity to 

express highly nonlinear and non-monotonic relationships between the response and 

explanatory variables (Lizarazo, 2012). Moreover, GAM can handle large number of sample 

and it is not necessary to group continues variables (i.e., SST, SSH, SSC). GAMs can 

explain the fisheries data and environmental variables and enhance our understanding of 

ecological systems (Zagaglia et al., 2004; Song et al., 2008; Valavanis et al., 2008; Druon et 
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al., 2011). This method is basically similar with the previous study, but it rarely applied in 

the current study area. Moreover, only Syamsuddin et al., 2013 applied this method in the 

same study area, but they mainly concerned about the relationship between ELNINO and 

bigeye tuna catches in 1998-2000. More research in the same area is important to understand 

the influence of environmental variables to the existence of bigeye tuna. In addition, by 

comparing the previous result with the same method and same study area, generalization of 

habitat characteristics in the study area can be determined. Furthermore, statistical models 

and geographic information systems (GIS) have the ability to improve species habitat 

studies. Given this background, this work attempted to investigate the characteristics of 

bigeye tuna habitat in the Southern Waters off Java and Bali by utilizing satellite data and 

bigeye tuna catch data during 2006 2010. GAM and GIS data were combined to understand 

the characteristic of bigeye tuna habitat. 

4.2 Materials and Methods 

4.2.1 Study Area 

The Southern Waters off Java and Bali, part of the Indian Ocean, is selected as a study 

area and is located between 10ºS and 18ºS latitude and 110ºE and 118ºE longitude as shown 

in Figure 4.1 which is made by combining Figure 1.2 and Figure 3.1. Five dominant waves 

and current systems pass study area; Indonesian Throughflow (ITF), Indian Ocean South 

Equatorial Current (SEC), South Java Current (SJC), Indian Ocean Kelvin Waves (IOKW), 

and Rossby Waves (RW). The ITF transfers high heat content from the Pacific Ocean to the 

Indian Ocean through a series of straits along the Indonesian archipelago, and initially 

accumulates the  heat in the region between northwestern Australia and Indonesia (Qu and 

Meyers, 2005; Gordon et al., 2010). The SEC flows westward from the west side of 

Australia, and is a large-scale current in this region, where mass and property exchange 
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(Meyers, 1996). In the northern part of the study area, the SJC and the IOKW flow near the 

Sumatra Java coast (Sprintall et al., 2010). The SJC changes direction twice each year when 

the IOKW associates with the SJC near this coast. The RW propagates westward  at 12°S 

15°S (Gordon, 2005).

Figure 4.1 The study area in the Southern Waters off Java-Bali. This area has been passed 
by five dominant waves and current  systems, namely, South Java Current (SJC), Indonesia 
Through Flow (ITF), Indian Ocean Kelvin Waves (IOKW), Rossby Waves (RW), and the 
Indian Ocean South Equatorial Current (SEC). (Modified from Syamsudin et al., 2013) 

The study area is characterized by a tropical monsoon climate that results from the 

Asian-Australian monsoon wind systems that change direction  seasonally. During July

September, the prevailing southeast monsoon favors upwelling along the coast of Java and 

Bali and Sumatra (Du et al., 2008; Ningsih et al., 2013). These conditions are reversed 

during the northwest monsoon from November to April and create warm SSTs (Susanto et 

al., 2006; Manessa and As-syakur, 2011). The Southern Waters off Java and Bali are not 

only forced by intense annually reversing monsoonal winds, but are also influenced by 
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4.2.2 Fisheries data and classification 

Data sets for bigeye tuna catch from January 2006 to December 2010 were used which 

provided by PT Perikanan Nusantara. The data sets consisted of geographic positions 

(latitude and longitude) of the fishing activities, the operational days, vessel numbers and the 

number of tuna caught per day during the period (see Table 3.1). We digitized and compiled 

all data into a monthly database. The unit of daily catch data referred to the number of 

bigeye tuna caught. We assume that fish catch was caught one boat in one location. So, it is 

proportional to fish density in one location. Classification of fisheries data was used in this 

chapter as in Chapter 3.  

4.2.3 Remote sensing data 

As an environmental database, monthly SST, SSC, and SSHD were used in this study, 

as in chapter 3. Monthly values of SST, SSC and SSHD data were extracted from each pixel 

corresponding to the location of fishing activities. The result was a full matrix of the number 

of bigeye tuna and the environmental variables. The full matrix was used in the GAM 

analysis. 

4.2.4. Application of Generalized Additive Model (GAM) 

GAM models were used in this chapter to assess the influence of environmental 

variables on potential bigeye tuna habitat. This statistical method has been commonly  used 

to predict the habitat and fishing grounds of tuna in the Pacific and Atlantic oceans 

(Zagaglia et al., 2004; Zainudin et al., 2006, 2008;Mugo et al., 2010), but has rarely been 

applied in the current study area. The advantage of this statistical model is that it allows for 

analysis of non-parametric relationships and extends the use of additive models to data sets 

that have non-Gaussian distributions, such as binomial, Poisson and gamma distributions. 

The additive function of GAM is smoothing function in each predictor variables. 
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GAM model was created in R version 3.0.2 software, using the gam function of the 

mgcv package (Wood, 2006), with the number of bigeye tuna as a response variable and SST, 

SSC, and SSHD as predictor variables with the data structure in Table 4.1.  

Table 4.1 Data structure of environmental variables and fish catch 
N X Y Z 
N1 X1 Y1 Z1

N2 X2 Y2 Z2 
Nm Xm Ym Zm

Where N indicates number of bigeye tuna, X is SST, Y is SSC and Z is SSHD.  By this 

data structure, the relationship of three predictor variables and bigeye tuna was conducted as 

explained in the following equation. 

                            (4.1) 

Where, No is equal to constant value (i.e total average of N) and , ,  and  represents the 

smoothing function as explained in the Eq.4.2 

                            (4.2) 

Tibshirani and Hastie (1986) define partial residual in Eq. 4.3 

                            (4.3) 

where, Rj is partial residuals and fk is smoothing function in each parameter. Then (E(Rj|Xj)= 

fj(Xj). 

                          (4.4) 

                           (4.5) 
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                          (4.6) 

                         (4.7) 

                        (4.8) 

Where, f1, f2 and f3 are spline function,  is equal to g(µ), g is link function (i.e 

Log10 ) and µ is number of bigeye tuna +1. So, the final GAM equation can be described in 

Eq.4.9 

                           (4.9) 

To calculate the smoother function, backfitting algorithm was conducted.  

Initialization 

                                    (4.10) 

Where: 

;  m= iteration; j= 1,2,3; =X, =Y, =Z          (4.11) 

+ (4.12)

Until RSS=  fail to decrease            (4.13) 
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Table 4.2 Iteration process 

The number of bigeye tuna caught data distribution was right skewness as shown in 

Figure 3.4. Hence, to reduce right skewness, logarithmic transformation was applied. 

Logarithmic transformation gives strong transformation effect on distribution shape and it`s 

likely to be more symmetrically distributed. (Box and Cox, 1964). The number 1  was 

added to the number of bigeye tuna caught before log-transformation to avoid the singularity 

of zero values for bigeye tuna (Zagaglia et al., 2004). The number of bigeye tuna caught 

could be predicted using the predict.gam function in the mgcv package using similar 

covariates as were used to build the model. Zagaglia et al. (2004) and Mugo et al. (2010) 

employed this approach.  

In this study, seven models were constructed from the simplest form by using only 

one independent variable (i.e., SST, SSC, SSHD) and combinations of variables (i.e.,  

SST+SSC, SST+SSHD, SSC+SSHD and SST+SSC+SSHD) as listed in table 4.3. For 

example, x1i correspond to SST in model 1; in model 7, xIi corresponds SST, x2i corresponds 

to SSC, and x3i corresponds to SSHD. These models were evaluated based on the 

significance level of predictors (P-value), deviance explained (DE) and the Akaike 

information Criterion (AIC) value (Mugo et al., 2010). DE and AIC were used to determine 
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the best model. DE has the same meaning as coefficient determination (R2) of classic 

regression as described in Eq. 4.14 and 4.15 

                        (4.14) 

                                       (4.15) 

While AIC describes the residual error which calculated by Eq. 4.16 

                          (4.16) 

Where D is residual sum square, df is effective degree of freedom and  is variance as 

describe in Eq. 4.17 and 4.18 

                                     (4.17) 

                          (4.18) 

The highest value of DE and the smallest value of AIC were selected as the best 

model. As a reference, the parameters of the respective degrees of freedom (DF) are also 

listed in Table 4.3. The predicted number of bigeye tuna was compared with the observed 

number using linear models. The optimal values of each predictor variable (SST, SSC and 

SSHD) determined by GAM were used as main parameters to predict bigeye tuna habitat.
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Table 4.3 GAM models used in this study and obtained values for P-value, percent DE, AIC 
value, and DF, respectively (N=7751). 

No Model Variable P-value DE AIC DF 

1 SST SST <2x10-16 5.38% 2759.216 6.783 
2 SSC SSC <2x10-16 2.90% 2962.338 8.055 
3 SSHD SSHD <2x10-16 3.34% 2927.313 8.402 

4 SST+SSC 
SST <2x10-16

5.94% 2724.76 
6.168 

SSC 2.28x10-7 6.517 

5 SST+SSHD 
SST <2x10-16

8.03% 2551.88 
5.345 

SSHD <2x10-16 7.973 

6 SSC+SSHD 
SSC <2x10-16

5.65% 2754.828 
7.776 

SSHD <2x10-16 8.036 

7 SST+SSC+SSHD
SST <2x10-16

8.39% 2531.947 
4.155 

SSC 0.000117 6.468 
SSHD <2x10-16 7.968 

4.2.5 Habitat Suitability Index 

Habitat suitability index (HSI) is a numerical index that represents the capacity of a 

given habitat to support a selected species (Oldham et al., 2000). An HSI is a numerical 

index, between 0 to 1 where 0 indicates unsuitable habitat and 1 represents an optimal 

habitat. We used raster calculator function in the spatial analysis tools in ArcGIS 10.1 to 

processed HSI. Combining the habitat factors based on GAMs and accomplished by an 

additive priority function P, as shown in equation (4.19). (Store and Jokimaki., 2003)  

                                 (4.19) 

Where P is habitat suitability index, X is SST, Y is SSC and Z is SSHD index (Eq. 

4.20, 4.21, 4.22)  

                       (4.20) 

                       (4.21) 

                       (4.22) 
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The optimum value of each variable was calculated according to GAM plot result 

which described in section 4.3.1. In addition, constant value of each variable is weight value 

which was calculated based on the proportion of important habitat predictor for bigeye tuna 

according to GAM result (Table 4.3). Where, SST is the most important variable followed 

by SSHD and SSC is the least important variable for bigeye tuna (i.e. according to the 

highest value of DE and the smallest value of AIC in each variable) as describe in Eq.4.23. 

                   (4.23) 

4.3 Results 

4.3.1 Analysis of habitat characteristics for bigeye tuna by using GAM  

Prior to examining the relationship between the bigeye tuna catches and environmental 

variables, we examined the relationship between number of bigeye tuna caught and 

environmental variables. Table 4.1 lists the Model variable, P-value, DE, AIC and DF for 

some models. The predictor variables were highly significant (P<0.001) for all of the models. 

High significance was indicated by the lowest AIC and the highest DE. DE has the same 

meaning as the determination value in the linear regression. SST showed the highest DE 

among the single-parameter models. Models developed from three parameters (i.e., model 7) 

had the highest DE and the lowest AIC values, which indicated that the combination of three 

parameters generated the best models. 

Figure 4.2 shows GAM plots developed to interpret the individual effect of each 

predictor variable on the number of bigeye tuna. The effect of SST, SSC and SSHD on the 

number of bigeye tuna are shown in Figure 4.(2a), (b) and (c), respectively. There are 
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positive and negative effects of number of bigeye tuna in each variable. As seen in Eq.4.8, 

when the value of f1(X), f2 (Y) and f3(Z) are positive, it means the prediction of bigeye tuna 

became high (i.e.,  ). However, when the value of f1(X), 

f2 (Y) and f3(Z) are negative, it means the prediction of bigeye tuna became low because 

 .  

A negative effect of SST on the number of bigeye tuna was observed at temperature is 

higher than 28.7°C. There was a positive effect of temperature on the number of bigeye tuna 

from 24.6 to 28.7 °C. Bigeye tuna appeared to prefer cooler water, but the number of sets 

performed at temperatures lower than 25°C was low. As a result, the confidence interval was 

wider for SST less than 25°C. There was an indication of greater number of bigeye tuna 

caught at lower SSTs, but the number of data points in the lower temperature range declined 

and the confidence level also declined. For SSC, a positive effect on the number of bigeye 

tuna occurred between 0.07 and 0.22 mg/m3 (Figure 4.2b). From 0.19 mg m-3 a decline 

occurred towards the highest SSC value. A GAM plot of SSHD showed a positive effect of 

this variable on the number of bigeye tuna caught between 3 and 7 cm in the region of high 

confidence level and in the extreme value of SSHD (Figure 4.2c). 
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Figure 4.2 Effect of three oceanographic variables on the number of bigeye tuna (a) SST, (b) 
SSC and (c) SSHD. Tick marks at abscissa axis represent the observed data points. Full line 

is the GAMs function. Dashed dot lines indicate the 95% confidence level . 

4.3.2 Model validation and bigeye tuna habitat prediction 

A scatter plot of between the observed values and GAM model is presented in Figure 

4.2. There are two kind of model validation method. First, Scatter plot was conducted by 

averaging bigeye tuna in each interval (chapter 3) then compared with predicted value and 

second, by taking sample in each number of bigeye tuna (i.e 30 sample in each class) then 

directly compared with prediction by GAM. The result stated that the adjusted simple linear 

regression line was significant (P<0.05, r2 =0. 52) by averaging bigeye tuna in each interval 

(Figure 4.3(a)). However, direct validation with high range of observed number of bigeye 

tuna stated that the result is not significant (Figure 4.3(b)) because smoother function of 

(a) (b)

(c)
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GAM was conducted by averaging the number of bigeye tuna. Hence, GAM has difficulty to 

observe the high catches data.

Figure 4.3 (a) A Scatter plot between the average observed values and GAM model 
predicted ones. (b) A Scatter plot between all ranges observed values and GAM model 

predicted ones. 

Habitat suitability index (HIS) maps of bigeye tuna in 2009 are presented in Figure 4.4. 

The red color indicates the most suitable habitat for bigeye tuna, and blue color indicates 

unsuitable habitat for bigeye tuna. Most of the fishing activity was done in the yellow color 

(HSI =0. 6 - 0.7). According to HSI map bigeye tuna preference area changed depending on 

month as can be seen in Figure 4.4, but the fishing location seemed unchained. As shown in 

Figure 4.4, the high preferable bigeye tuna habitat tended to westward. This result was 

(a)

(b)
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supported by the previous research on the eastern coast of Australia, where fish move from 

east to the west (Gun et al., 2005). 

4.4 Discussion 

In general, fisheries data are abundant for developed countries, but the data are limited 

in terms of study area. That is why we used the number of bigeye tuna caught as an index of 

fish abundance. Because we used a different unit of fish abundance, classification of 

fisheries data was performed to define the type of fish catch data and was used as 

preliminary investigation to determine the best method of statistical analysis for our data. 

Here we examined our results and their inherent relevance as environmental indicator of 

bigeye tuna habitat. 

Identification of bigeye tuna habitat in the Southern Waters off Java and Bali is a 

challenge because the distribution of habitat is variable over time. In addition, the bigeye 

tuna is classified as overexploited in most parts of Indonesia (Sunoko and Huang, 2014). For 

that reason identification of bigeye tuna habitat characteristic using remote sensing of 

biophysical environment parameters would be especially important to predict of stocks` 

responses to externalities such as climate change and fishing pressure.  

The effect of environmental conditions, deduced from GAMs, indicated that 

environmental variables strongly influenced the numbers of bigeye tuna caught. SST was 

more important than SSC or SSHD in the study area. This was indicated by SST having the 

highest DE and lowest AIC in all models. In addition, the Pacific Ocean influences the 

transfer of heat energy to the Indian Ocean by ITF (Lee et al., 2001), which causes changes 

in SST. During southeast monsoon the reduction of heat transfer caused SST to be lower 

(approximately 26.7°C). Furthermore, SST is higher when the Intertropical Convergence 

Zone (ITCZ) occurs because of weak winds and high relative humidity that result in reduced 

evaporative cooling of SST (Farrar and Weller, 2003). Bigeye tuna catches increased in 
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areas with relatively low SST (24.5~28.7°C) and decreased in the areas with SST> 28.7°C. 

This was supported by previous research (e.g. Gun et al., 2005; Howell et al., 2010; 

Syamsudin et al., 2013). Furthermore, bigeye tuna preferred to remain in lower-temperature 

areas. Our finding seems to agree with the result of Brill et al. (1994), who explained that 

bigeye tuna move towards to the cooling habitat to prevent overheating. 



83 

Figure 4.4 Habitat suitability index for bigeye tuna from January to December 2009 overlaid 
with bigeye tuna fishing location (continue to the next page).  
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Figure 4.4 Habitat suitability index for bigeye tuna from January to December 2009 overlaid 
with bigeye tuna fishing location (from the previous page) 
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Temperature limit horizontal and vertical distribution of bigeye tuna and this varies by 

region and size (Miyabe Naozumi, 1993; Brill et al, 2005; Howell et al, 2010). Lehodey et al. 

(2010) reported that natural mortality of older stages of bigeye tuna in the Pacific Ocean 

increased due to too warm surface temperature and decreasing oxygen concentration in the 

sub-surface caused by global warming. Howell et al. (2010) reported that tagged bigeye tuna 

in the central North Pacific Ocean showed daily vertical movement, where they spent much 

of the time (61%) near the surface layer and above the thermocline layer during night time, 

but less time (39%) during daytime. Night time depth ranged from the surface to 100 m and 

where daytime dive beyond 500 m. Bigeye tuna regularly expose themselves to temperature 

change up to 20oC (from ~25oC surface layer temperature to 5oC at 500m depth during their 

daily vertical movement). Bigeye tuna occasionally makes an upward excursion into the mix 

layer water to warm their muscles (Brill et al., 2005). Such tagging experiments are 

important for understanding bigeye tuna vertical habitat utilization. Our result indicated that 

few fishing sets (8%) occurred at temperatures < 25°C (Figure 4.2a).  

SSHD was the second most significant oceanographic predictor of bigeye tuna in the 

study area. We used SSHD to understand oceanic variability, such as current dynamics, 

eddies, convergences, and divergences, which can be used as proxies for the potential 

location of tuna catches (Polovina and Howell, 2005). Our study showed that bigeye tuna 

preferred areas with SSHD values of 3 to 7 cm and in the extreme area of SSHD (Figure 

4.2c). Actually, the negative extreme values of SSHD had a positive effect on the number of 

bigeye tuna caught, but the number of observations was low and the confidence interval was 

wide.. Negative SSHD will push the thermocline upward near the surface layer and the 

elevation of thermocline will allow bigeye tuna from below to become accessible to longline 

gear. The upward movement of thermocline layer causes the temperature in the surface layer 

becomes cooler. According to Arrizabalaga et al. (2008) only for very negative SSHD, 
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bigeye in shallow waters are only attracted by the thermocline when this is closer to the 

surface. This phenomenon was reported by Syamsudin et al. (2013) that the El-Nino event in 

1997, extreme minus SSHD with many observation points occurred and gave the positive 

effect to the abundance of bigeye tuna. 

 Among three environmental predictors used in the model, SSC was the least important, 

but was still statistically significant (P<0.001). As a biological component available for 

satellite remote sensing, SSC is an index of phytoplankton biomass that provides valuable 

information about trophic interaction in marine ecosystem (Wilson et al., 2008).  

Chlorophyll-a data are a valuable proxy for water mass boundaries and upwelling events. 

High value of SSC was concentrated along the southern coast of Java (7-9oS) (Figure 4.5).  

Susanto et al. (2001) and Ningsih et al. (2013) reported that the seasonal appearance of 

chlorophyll front and the yearly upwelling phenomenon occurred in the Southern Waters off 

Java and Bali especially in the coastal area (Figure 4.5). Upwelling areas are potential 

convergence zone for plankton aggregation, attracting larger predator, such as tuna 

(Lehodey et al., 1997). Bigeye tuna is a visual predators where water clarity is important 

(Brill et al., 2005). The open ocean provides the optically clearest aquatic habitat (Jerlov, 

1976). Hence, in the open ocean bigeye tuna can forage the prey optimally. Yearly 

upwelling occurred in the study area, especially in the coastal zone, so that SSC did not 

affect directly to the abundance of bigeye tuna. Overall, SST and SSHD mainly influenced 

bigeye tuna catches. In this study, the fishermen used the same fishing gear with similar 

fishing techniques. Therefore, we assumed that differences in fishing gear did not affect the 

catchability of bigeye tuna. 

Spatial mapping of bigeye tuna habitat was conducted by HSI approach.  The HSI map 

from January to December was shown in Figure 4.4. It explained that most of fishing 

activity were located when HSI was 0.6 to 0.7, but in September fishing activities were 
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located in the most suitable habitat (HSI =1). HSI showed concurrence with actual fishing 

location for the month from September to December. This is also the period that showed low 

null catches frequencies (Figure 3.5d). However the model appears to have difficulties in 

predicting high catches data (Figure 4.3) because the smoothing function of GAM estimates 

the dependence of the mean of number of bigeye tuna on the predictors. The prediction of 

bigeye tuna by GAM showed a significant relationship with the average observed value with 

a confidence level of 95% (r2=0. 52) (Figure 4.3). Zagaglia et al. (2004) also reported the 

significant relationship between observed catch per unit effort (CPUE) and predicted CPUE 

from GAM (r2=0. 51) for yellowfin tuna in the equatorial Atlantic Ocean. Mugo (2010) also 

applied GAM to skipjack tuna in the western part of the  North Pacific Ocean and found a 

significant relationship between observed CPUE and predicted CPUE from GAM (r2= 0.64). 

Our results cannot correctly predict the number of bigeye tuna caught as in Mugo et al. 

(2010).  This is because we used daily catch data as numbers of bigeye tuna caught and this 

was difficult when we predict null catches. Nevertheless, our model explained 8.39 % 

(Table 4. 1, No.7) of variability in bigeye tuna abundance based on environmental variables 

only; the model generated by Mugo et al. (2010) explained 13.3% of variability. This 

indicates that our method is useful. Environmental variables are important to predicting the 

bigeye tuna habitat, but are probably not only the factors that influence fishing locations for 

this species. In addition, data which have a high temporal resolution and more years are 

likely to generate a better model to predict bigeye tuna habitat in the study area. 
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Figure 4.5 The spatial distribution of SSC and bigeye tuna catches in Southern Waters off 
Java-Bali in 2009 (continue to the next page). 
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Figure 4.5 The spatial distribution of SSC and bigeye tuna catches in Southern Waters off 
Java-Bali in 2009 (from the previous page) 
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4.5 Conclusions 

Characterization of bigeye tuna habitat in the Southern Waters off Java and Bali using 

a remote sensing approach has been performed. Daily in-situ fish catch data from PT 

Perikanan Nusantara and monthly remotely sensed environmental data of SST, SSC, and 

SSHD for period  of 2006-2010 were used here. The GAM statistical method and GIS were 

combined. Seven GAM models were generated with the number of bigeye tuna caught as a 

response variable, and SST, SSC, SSHD as predictor variables. The results showed that SST 

was the most important habitat predictor for bigeye tuna migration in the Southern Waters 

off Java and Bali, followed by SSHD and SSC. The spatial pattern of bigeye tuna habitat 

characteristic gave typical low SST, low positive and negative SSHD and extreme SSHD 

and low to moderate SSC.  Thermocline layer or depth is the important feature to predict the 

vertical migration of bigeye tuna and SSHD seems to be a good parameter to forecast the 

thermocline depth. 

The results revealed that fishermen still obtained null catches with a frequency of 19% 

over the 5-year period, which indicated suboptimal success in identifying favorable bigeye 

tuna habitat. Meanwhile, the El Niño Southern Oscillation (ENSO) also might affect the 

number of null catches, as indicated by an increase during the La Niña event. 

 GAM only measured the effect of environmental variables without considering the 

interaction of each variable to the number of bigeye tuna. For future work, developing a 

method which measures the interaction of predictor variables to the fish catch data is 

necessary to develop. 
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CHAPTER 5 
APPLICATION FOR PRECIPITATION STUDIES 

Evaluation and Bias Correction of GSMaP Daily Rainfall Satellite Data for Flood 

Monitoring In Kyushu Island, Japan by Generalized Additive Model Approach 

5.1 Introduction 

Reliable global precipitation information and accurate temporal precipitation estimates  

are essential to manage freshwater resources and to predict high impact weather events such 

as hurricanes, typhoon, heavy rains which cause flood and landslide (Kamarianakis, Y et al., 

2006 and Hou et al., 2008). However, measuring the precipitation is one of the most difficult 

observational challenges of meteorology because precipitation occurs intermittently and 

with pronounced geographic and temporal variability  (NOAA, 2006). 

Conventional rain gauge networks provide relatively accurate point measurements of 

precipitation (Feidas et al., 2008 and Feidas, 2010). However, the uneven distribution of 

gauges and their limited sampling area burden an important problem regarding to the 

effectiveness of  spatial coverage (Xie and Arkin 1996a). Moreover, uninhabited and remote 

areas are not covered by rain gauge networks (Feidas et al., 2008 and Feidas, 2010). 

Furthermore, continues spatial and temporal distribution of rainfall are provided by radar, 

but the quantitative range of their measurements is generally limited to 150 km or less and 

produce incomplete coverage (Feidas et al., 2008 and Feidas, 2010). On the other hand, 

satellite remote sensing technique became an interesting option for monitoring rainfall over 

a large area and high temporal resolution in near real time. In addition, satellite precipitation 

provides integrated spatial coverage of rainfall measurements even in remote land and ocean 

areas (Chokngamwong and Chiu., 2004;  Feidas et al., 2008; Feidas, 2010). A combination 

of gauge data, radar data and satellite data are substantially needed to enhance space and 

time rainfall estimation (Chiu et al., 2006a).  
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As satellite data, Infrared and microwave satellite products, such as the Global Satellite 

Mapping of Precipitation (GSMaP) as a combination of multiple precipitation satellite data, 

could be used to derive estimates of large scale precipitation over a global area (Okamoto et 

al., 2005). The GSMaP rain product is based on using four satellite microwave radiometer 

combine with Geo Infrared radiometer data to produce 0.1 degree spatial resolution 

(Aonashi et al, 2009). There are several types of GSMaP rain product as explained later in 

section 5.2. In this paper, GSMaP_MVK Version 5 was used. It was used because heavy 

rainfall data which caused flooding in Kyushu Island could be obtained.  

Comprehensive details about the GSMaP_MVK ground validation program, 

algorithms and data processing was provided by Kubota et al. (2007). In addition, 

GSMaP_MVK was verified from January through December 2004 in Japan to determine 

whether monthly data, daily data and 3 hourly data matched rain gauge data (Kubota et al., 

2009). The result showed that GSMaP_MVK of monthly, daily and 3 hourly data from May 

to October had high correlation and had the same trend as rain gauge data, but in some cases, 

GSMaP_MVK data still underestimate with the rain gauge data. For several years, other 

groups studied different locations to validate GSMaP_MVK data. According to their 

researches, the GSMaP_MVK data could detect a precipitation occurrence with the same 

trend as rain gauge data, but the precipitation amount generally underestimated in some 

cases (Seto et al., 2009; Fukami, 2010; Ushio and Kachi, 2010; Tian et al., 2010; Yamamoto 

et al., 2011; Shrestha et al., 2011; Taniguchi et al., 2013; Setiawati et al., 2013; Veerakachen 

et al., 2014) and according to Dinku et al. (2009) GSMaP_MVK had serious 

underestimation of rainfall amount compared with other precipitation satellite.  For these 

reasons, improving the GSMaP_MVK data verification result is important, especially when 

heavy rainfall occurs. In this study, first, we evaluated GSMaP_MVK data during rainy 
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season in Japan, then we evaluated separately based on elevation, location, during the rainy 

days and finally we evaluated only in the heavy rains category.   

The objectives of this study are to advance the quantitative and qualitative 

understanding of GSMaP_MVK product and to correct GSMaP_MVK product to achieve 

better agreement with rain gauge data for flood monitoring. In addition, Generalized 

Additive Model (GAM) was used for improving the GSMaP_MVK ability. GAM is the 

statistical analysis which allows non-parametric distribution and extends the use of additive 

models to data sets as explained in the previous chapter. GAMs are rarely used to improve 

the accuracy of satellite precipitation data, but it was used to forecast daily precipitation data 

over the basin (Chi et al., 2012) and to forecast the frequency of extreme daily precipitation 

(Jones et al., 2013). We used this method due to non parametric rain gauge data distribution 

and promising models for daily precipitation data (Yang et al., 2012).  By this method, we 

expected to improve the estimated rainfall amount by GSMaP_MVK data during heavy 

rainfall in Kyushu Island, Japan. 

5.2 Materials and Methods 

5.2.1 Study Area 

Japan is particularly vulnerable to flooding because of its steep geography and humid 

climate characterized by heavy rains and typhoons (Kazama et al., 2009). The number of 

floods, and, hence, the damage due to flooding, have increased since 2004 (Kazama et al., 

2009). Several local heavy rainfalls have been recorded in Kyushu, Japan, in recent years 

(Miyazaki: 4-7 September 2005; Kumamoto: 3 July 2006; Kumamomoto, Kagoshima, 

Miyazaki: 20-23 July 2006; Kagoshima, Miyazaki, Kumamoto: 11-17 July 2007). All of 

these heavy rainfalls created local floods and damage, leading to significant economic losses 

(Tezuka et al., 2014). 



94 

Kyushu Island, the study area, is shown in Figure 5.1. It locates in the south part of 

Japan and has an area of 35,640km2 from latitude 31o N to 34oN and longitude 129o30

132oE. It has a humid subtropical climate and has an elevation ranging from 0 m to 1791 m 

above the sea level. Kyushu Island is mountainous, with hills that run from north to south in 

the center of the island. Generally, the land use in this island is dominated by agriculture.

Precipitation occurs throughout the year with the heaviest in the summer season, especially 

in rainy season (i.e., May, June, July). During the summer season the variability of 

temperature range is from 16 C to 31 C and the annual precipitation is about 1760mm/year 

(Komatsu et al., 2007).  

Figure 5.1 The study area, Kyushu Island, and its topography. Black triangle indicates the 
rain gauge locations 

5.2.2 Rain Gauge Data 

Daily observed rainfall data from 34 rain gauges over Kyushu island were used as 

reference data to validate the GSMaP_MVK estimation. The rain gauge data were obtained 

from AMEDAS (Automated Meteorological Data Acquisition System) developed by the 
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Japan Meteorological Agency (JMA) during 2005 to 2007 through the rainy season, from 

May to July. The distribution of the rainfall stations are used in this study is shown in Figure 

5.1. The total observation data were obtained by multiplying the total day (92 days x 3 

years ) and the number of rain gauge data (34 points). Due to some lack of in-situ data, the 

total of observational data was 9276. The data are available online at the JMA website 

(http://www.data.jma.go.jp).   

5.2.3 GSMaP Data 

GSMaP was initiated by the Japan Science and Technology Agency (JST) in 2002 and 

has been promoted by the Japan Aerospace Exploration Agency (JAXA) Precipitation 

Measuring Mission (PMM) science team since 2007 to produce a global precipitation 

product with high temporal and spatial resolution (Ushio et al., 2009). GSMaP is a project 

aiming (1) to produce high-precision and high-resolution global precipitation maps using 

satellite-borne microwave radiometer data, (2) to develop reliable microwave radiometer 

algorithms, and (3) to establish precipitation map techniques using multi-satellite data for 

the coming GPM (Global Precipitation Measurement) era (Ushio and Kachi, 2010). 

Currently, the data set produced by GSMaP product can be downloaded from their website: 

http://sharaku.eorc.jaxa.jp/GSMaP_crest/html/data.html. The standard version of the 

GSMaP data sets includes GSMaP_TMI (retrieved from TRMM/TMI algorithm), 

GSMaP_MWR (retrieved from six spaceborne microwave radiometers), GSMaP_MWR+ 

(retrieved from six spaceborne microwave radiometers with AMSU-B product), 

GSMaP_MVK (retrieved from MWR GEO IR combined algorithm), GSMaP_MVK+ 

(retrieved from MWR GEO IR combined algorithm with AMSU-B product) and other 

rainfall estimates from passive microwave radiometer (Liang et al., 2012).  

The GSMaP rainfall product used here for comparison with reference gauge data set is 

GSMaP_MVK product version 5. This product is the combination of low earth orbit multi 
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satellite microwave radiometer data and infrared radiometer (IR) on geostationary (Geo) 

orbit as explained in Chapter 2. The available microwave sensors are SSM/I (Special Sensor 

Microwave/Imager), TMI (TRMM Microwave Imager), and AMSR-E (Advanced 

Microwave Scanning Radiometer for EOS). Whereas, the IR data sets used in the current 

version of the system are from the CPC (Climate Prediction Center) (Ushio and Kachi, 

2010). The algorithm to regain surface precipitation rate based on the Aonashi et al. (1996) 

was conducted in this product. The brightness temperature at microwave frequencies as the 

main input of GSMaP_MVK system was converted into precipitation data (Ushio and Kachi, 

2010). The combination technique to produce 0.1o in latitude and longitude and 1 hour 

resolution with the domain covering 60 N to 60 S was obtained using a morphing technique 

based on an infrared cloud moving vector and Kalman Filter technique (Ushio et al., 2009). 

GSMaP_MVK version 5 is available from March 2000 until December 2010. Thus the 

history of rainfall data which caused flood in Kyushu Island can be obtained. The rain rate 

daily data of GSMaP_MVK from May to July in 2005 to 2007 were downloaded and then 

converted into accumulated daily rainfall of GSMaP_MVK. GSMaP_MVK was processed 

by using OpenGRADS software and one pixel average of precipitation data was calculated 

based on the rain gauge data position.  

5.2.4 Validation and Intercomparison 

The data coverage of this study was three years (2005 to 2007) in the rainy seasons. 

It was selected based on the annual flood occurrence in the study area. The main validation 

was for daily satellite rainfall product. As shown in Figure 5.1, the validation region has 

very complex terrain. Thus validation data from the whole island may not give the whole 

picture. Therefore, validation of the daily satellite products was conducted separately for the 

elevation (highland and lowland part of Kyushu), location (west and east of Kyushu), during 

rainy days and only in heavy rainfall to investigate the performance of the product over 
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different climatic regimes. Lowland was defined where the elevation was under 500 m and 

highland was defined where the elevation was above 500 m (Dinku et al., 2009). The west 

and east Kyushu were defined by dividing the prefectures according to the wind direction. 

Rainy days were defined when the AMEDAS data value were equal or more than one 

mm/day. In addition, heavy rain was defined as daily rainfall exceeding the 95th percentile 

(rain_P95) for all stations and all categories (Iwasaki, 2014). Point by point analysis and 

spatial average analysis were conducted to compare gauge data and satellite data. As-syakur 

et al. (2011) and Prasetia et al. (2013) also applied this method. 

Standard validation statistics are used to evaluate the GSMaP_MVK product to the 

rain gauge data. Qualitative and quantitative validations were conducted as follows. 

Qualitative method is to measure the correspondence between the value of the estimates and 

the observations. To quantify the correspondence value, the following five statistical indices 

were used (Jiang et al., 2010), the relative bias (B), the mean error (E), the Nash-Sutcliffe 

(CNS), the Root Mean Square Error (RMSE) and the correlation coefficient (r). These indices 

are given by following equations. 

                             (5.1) 

                             (5.2) 

                                        (5.3) 

                  (5.4)   

                                  (5.5) 

Where, n is the total number of the rain gauge data or GSMaP data; Si is the satellite 

estimates and Gi is the rain gauge observation values. 
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The other validation statistics is the quantitative method which based on the 

contingency tables shown in Table 5.1. The rainfall threshold used for rain/non rain 

discrimination is 0 mm/day.  

Table  5.1. Contingency table of yes or no events/ with rain or no rain. 
 Estimated rainfall (GSMaP_MVK) 

Yes No 

Observed Rainfall 

(AMEDAS) 

Yes A C 

No B D 

In Table 5.1, A, B, C, and D represent hit , false alarm , miss  and correct 

negative . H

estimated but actual rain occurs ly 

rain doesn t timated no-rain events. 

Using the results shown in Table 1, Probability of Detection (POD), False Alarm Ratio 

(FAR), and Heidke skill score (HSS) statistics parameters are calculated by following 

equations. 

                              (5.6)                 

                                         (5.7) 

                           (5.8) 

Where, POD explains how good the GSMaP estimates are in detecting the occurrence of 

rainfall. FAR shows how often the GSMaP detects rainfall when rain gauge measurement is 

zero. Furthermore, HSS measures the rainfall detection accuracy of the satellite estimates 

relative to matches resulting from random chance. 
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5.2.5 Determining a bias correction by power function 

Comparison between GSMaP_MVK data with ground station measurement showed 

large differences during heavy rainfall as shown in the following sections. Therefore, the 

previous researchers obtained bias correction equations to achieve the best result. To 

accommodate for finding the relative bias varied with daily rainfall, a power function was 

applied to derive bias corrected rainfall (P*) (Vermenten et al., 2012) as follows: 

                               (5.9) 

Where P is GSMaP_MVK, P0 is the reference daily rainfall (1mm/day), a (mm) is 

the constant and b is the power function. The linear regression analysis was previously 

applied to obtain the values of a (1.41 mm/day) and b (0.15) where all the data were 

transformed into logarithmic. This analysis is as a reference test for correction only for 

heavy rainfall section because this correction method has not been applied to the heavy 

rainfall case. 

5.2.6 Determining a bias correction by Generalized Additive Models (GAM) 

According to the previous research, GSMaP_MVK had underestimated the rain gauge 

data.  Therefore, a bias correction equation was applied to achieve a closer fit between daily 

GSMaP_MVK and rain gauge data. GAM was applied because it has been widely adopted 

as an effective model and it has smoothing functions to analyze many complex time series  

data (Wood, 2006). GAM have been widely employed in other disciplines to model the 

health impacts of air pollution or long term variability in biota spatial density, but rarely 

applied in hydrology (Morton and Henderson, 2008; Underwood, 2009). 

GAM was created by R version 3.0.2 software, using the gam function of the mgcv 

package (Wood, 2006), with the rain gauge data as response variables and GSMaP data as 

predictor variables. GAM model in the form of an Eq. (5.10) was applied: 
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                                           (5.10) 

Where g is the link function (identity link), µ is the expected value of the rain gauge data, 

is the model constant and  is a smoothing function of the X (which corresponds to the daily 

GSMaP_MVK data) (Wood, 2006). ,The 0 was calculated according to the total average of 

AMEDAS data (i.e 12.4 mm/day) . In addition, when the GSMaP_MVK value is zero, the 

expected value of rain gauge data is equal to 2.16 mm/day.  

The Gaussian distribution is generally used in GAM, but we did not use the Gaussian 

distribution because the distribution of the rain gauge data was asymmetric. The rain gauge 

data could be predicted using the predict.gam function in the mgcv package using similar 

covariates as were used to build the model.  

5.3 Results and Discussion 

5.3.1 General comparison of daily rain gauges with GSMaP_MVK data 

This study first compared daily rain gauge data (AMEDAS) with GSMaP_MVK data. 

Figure 5.2 shows the scatter plot of AMEDAS data versus daily GSMaP_MVK data, the 

total data number and the mean values are also indicated in the plot. The validation statistics 

of GSMaP_MVK are listed in Table 5.2. In general, rainfall from GSMaP_MVK was lower 

than rainfall from rain gauge data: the average rainfall from rain gauge data was 12.39 

mm/day, whereas the average rainfall from GSMaP_MVK was 6.59 mm/day. 

GSMaP_MVK data in the study area have a strong correspondence with rain gauge data 

(r=0. 74), with the bias value was -46.78%. Moreover, the values of E and RMSE were -5.8 

mm/day and 22.82 mm/day, respectively. Furthermore, the consistency of GSMaP_MVK to 

measure the rainfall amount can be described through CNS index. The CNS index of the study 

area was 0.46 (46%), it means that GSMaP_MVK has the consistency to measure the 

rainfall amount about 46%. POD of GSMaP_MVK  are close to 81% and FAR is generally 
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small (18%). The HSS statistic shows that the GSMaP_MVK estimates have reasonably 

good skills in detecting the occurrence of rainfall (67%). 

A comparison of long term means of daily rainfall measured by GSMaP_MVK and 

rain gauge data for a three-year period was shown in Figure 5.3. Figure 5.3 indicates that the 

pattern of daily means is similar and has a very strong correspondence to rain gauge data 

(r=0.9), but GSMaP_MVK data were underestimated, with the bias, mean error and RMSE 

are -46.75%, -5.78 mm/day and 9.02 mm/day,  respectively. In addition, GSMaP_MVK has 

high consistency with the CNs value of 0. 53.  In general, GSMaP_MVK product has 

underestimated.  This will be partly because the current algorithm of microwave radiometer 

does not include the topographical effect and the brightness temperature from microwave 

radiometer has directly underestimate relation with precipitation (Ushio et al., 2009).  

Consequently, GSMaP_MVK data correction is needed to reduce bias, error and RMSE and 

to increase CNs and correlation coefficient.  In this study, GAM approach was applied for 

bias correction. 

Figure 5.2 Scatter plot of daily rain gauge data versus GSMaP_MVK product during rainy 
season from 2005 to 2007 
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Table 5.2. Validation statistics of daily GSMaP_MVK product during rainy season from 
2005 to 2007. 

Statistical indices Value 
Bias -46.78% 
Error -5.8 mm/day 

RMSE 22.82 mm/day 
CNS 0.46  

r 0.74 
POD 81% 
FAR 18% 
HSS 67% 

Figure 5.3 Long term mean of daily rainfall measured by AMEDAS and GSMaP_MVK for 
three years during rainy season. Daily rainfall is spatially averaged over 34 rain gauges. 

5.3.2 Validation and correction of GSMaP_MVK in the highland and lowland 

 The main topographic feature of Kyushu island is the large mountain ranges which 

located in the center of the island and the plain regions that cover the eastern and western 

part of the island. The elevation of mountainous region can exceed 1700 m while the eastern 

and western parts are below 500m. In this study, we first divided the validation and 

correction based on the elevation because it has significant influence on the rainfall 

climatological pattern (Dinku et al., 2005). The eastern and western plain region receives 

about 2071 mm of annual rainfall while in the mountainous region receives about 3321mm 
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of annual rainfall. It is said that in the highland region rainfall amount is higher than in the 

lowland region. In addition, heavy rain is strongly influenced by topography (Iwasaki, 2014). 

In other words heavy rainfall often occurs in the mountainous site.  

 To assess the orographic effects, the validation of GSMaP_MVK in the highland 

and lowland region was conducted in this section. Table 5.3 compares the validation and 

correction result of GSMaP_MVK in the highland and lowland regions. In the highland the 

bias, error, RMSE, and CNS are -56.18%, -8.69 mm/day, 29.5 mm/day and 0.4, while in the 

lowland they are -41.27%, -4.58 mm/day, 26.3 mm/day and 0.5, respectively. These results 

show that the performance of satellite product is superior over the lowland, with lower bias, 

error and RMSE and better consistency measurement for rainfall estimates. In contrast, the 

performance of satellite product is seriously underestimated and has lower consistency 

measurement for rainfall estimates over the highland. This will be partly because the current 

algorithm of microwave radiometer does not include the topographical effect. This result  

should be noted that topography obviously influences the accuracy of the satellite product.  

Moreover, detection probability and HSS also gave the same result that is POD and HSS 

were higher in the lowland (82 % and 68 %), than in the highland (78% and 65%) while 

FAR was lower in the lowland (15%) than in the highland (19%) as shown in Table 5.3.   

 GSMaP_MVK data have underestimated both in the lowland and highland 

therefore, the correction was conducted. In this study, GAM was conducted for bias 

correction.  The results showed that the bias, error and RMSE in the highland region 

decreased significantly and the CNS value increased. However, GAM did not give the 

significant impact for the lowland area. It should be noted that GAM only worked in the 

highland region. It is said that GAM tends to overestimate for forecasting (He et al., 2006). 

In addition, GAM can solve the underestimate problems when the bias percentage is large. 

In contrast, the correlation coefficient was not significantly different among high land and 
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lowland, before correction and after correction (Figure 5.4). However, after correction the 

scatterplot pattern were concentrated under 100mm/day. This condition was caused by 

GSMaP data observation point were dominant from 0 mm/day to 70 mm/day where the 

expected value of those range were 2.16 mm/day to 92.4 mm/day  as explained in the Figure 

5.5.  The same explanation for the section 5.3.3 and 5.3.4 

Table 5.3. Validation statistics over the highland and lowland before and after corrected by 
GAM 

Highland Lowland 
GSMaP_MVK Corrected by 

GAM 
GSMaP_MVK Corrected by 

GAM 
Bias -56.18% 2.53% -41.27% 44.83% 
Error -8.69 mm/day 0.39 mm/day -4.58 mm/day 5.08 mm/day 
RMSE 29.5 mm/day 25.65 mm/day 26.3 mm/day 22.42 mm/day 
CNS 0.4 0.6 0.5 0.33 
r 0.74 0.75 0.74 0.73 
POD 82% 82% 78% 78% 
FAR 19% 19% 15% 15% 
HSS 68% 68% 65% 65% 

Figure 5.4 Comparison of the performance GSMaP_MVK in the highland (a), lowland (b), 
corrected highland (c), corrected lowland (d) 
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Figure 5.5 Smoothing function of GSMaP_MVK 

5.3.3 Validation and correction of GSMaP_MVK in the eastern part and western 

part of Kyushu 

 As explained before, the mountain region of Kyushu island is located in the central 

of the island from north to south and it will affect the rainfall pattern over the region. 

Therefore, to assess the region effect, validation of GSMaP_MVK in the eastern part and the 

western part was conducted. The western part locates in the Kumamoto, Saga and Fukuoka 

Prefectures while the eastern part locates in Kagoshima and Miyazaki. Moreover, 

Kumamomoto, Kagosima and Miyazaki were hit by flash flood in July 2006 and 2007. 

Table 5.4 shows the validation and correction result of GSMaP_MVK in the eastern part and 

the western part of the region. In the eastern part the bias, error, RMSE, and CNS are -40.1%, 

-4.95 mm/day 21.37 mm/day and 0.52 while in the western part they are -55.07%, -7 

mm/day, 24.73 mm/day and 0.4. These results indicate that the performance of satellite 
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product is better over the eastern part, with lower bias, error and RMSE and better 

consistency measurement for rainfall estimates. It was strongly influenced by the location of 

the mountain area which affected local wind directions, then influenced the rainfall pattern. 

According to Figure 5.6, the wind direction in the study area moves from west to east. The 

water vapor as a main source of precipitation was not distributed perfectly in the region 

because the mountain is located in the central area as a barrier for cloud distribution. As a 

result, the rainfall pattern will be different. 

  However, the result showed that both in the western part and the eastern part of 

Kyushu, GSMaP_MVK data has underestimated.  Thus, a correction was needed. The 

results showed that the bias, error and RMSE in the western part of the region decreased 

significantly and the CNS value increased. However, GAM did not give the significant 

impact for the eastern part of the region. It should be noted that GAM only worked in the 

western part of the region.  The same statement can be concluded that, GAM can greatly 

correct the GSMaP_MVK data if the bias percentage is large (i.e., more than 55%). In 

contrast, the correlation coefficient did not change significantly among eastern part, western 

part, before and after correction. Additionally, detection probability, FAR and HSS also did 

not give the different result between the eastern part (81%, 18% and 68%) and western part 

(81%, 18% and 67%).  
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Table 5.4. Validation statistics over the eastern part and western part part before and after 
corrected by GAM 

Eastern part  Western part 
GSMaP_MVK Corrected by 

GAM 
GSMaP_MVK Corrected by 

GAM 
Bias -40.10% 45.23% -55.07% 9.80% 
Error -4.95 mm/day 5.58 mm/day -7 mm/day 1.24 mm/day 
RMSE 21.37 mm/day 25.39 mm/day 24.73 mm/day 20.72 mm/day 
CNS 0.52 0.31 0.4 0.58 
r 0.75 0.72 0.75 0.76 
POD 81% 81% 81% 81% 
FAR 18% 18% 18% 18% 
HSS 68% 68% 67% 67% 

Figure 5.6 The wind direction of southern part of Japan in June 2006 (source: ASCAT, 
2014) 
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Figure 5.7 Comparison of the performance GSMaP_MVK in the Eastern part (a), western 
part (b), corrected Eastern part (c), corrected western part (d) 

5.3.4 Validation and Correction of GSMaP MVK during rainy days 

In this section we focused on the performance of GSMaP_MVK to detect rainfall 

amount during rainy days. So, non rainy days were excluded in this analysis, which reduced 

the total sample data from 9276 to 4779. This analysis is necessary because flood only 

occurs during rainy days. Figure 5.8 shows the scatter plot of AMEDAS data versus daily 

GSMaP_MVK and corrected GSMaP_MVK. Table 5.5 shows the validation statistic and 

bias correction  of GSMaP_MVK. During rainy days, the bias, error, RMSE and CNS of 

uncorrected GSMaP_MVK are 46.78%, -11.25 mm/day, 31.79 mm/day and 0.37 while the 

bias, error, RMSE and CNS of corrected of GSMaP_MVK are 20.80%, 5 mm/day, 32.54 

mm/day and 0.34.  These results indicate that validation of GSMaP_MVK tend to 

underestimate while the corrected ones indicate that GSMaP_MVK tend to overestimate. In 
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addition, RMSE of corrected GSMaP_MVK increased and correlation coefficient and CNS

value decreased. It indicates that GAM did not give a significant result for correction. It was 

probably because the underestimate bias value was less than 55%.  

Table 5.5 Validation statistics during rainy days 
GSMaP_MVK Corrected by GAM 

Bias -46.78% 20.80% 
Error -11.25mm/day 5 mm/day 

RMSE 31.79 mm/day 32.54 mm/day 
CNS 0.37 0.34 

r 0.69 0.67 

Figure 5.8 The performance of GSMaP_MVK during rainy days (a), corrected by GAM (b) 

5.3.5 Validation and Correction of GSMaP MVK during heavy rainfall 

Heavy rainfall is one of the important factors which trigger the occurrence of flash 

floods. Thus, predicting the amount of heavy rainfall by satellite precipitation, which close 

to rain gauge data is necessary. Here, heavy rain is defined as daily rainfall exceeding the 

95th percentile (rain_P95) for all stations and all categories (Iwasaki, 2014). In addition, 

extreme rain is described as daily rainfall exceeding the 99th percentile (rain_P99) for all 

stations and all categories (Iwasaki, 2014). According to the definition, the heavy rains 

ranged equal and more than 66 mm/day (n= 465) and the extreme rainfalls ranged equal and 

more than 146 mm/day (n= 95). According to Dinku et al. (2009) and Kubota et al. (2009) 
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stated that GSMaP_MVK had serious underestimation when heavy rainfall occurred. Thus, 

validation and correction of GSMaP_MVK during heavy rainfall is a challenge. 

 Table 5.6 describes the validation and correction result of GSMaP_MVK during 

heavy rainfall. During heavy rainfall, the bias, error, RMSE and CNS of uncorrected 

GSMaP_MVK are -59.5%, -70.3 mm/day, 90.6 mm/day and -0.98. Validation of 

uncorrected GSMaP_MVK results showed that the performance of satellite products was a 

serious underestimate because the bias was the highest compare from other categories. This 

is probably because sudden increase in rain rate did not reflect the IR brightness temperature 

in this time scale (Ushio et al., 2009). In this section, GAM and power function (Vernimmen 

et al., 2012) for bias correction were applied. We did both correction method and then 

compared. After GSMaP_MVK was corrected by power function, the bias, error, RMSE and 

CNS are -63.2%, -63.1 mm/day, 85.6 mm/day and -0.77 while by GAM they are -8.8%, -

10.44mm/day, 55.44 mm/day and 0.26, respectively. After correction, the bias, error and 

RMSE values decreased dramatically and the CNS values increased of both correction 

methods. However, the GAM correction method gave the most significant result to reduce 

the error index. Moreover, when the values of CNS is positive, the correcting of 

GSMaP_MVK indicates that almost accurate (i.e. CNS = 0 means the models are accurate 

while CNS one means the models are perfectly accurate) (Krause et al., 2005).  

Because GAM approach gave the best result, Figures 5.9 and 5.10 only compare 

AMEDAS, GSMaP_MVK and corrected GSMaP_MVK by GAM. Figure 5.9 shows the 

heavy rainfall graphic of AMEDAS, GSMaP_MVK and corrected GSMaP_MVK by GAM.  

It described that the underestimate of GSMaP_MVK could be reduced almost in all points. 

Figure 5.10 shows the extreme rainfalls, which caused flooding in the Miyazaki, Kagoshima 

and Kumamoto in 2006 and in Kumamoto in 2007. In the extreme rainfalls the bias of 
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GSMaP_MVK is very large. On the other hand, the GAM can reduce the bias of 

GSMaP_MVK data.  

Table 5.6 Validation statistics during heavy rainfall 

GSMaP_MVK Corrected by 
power function Corrected by GAM 

Bias -59.50% -63.2%  -8.8%  
Error -70.3 mm/day -63.1 mm/day  -10.44 mm/day 
RMSE 90.6 mm/day 85.6 mm/day  55.44mm/day 
CNS -0.98 -0.77  0.26  
r 0.47 0.47  0.55  

Figure 5.9 Heavy rainfall measurement by AMEDAS, GSMaP and corrected by GAM for 
three years. 
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Figure 5.10 Extreme rainfall, which caused flood in Miyazaki 2006 (a), Kagoshima 2006 
(b), Kumamoto 2006 (c), Kumamoto 2007 (d)

5.4 Conclusions 

 In this study, daily GSMaP_MKV rainfall estimates were compared with daily rain 

gauge measurements from AMEDAS. Data from 34 rain gauges in Kyushu Island, covering 

3-year period (2005 2007), were used to evaluate daily rainfall pattern of GSMaP_MVK 

data. Point-by-point and spatial average analysis compared the closeness of GSMaP_MVK 

and rain gauge data using  bias, error, RMSE, CNS and correlation coefficients (r). In 

addition, GAM model have been applied to correcting the GSMaP_MVK data. 

 Intercomparison and correction were conducted between highland and lowland, 

between eastern part and western part, during rainy days and during heavy rainfall. From the 

analysis following are obtained as results; 
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1) Daily rainfall data from GSMaP_MVK has a great performance in lowland, eastern 

part of the study area and during the rainy days. 

2) Daily rainfall data from GSMaP_MVK has serious underestimate in the highland, 

western part of the study area and during heavy rainfall. 

3) GAM correction only can be applied when the bias percentage was more than 55 % 

of underestimate value. Therefore, it was well applied in the highland area, in the 

western part of Kyushu, and during heavy rainfall. 

In addition, high bias was produced mostly due to heavy rainfall. This is probably 

due to topography effect. Consequently, to obtain better results, the quality of remote-

sensing satellite data needs to be improved for better result in complex topography. 

 The quality of the satellite rainfall measurements needs to be evaluated 

continuously and averaged over several years to accurately reveal climatological features. In 

general, the data from GSMaP_MVK are potentially usable to replace rain gauge data, 

especially with the data over lowland area, if the inconsistencies and errors are taken into 

account. Thus GAM is promising way to predict the rainfall amount for flood and landslide 

monitoring, especially in the area where rain gauge data are limited.  
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CHAPTER 6 

CONCLUSIONS 

In this study, application of multi-sensor satellite data for open ocean tuna habitat and 

precipitation studies were demonstrated. The objectives of this study are to introduce the 

simple method to analyze the relationship between bigeye tuna and environmental variable 

by using scatterplot smoothers and empirical cumulative distribution function (ECDF), to 

introduce Generalized Additive Model (GAM) for dealing with nonlinear data, to determine 

the best model for bigeye tuna habitat in the study area, to evaluate the ability of GSMaP 

data as satellite precipitation during rainy season and to reduce the bias of GSMaP product 

during heavy rainfall. To assed all the research objective, integration of time series data, 

multi sensor analysis and statistical models were conducted.  

 In chapter 3, scatterplot smoother and empirical cumulative distribution function 

(ECDF) as statistical models were applied to determine the relationship between 

environmental variables and bigeye tuna abundance in the Southern waters off Java and Bali. 

By using scatter plot smoother, the trend of bigeye tuna related to each predictor variables 

can be distinguished and the almost variance of bigeye tuna in each predictor variables can 

be obtained. The result state that SST, SSC, and SSHD have strong correlation with the 

number of bigeye tuna. In addition, bigeye tuna has typical habitat of low SST, low SSC and 

low positive SSHD and extreme value of SSHD. By using ECDF, the optimum range of 

each variable can be determined, but how strong the relationship between the environmental 

variables and bigeye tuna can t be distinguished. By using ECDF method, simple predicted 

map of bigeye tuna habitat can be generated. 

In the chapter 4, GAM as modern statistical methods were introduced to determine 

the habitat characteristic of bigeye tuna in the Southern waters off Java and Bali. This 

method is the next step of scatter smoothers method in the chapter 3. In addition, the same 
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data were used as in chapter 3. By using GAM, the relationship between environmental 

variables and bigeye tuna, the optimum range of each variable, the degree of influence of 

each variable can be determined without eliminating of the raw data. In addition, the typical 

habitat characteristic can be distinguished that are the spatial pattern of bigeye tuna habitat 

characteristic gave typical low SST, negative to low SSHD and extreme SSHD value and 

low SSC. In addition, SST was the most important habitat predictor for bigeye tuna 

migration in the study area, followed by SSHD and SSC 

In the chapter 5, validation and correction of GSMaP_MVK product was conducted.  

For validation, the result stated that daily rainfall data from GSMaP_MVK has a great 

performance in lowland, eastern part of the study area and during the rainy days. To reduce 

the bias, GAM also applied in this chapter and by using this statistical method, it can reduce 

the bias of GSMaP_MVK in the highland, western part of the study area and during heavy 

rainfall. In addition, during heavy rainfall GAM can reduce GSMaP_MVK bias almost 80%.

This research chapter is very important for the areas which do not have enough rain gauge 

data and for flood monitoring. 

In this study, we have demonstrated that satellite remote sensing and GAM have made 

crucial contributions to our understanding for open ocean tuna habitat and precipitation 

studies. The advantage of this research is all the satellite remote sensing data which we used 

are open access and it can be applied in the developing countries. For the future research for 

tuna habitat, developing a method which measures the interaction of predictor variables to 

the fish catch data is necessary to develop. In precipitation studies, correction of 

GSMaP_MVK data product is the first step to make a model for flood prediction map more 

accurate.
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