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Fig. 1.1.  Schematic diagram of precession of 

magnetic moment induced by an electro-magnetic 

field h  in the x-y plane when a static magnetic 

field HDC is applied along z-axis [19]. 
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Fig. 1.3.  Schematic diagram of fundamental actions on (a) circulator (three 

ports) and (b) isolator (two ports). Arrows denote nonreciprocal characteristic 

of signals. 

Fig. 1.4. Typical structure of (a) lumped element type of isolator and (b) 

distributed element type of isolator. 



Global System for Mobile 

Communications Code Division Multiple Access

Ultra -high frequency

Integrated Services 

Digital Broadcast- 

ing

Digital Video Bro- 

adcasting-Handheld

Table 1.1 Frequency allocation to communication and digital TV 

broadcasting for mobile phone. 
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Fig. 2.1. Sketch of crystal structure of Y-type ferrite at the 

cross-section along C axis. [3] 
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Table 2.1. Processes and contents on manufacturing of Co2-Y ferrite. 
Processes Equipments Contents 

Weighting Electronic 
balance 

Main raw materials Fe2O3, BaCO3, Co3O4 60 20 20 
mol%
Additives SiO2, Na2CO3, Li2CO3, Mn3O4, ZnO, CuO, 
Bi2O3

 Mixing Ball mill Raw materials 
Solvent (water) 
Ball media 
Container size 
Mixing time 
Rotational speed 

0.25 kg 
0.5×10-3 m3

1.56 kg
1.1×10-3 m3

16 h 
63 rpm 0.3 m/s

Drying Dryer 140 × 14 h 
Calcination Electric furnace 1,000 × 2 h in ambient atmosphere (air) (typ.) 
Pulverizing Ball mill Raw materials 

Solvent (water) 
Mixing time 

0.20 kg 
0.4×10-3 m3

18 h 
* Others are the same as mentioned in . 

Drying Dryer 140 × 14h
Granulating Raikai mixers Binder 

Time 
Sieving 
Drying 

PVA 
10 min 
24 Mesh
100 × 20 min

Compaction Press machine 196 MPa × 5 s 
Sintering Electric furnace 1,200 × 3 h in Oxygen (typ.) 





Table 2.2. List of additives to Co2-Y ferrite and physical/ magnetic properties of their ferrites 

Additives Amount
(wt%)

physical/ magnetic properties 
Density, d 
×103 kg/m3

Resistivity, 
×104 m

Ms 
mT

Hc 
kA/m

Permeability, 
@1 GHz 

Loss, 
@1 GHz 

SiO2

0.0 4.57 3.55 166 8.03 2.42 0.029 

0.2 5.09 0.55 189 7.65 3.41 0.179 

0.4 5.22 0.73 216 7.81 3.43 0.183 

0.6 5.25 0.85 227 7.79 3.72 0.212 

Na2CO3

0.0 4.57 3.55 166 8.03 2.42 0.029 

0.2 4.51 2.09 144 7.62 2.22 0.007 

0.4 4.45 1.72 149 7.31 2.32 0.009 

0.6 4.47 0.99 143 7.21 2.43 0.012 

Li2CO3

0.0 4.57 3.56 166 8.03 2.42 0.029 

0.2 4.98 5.00 164 7.74 2.18 0.018 

0.4 4.93 4.29 165 7.77 3.15 0.077 

0.6 5.18 2.67 172 7.16 2.96 0.048 

Mn3O4

0.0 4.57 3.56 166 8.03 2.42 0.029 

0.2 4.34 2.26 135 7.77 2.15 0.003 

0.4 4.27 1.56 138 7.89 2.11 0.002 

0.6 4.51 1.43 150 8.08 2.11 0.001 

ZnO 
0.0 4.57 3.56 166 8.03 2.42 0.029 

0.2 5.11 4.13 166 7.86 2.12 0.016 



0.4 5.09 3.57 161 7.72 2.23 0.019 

0.6 5.13 3.57 167 7.74 2.26 0.021 

CuO 

0.0 4.57 3.56 166 8.03 2.42 0.029 

0.2 5.12 5.19 169 8.01 2.52 0.030 

0.4 4.82 6.34 172 7.57 2.68 0.038 

0.6 4.84 6.53 172 6.56 2.79 0.041 

Bi2O3

0.0 4.57 3.56 166 8.03 2.42 0.029 

0.2 5.13 0.026 178 7.02 3.43 0.176 

0.4 5.33 0.21 182 6.66 3.29 0.256 

0.6 5.13 1.49 169 6.49 3.25 0.132 



Fig.2.2. 

and Hc, as a function of addition of CuO.

Fig. 2.3.  Frequency responce of complex 

permeability, . 

2 

Fig.2.4. Fracture morphology of Co2-Y with various 

amount of CuO addition; (a) 0 wt.%, (b) 0.6 wt.%, (c) 

1.0 wt.%, (d) 2.0 wt.%. 



Fig.2.5. Morphology of 

powders calcinated at 



Fig.2.6. Particle size distributions of (a) before pulverizing and (b) after pulverizing of calicinated 

powders.

Fig.2.7. Change in permeability  due to 

calcinating temperature. 



Fig. 2.8.  Dependence of (a) density, d, and resistivity,  and (b) Saturation magnetization, Bs, and 

coercivity, Hc, on O2 volume fraction in sintering.



Fig.2.9. Dependence of permeability, loss, 

tan , measured at 1 GHz on O2 volume fraction 

in sintering. 

Fig.2.10. Fracture morphology of the Co2-Y with 0.6 wt.% 

CuO addition sintered at 1200 °C under different PO2. 

Average grain sizes are also denoted in each picture. 



Fig. 2.11 Dependence of (a) density, d, and (b) resistivity, , on sintering temperature under 

oxygen atmosphere and ambient atomosphere (air). 



Fig.2.13. X-ray diffraction profiles of (a) the sample 

sintering at 1,700 °C in air, and (b) calculated standard 

Y-type ferrite. (radiation: CuKa, =0.15405 nm)    

Fig.2.12 Dependence of (a) permeability,  at a 1 GHz, on sintering 

temperature under oxygen atmosphere and ambient atomosphere (air).
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Fig.2.14. Relation between densities, d, and 

 @1 GHz, of the sintered samples. 
Fig.2.15. Relation between demagnetization 

parameter, Vf-1/3-1, and ferromagnetic resonance,

fr. 



Fig.2.16. Change in loss factor, tan , due to 

average grain size of Co2-Y with addition of 0.6 

wt. % CuO. 
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Fig. 3.1. Dependence of complex magnetic susceptibility 

on applied magnetic field. 



Fig. 3.2. Definition of full width half maximum of magnetic resonance by sweeping (a) applied 

static magnetic field, HDC, under a constant angular velocity, 0, and (b) angular velocity, ,

under a constant H0i [13].  

Fig. 3.3. System configuration on measurements of 

 by means of a terminated microstrip line. 



H
.max

Fig. 3.4. Design of a fixture applied for 

measurements of  by a terminated strip line 

method; (a) schematic view, (b) cross section and 

(c) image of fabricated fixtures. 
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Fig. 3.5. Definition of each reflection 

coefficients in a frequency spectrum. 

Fig. 3.6. Typical example of the procedure for H

evaluation conducted on a PC. 



Fig. 3.7. Relation between measured by an 

ESR and measured by a shorted 

microstrip line. SML means the abbreviation

of a shorted microstrip line. 
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Fig. 3.8. Sketch of the fixture 

excited by one turn coil. 
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transmission method.  
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Fig. 3.10 Typical configuration of measurement system 

by means of a transmission method; (a) the whole 

system and (b) fixtures for sample setting. 



Fig. 3.13. Sketch of the sample holder in the cavity 

Fig. 3.11 Image of the system for measurement of complex 

permeability by a cavity resonance perturbation method. 

Fig. 3.12. Schematic diagram of the harmonic waves related to a magnetic field 

in the cavity resonator. Wavy contours depict odd harmonic waves. 
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Fig. 3.14. Permeability, at each frequency 

measured by a resonant perturbation method (R.P.) and a one turn 

coil method (O.T.). Co2-Y samples with 0.6 wt.% CuO addition 

were employed for this measurement. 



Fig. 3.15.

of the one turn coil method (O.T) and that of the cavity resonance perturbation method. 



Hz

1

2

3

4

1 10 100 1000 10000

Frequency MHz

0.01

0.1

1

10
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one turn coil method (O.T.) and the transmission line method 

(T.L.). 

Fig. 3.17. Frequency response of complex permeability and its 

loss of Co2-Y measured by hybridization of the one turn coil 

method and the transmission line method.  



µ

measured by the transmission line method.  

Co2-Y with µ developed in this study is employed for 

the measurement. 



, measured by an impedance method. (sample:  

Co2-Y with µ
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Fig. 4.1. Schematic view of a lamped element type of isolator; (a) whole configuration and (b) signal 

flowing at each port. 





Table 4.1. Dimensions and physical properties of componets used for a distributed element type of 

isolators with height of 1 mm 

Components Size (mm mm) Thickness
(mm) 

Physical poperties 

Upper case W7.0 D6.5 0.4 sub.0.2 (Ag coated)  = 6.1 x 107 S/m 

Magnet W5.0 D5.0 0.2 NdFeB =1,  = 1.5 x 105 S/m 
Sr Ferrite r=15, 02, = 0.01 
S/m 

Insulating sheet (W6.5 D6.5) 0.05 r=3.3 

Central electrode  0.02 (Cu)  = 6.0 x 107 S/m 
(Ag)  = 6.1 x 107 S/m 

Garnet ferrite W6.5 D5.3 0.3 Ms=9 r=12, 
02 

Terminator 1.5 0.8 (0.3) r=9 

Lower case W6.5 D7.0 1.0 sub.0.25 (Ag coated)  = 6.1 x 107 S/m 

Fig. 4.3. Configuration of a distributed

element type of isolator in this study.





Fig. 4.4. Photograph of fixtures and their bases 

for measuring characteristics of isolators. 
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Fig. 4.5. Geometry of a transimission line fabricated on a YIG 

subsutrate as well as its dimensional paraeters. The values

denoted on the right hand side are the optimum values

for exhibiting excellent characteristics.



Fig. 4.7. Photographs of the transmission lines of isolators 

deposited on YIG substrates by means of (a) Cu sputtering 

and (b) Ag printing. 



Fig. 4.8. Characteristics of transmittion line as a function of Cu thickness in a distributed circuit 

type of isolator; (a) insertion loss and (b) isolation. 



Table 4.2. Biasing magnetic field applied to YIG ferrite in the case of different shape of lower yoke. 

Magnet Cube type 
(kA/m) 

I shape type (kA/m) 
(6.5 mm square) 

I shape type (kA/m) 
(5 mm square) 

NdFe (sintered) 124 (1434 Oe) 97 (1224 Oe) 155 (1945 Oe) 

Sr Ferrite 60 (752 Oe) 62 (777 Oe) 80 (1010 Oe) 
NdFeB Bond 
(isotropic) 66 (834 Oe) 66 (834 Oe) 90 (1129 Oe) 

NdFeB Bond 
(anisotropic) 77 (965 Oe) 73 (915 Oe) 105 (1322 Oe) 



Fig. 4.9. Images of the fabricated isolator with a low profile of 1 mm in height; (a) intenal 

structure and (b) out look.

Fig. 4.10. Transmission characteristics of the isolator with 

low profile of 1 mm in height. 



Fig. 4.11. Schematic diagrams of electric and magnetic field around (a) a microstrip line and (b) a 

coplanar wave guide. Solid lines denote electric field and dotted lines do magnetic field. 



Fig. 4.12. Schematic drawing of the designed

circulator composed of coplanar wave guide; 

(a) top view and (b) cross section.

Fig. 4.13. Dependence of S-parameters on distance between 

lines and GND (calculated). 



Fig. 4.15. Transmission characteristics of a 

designed hexagonal circulator without GND in 

view point of S-parameters (calculated). 

Fig. 4.16. Cross section view of electric field distribution in a 
coplanar wave guide (simulated). 

Fig. 4.14. Transmission characteristics of a 

designed hexagonal circulator in view point 

of S-parameters (calculated). 



Fig. 4.17. Geometry of a designed circulator with a CPW; 

(a) top view and (b) cross section. 

Fig. 4.18. Photographs of (a) top view of CPW transmission line and GND plane deposited on a 

YIG substrate and (b) a circulator sample with the CPW. An enlarged image of the edge of the port 

is depicted on the righthand side of (a). 
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Fig.4.19 Transmission characteristics of a fabricated 

circulator with a rectangular shape substrate in view point of 

S-parameters 
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Fig. 4.20. Change in (a) effective permeability, 

µeff, and (b) µ+ µ- in YIG ferrite as a fuction 

of magnetic biasing field.  



Fig. 4.21. Change in complex permeability of a circularly 

polarized wave due to frequency. The proposed band in 

this study is indexed as a vermilion color zone. 
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4.22. Dependence of relative complex permeability of circulary polarized wave in sigle crystal 

YIG ferrite on frequency at different biacing field. 
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Fig. 4.25. Transmittion characteristics of the bottom mount type of isolators at different working frequency; (a) 4 

GHz band, (b) 2 GHz band and (c) 800 MHz band. 



Fig. 4.27. Transmittion characteristics of the top mount type of isolators at different working frequency; (a) 4 GHz 

band, (b) 2 GHz band and (c) 800 MHz band.



Fig. 4.29. Transmittion characteristics of the top mount type of isolators with coplanar waveguide lines at different 

working frequency; (a) 4 GHz band, (b) 2 GHz band and (c) 800 MHz band



Table 4.3. Characteristics of three kinds of miniaturized isolators proposed in this study. 

*Diameter of a isolator , **Insertion loss at minimum frequency 
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Fig. 5.1.  Allocation of frequency band to cellular phones and digital broadcasting. The band of 

ISDB in Japan has been in the range from 470 MHz to 710 MHz since 2013. 
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Fig. 5.3. Sketch of (a) dipole, (b) monopole and (c) 

monopole-like transmission line antenna at a resonant state.  
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Fig. 5.4. Directionality of dipole antenna (solid line) and infinitesimal 

dipole antenna (dotted line) in the vertical (y-z) plane. The antenna bar lies 

along the z axis. 
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Fig. 5.6. Frequency response of complex permeability of Co2-Y used 

for antenna fabrication.

Fig. 5.7. Images of two types of magnetic antennas made from Co2-Y; (a) helical type along with 

coordinates at evaluation and (b) feedthrough conductor type.

(a) (b) 





Fig. 5.9. Photograph of (a) the Co2-Y ferrite antenna and the coordinate system associated with its 

evaluation and (b) impedance- and capacitance-matching elements in the compensation circuit. 

Fig. 5.8. Configuration of the antenna installed on the 

test board: (a) front view and (b) back view.  

(a) (b) 
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Fig. 5.10. System configuration of evaluation of antenna 

performance. 



Fig. 5.11. Schematic illustration on measurements procedure of directionality and gains of 

antennas 



Fig. 5.12. Comparison of average gain of the Co2-Y antenna to that of a 

dielectric antenna as a function of frequency with respect to a helical 

type of antenna.

Fig. 5.13. E

different kind of antenna designs. 



Fig. 5.14. Schematic diagram of magnetic field induced by current of antenna: 

(a) helical type and (b) feedthrough type. 



Fig. 5.16. Dependence of average gains on frequency in the case of a feedthrough 

conductor type and a helical type of antenna. 

Fig. 5.15. Characteristics of feedthrough type of antennas in comparison with helical type of 

antenna; (a) Impedance tracking in Smith chart, (b) VSWR as a function of frequency. 



Fig. 5.18. Radiation patterns of the Co2-Y antenna with feedthrough conductor along three 

coordinate axes at 600 MHz: (a) the X-Y (E1) plane, (b) the Y-Z (E2) plane, and (c) the Z-X (H) 

plane. 

Fig. 5.17. Radiation patterns of the Co2-Y antenna with 

feedthrough conductor installed in a quasi-cellular substrate at a 

frequency of 600 MHz. 



Fig. 5.19. (a) Mapping of electro-magnetic field in a 

feedthrough conductor type of antenna (upper side) and 

that of in the trench embedded antenna (lower side). (b) 

sketch of a trench embedded antenna. 
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Fig. 5.20. Effect of loss t

gain in a feedthrough type and a trench embedded 

type of antenna at a frequency of 600 MHz. 

Fig. 5.21. Frequency response of complex permeability 

for Ni-Zn spinel ferrite. 

Fig. 5.22. Photograph of the antenna with Fig. 5.23. Matching elements in the antenna 

a trench embedded conductor. with a trench embedded conductor.



Fig. 5.24. Characteristics of trench embedded type of antenna in comparison with feedthrough type 

of antenna; (a) dependence of VSWR on frequency and (b) tracking of impedance in Smith chart. 

The feedthrough type of antenna is made from Co2-Y ferrite and the trench embedded type of 

antenna is made from Ni-Zn spinel ferrite.

Fig. 5.25. Relation between frequency and gain in 

antennas with 



Fig. 5.26. Radiation patterns of the Co2-Y antenna with trench embedded conductor in three 

coordinate planes at 600 MHz: (a) the X-Y (E1) plane, (b) the Y-Z (E2) plane, and (c) the Z-X (H) 

plane. 
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