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Analysis of Error Floors of Non-binary LDPC Codes over MBIOS
Channel∗

Takayuki NOZAKI†a), Student Member, Kenta KASAI†b), Member, and Kohichi SAKANIWA†c), Fellow

SUMMARY In this paper, we investigate the error floors of non-binary
low-density parity-check (LDPC) codes transmitted over the memoryless
binary-input output-symmetric (MBIOS) channels. We provide a neces-
sary and sufficient condition for successful decoding of zigzag cycle codes
over the MBIOS channel by the belief propagation decoder. We consider an
expurgated ensemble of non-binary LDPC codes by using the above neces-
sary and sufficient condition, and hence exhibit lower error floors. Finally,
we show lower bounds of the error floors for the expurgated LDPC code
ensembles over the MBIOS channels.
key words: non-binary LDPC code, error floor, MBIOS channel

1. Introduction

Gallager invented low-density parity-check (LDPC) codes
[1]. Due to the sparseness of the parity check matrices,
LDPC codes are efficiently decoded by the belief propaga-
tion (BP) decoder. Optimized LDPC codes can exhibit per-
formance very close to the Shannon limit [2].

Davey and MacKay [3] have found that non-binary
LDPC codes can outperform binary ones. In this paper, we
consider the non-binary LDPC codes defined over the Ga-
lois field Fq with q = 2m.

A non-binary LDPC code C over Fq is defined by the
null space of a sparse M × N parity-check matrix H = (hi, j)
over Fq:

C =
{
x ∈ FN

q | Hx = 0 ∈ FM
q

}
.

The Tanner graph for a non-binary LDPC code is repre-
sented by a bipartite graph with variable nodes, check nodes
and labeled edges. The v-th variable node and the c-th check
node are connected with an edge labeled hc,v ∈ Fq \ {0} if
hc,v � 0. The LDPC codes defined by Tanner graphs with
the variable nodes of degree j and the check nodes of de-
gree k are called ( j, k)-regular LDPC codes. It is empiri-
cally known that (2, k)-regular non-binary LDPC codes ex-
hibit good decoding performance among other LDPC codes
for q ≥ 64 [4]. However, this is not the case for q < 64.
In this paper, we consider the irregular non-binary LDPC
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codes which contain variable nodes of degree two for the
generality of code ensemble.

A zigzag cycle is a cycle such that the degrees of all the
variable nodes in the cycle are two. In order to reduce the
error floors of codes under maximum likelihood decoding,
Poulliat et al. proposed cycle cancellation [5]. The cycle
cancellation is a method to design the edge labels in zigzag
cycles so that the corresponding submatrices are nonsingu-
lar. We see that from the simulation results [5] the resulting
codes have lower error floors under BP decoding. However,
it is found in our analyses that some zigzag cycles, even if
their submatrices are nonsingular, degrade decoding perfor-
mance. In this paper, we analyze a condition for success-
ful decoding of zigzag cycles under BP decoding over the
memoryless binary-input output-symmetric (MBIOS) chan-
nel. Based on this condition, we propose a design method of
selecting labels so as to eliminate small zigzag cycles which
degrade decoding performance.

In [6], we analyze the decoding erasure rate in the er-
ror floors of non-binary LDPC codes over the binary era-
sure channel (BEC) under BP decoding. In this paper, we
analyze the error floors of non-binary LDPC codes over
the MBIOS channel. First, we expurgate non-binary LDPC
code ensembles. Next, we show lower bounds for the sym-
bol error rates in the error floors of the expurgated LDPC
code ensembles over the MBIOS channel. More precisely,
those lower bounds are derived from the decoding errors
caused by the zigzag cycles. Furthermore, simulation re-
sults show that the lower bounds on symbol error rates are
tight for the expurgated ensembles constructed by our pro-
posed method over the MBIOS channels.

This paper is organized as follows. In Sect. 2, we
briefly review the BP decoder for non-binary LDPC codes.
In Sect. 3, we clarify a necessary and sufficient condition for
successful decoding of zigzag cycle codes over the MBIOS
channels by the BP decoder and propose a design method
to lower the error floor. In Sect. 4, we give lower bounds
for the symbol error rates in the error floors for code ensem-
bles constructed by our proposed method and show that the
proposed method gives better performance than the cycle
cancellation [5] and the method which uses both the cycle
cancellation and the stopping set mitigation [5].

2. Preliminaries

In this section, we recall the BP decoder for the non-
binary LDPC codes [3]. We introduce some notations used

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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throughout this paper.

2.1 Channel Model

Let α be a primitive element of F2m . Once a primitive el-
ement of α is fixed, each element in Fxm is given an m-bit
representation [7, p. 110]. We denote the m-bit representa-
tion for γ ∈ F2m , by (γ1, γ2, . . . , γm). Let x = (x1, x2, . . . , xN)
denote the codeword over F2m . Since each symbol of F2m is
given an m-bit representation, a codeword is represented as
a binary codeword of length Nm, x = (x1,1, x1,2, . . . , xN,m).

We denote the received word by y = (y1,1,
y1,2, . . . , yN,m). A channel is called memoryless binary-input
channel if

p(y | x) =
∏N

i=1
∏m

j=1 p(yi, j | xi, j).

It is convenient to transform the binary input alphabet {0, 1}
into {+1,−1} by a binary phase shift keying (BPSK). With
some abuse of notation, we make no distinction between
{0, 1} and {+1,−1}. A memoryless binary-input channel is
called output-symmetric if

p(y | x) = p(−y | −x).

We assume the transmission over the MBIOS channel. The
MBIOS channels are characterized by its L-density a [8].
Examples of the MBIOS channels include the BEC, the bi-
nary symmetric channel (BSC) and the additive white Gaus-
sian noise (AWGN) channel.

2.2 BP Decoder for Non-binary LDPC Codes

BP decoding proceeds by sending messages along the edges
in the Tanner graph. The messages arising in the BP decoder
for LDPC codes over F2m are vectors of length 2m. Let Ψ(�)

v,c

be the message from the v-th variable node to the c-th check
node at the �-th iteration. Let Φ(�)

c,v be the message from the
c-th check node to the v-th variable node at the �-th iteration.

2.2.1 Initialization

Set � = 0. Let N and M be the number of variable nodes
and check nodes in a Tanner graph, respectively. For v =
1, 2, . . . ,N, let Cv = (Cv(0),Cv(1), . . . ,Cv(α2m−2)) denote the
initial message of the v-th variable node. For γ ∈ F2m , the el-
ement of the initial message Cv(γ) is given from the channel
outputs as follows:

Cv(γ) =
∏m

i=1 Pr
(
Yv,i = yv,i | Xv,i = γi

)
.

Let Nc(c) be the set of the positions of the variable nodes
connecting to the c-th check node. Set for all c = 1, 2, . . . ,M
and v ∈ Nc(c),

Φ(0)
c,v =

(
2−m, 2−m, . . . , 2−m)

.

2.2.2 Iteration

(1) Variable node action

LetNv(v) be the set of the positions of the check nodes con-
nected to the v-th variable node. The message Ψ(�)

v,c is given
by the component-wise multiplication of the initial message
Cv and the incoming messagesΦ(�)

c′,v from check nodes whose
positions c′ are in Nv(v), i.e., for x ∈ F2m

Ψ(�)
v,c(x) =

1
ξ

Cv(x)
∏

c′∈Nv(v)\{c}
Φ

(�)
c′,v(x),

where ξ is the normalization factor such that 1 =∑
x∈F2m Ψ

(�)
v,c(x).

(2) Check node action

The convolution of two vectors Ψ1 and Ψ2 is given by

[Ψ1 ⊕ Ψ2](x) =
∑
y,z∈F2m :x=y+zΨ1(y)Ψ2(z),

where
∑
y,z∈F2m :x=y+zΨ1(y)Ψ2(z) is the sum of Ψ1(y)Ψ2(z)

over all y, z ∈ F2m such that x = y + z. To simplify the
notation, we define

⊕
i∈{1,2,...,k}Ψi := Ψ1 ⊕ Ψ2 ⊕ · · · ⊕Ψk.

Let hc,v be the label of the edge adjacent to the c-th
check node and the v-th variable node. The message Φ(�+1)

c,v

is given as, for x ∈ F2m

Ψ̌(�)
v,c(x) = Ψ(�)

v,c

(
h−1

c,vx
)
,

Φ̌
(�+1)
c,v =

⊕
v′∈Nc(c)\{v} Ψ̌

(�)
v′,c,

Φ(�+1)
c,v (x) = Φ̌(�+1)

c,v (hc,vx).

2.2.3 Decision

Define

arg max
x∈F2m

Ψ :=
{
x ∈ F2m | ∀y ∈ F2m : Ψ(x) ≥ Ψ(y)

}
,

and for x ∈ F2m

D(�)
v (x) :=

1
ξ

Cv(x)
∏

c∈Nv(v)

Φ(�)
c,v(x),

where ξ is the normalization factor such that 1 =∑
x∈F2m D(�)

v (x). For v = 1, 2, . . . ,N, let x̂(�)
v be the decoding

output of the v-th variable node. Define

D(�)
v := arg max

x∈F2m

D(�)
v (x).

If |D(�)
v | = 1, the decoding output x̂(�)

v is the element ofD(�)
v .

If |D(�)
v | > 1, the decoder chooses x̂(�)

v ∈ D(�)
v with probability

1/|D(�)
v |.

2.3 All-Zero Assumption and Defining Failure

For the MBIOS channels, we assume that all-zero codeword
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is sent without loss of generality to analyze the decoding
error rate [9].

The v-th symbol is eventually correct [10] if there exists
Lv such that for all � > Lv, x̂(�)

v = 0. The symbol error
rate is defined by the fraction of the symbols which are not
eventually correct.

3. Condition for Successful Decoding over MBIOS
Channel

A zigzag cycle is a cycle such that the degrees of all the vari-
able nodes in the cycles are two. A zigzag cycle of weight
s consists of s variable nodes of degree two. The zigzag cy-
cle code is defined by a Tanner graph which forms a single
zigzag cycle. Figure 1 shows a zigzag cycle code of symbol
code length s. In this section, we give a condition for suc-
cessful decoding of the zigzag cycle codes over the MBIOS
channels under BP decoding.

We consider the zigzag cycle code of symbol code
length s with labels h1,1, h1,2, . . . , hs,1 as shown in Fig. 1. We
define γi := h−1

i,i hi,i+1 for i = 1, 2, . . . , s where hs,s+1 := hs,1.
Define β :=

∏s
i=1 γi. We refer to the parameter β as cycle pa-

rameter [6]. The following theorem shows a necessary and
sufficient condition for successful decoding of the zigzag cy-
cle codes over the MBIOS channels by the BP decoder.

Theorem 1: Let σ be the order of β, i.e., let σ be the
smallest positive integer such that βσ = 1. We consider a
zigzag cycle code of symbol code length s defined over F2m

with the cycle parameter β over the MBIOS channel. In the
limit of large �, all the symbols in the zigzag cycle code are
eventually correct under BP decoding if and only if for all
x ∈ Aβ := {α j | j = 0, 1, . . . , 2m−1

σ
− 1}

∏s
k=1(Ck(0))σ >

∏σ−1
t=0

∏s
k=1 Ck

(
βt x

∏k−1
j=1 γ j

)
.

Moreover, in the limit of large �, no symbols in the zigzag
cycle code are eventually correct under BP decoding if and
only if there exists x ∈ Aβ := {α j | j = 0, 1, . . . , 2m−1

σ
− 1}

such that
∏s

k=1(Ck(0))σ ≤∏σ−1
t=0

∏s
k=1 Ck

(
βt x

∏k−1
j=1 γ j

)
.

proof: First, we write the messages D(�)
v by the initial mes-

sages Cv for the zigzag cycle code of symbol code length s
with the cycle parameter β. Let Ψ̃(�)

v,c be the unnormalized
message from the v-th variable node to the c-th check node
at the �-th iteration. For all x ∈ F2m and i = 1, 2, . . . , s, the

Fig. 1 A zigzag cycle code of symbol code length s.

unnormalized message for the zigzag cycle code of symbol
code length s is written as follows:

Ψ̃
(0)
i,i−1(x) := Ci(x), Ψ̃(�+1)

i,i−1 (x) := Ci(x)Ψ̃(�)
i+1,i

(
γ−1

i x
)
,

Ψ̃
(0)
i,i (x) := Ci(x), Ψ̃

(�+1)
i,i (x) := Ci(x)Ψ̃(�)

i−1,i−1

(
γi−1x

)
,

D̃(�+1)
i (x) := Ci(x)Ψ̃(�)

i−1,i−1

(
γi−1x

)
Ψ̃

(�)
i+1,i

(
γ−1

i x
)
,

where Ψ̃(�)
0,0 = Ψ̃

(�)
s,s, Ψ̃

(�)
1,0 = Ψ̃

(�)
s+1,s = Ψ̃

(�)
1,s, Ψ̃

(�)
s+1,s+1 = Ψ̃

(�)
1,1 and

γ0 = γs. Then, for zigzag cycle code, the messages Ψ(�)
i, j and

D(�)
i are written as follows:

Ψ
(�)
i, j (x) =

Ψ̃
(�)
i, j (x)∑

x′∈F2m Ψ̃
(�)
i, j (x′)

, D(�)
i (x) =

D̃(�)
i (x)∑

x′∈F2m D̃(�)
i (x′)

.

From the definition, we have

D̃(�)
i (x)=Ci(x)

�∏
k=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ci−k

⎛⎜⎜⎜⎜⎜⎜⎝x
k∏

j=1

γi− j

⎞⎟⎟⎟⎟⎟⎟⎠Ci+k

⎛⎜⎜⎜⎜⎜⎜⎝x
k−1∏
j=0

γ−1
i+ j

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
(1)

where Ci+ns(x) = Ci(x) and γi+ns = γi for n = 0,±1, . . . .
Define χi =

∏i−1
j=1 γ j and

B(x) :=
∏σ−1

t=0
∏s

k=1 Ck

(
βt x

∏s
j=k γ j

)
.

From Eq. (1), we have for i = 1, 2, . . . , n

D̃(�+sσ)
i (x) =

{
B
(
χix

)}2D̃(�)
i (x).

By using this equation, we have

D(�1 sσ+�2)
i (0)

=
D̃(�2)

i (0)

D̃(�2)
i (0) +

∑
x∈Aβ

{
B(χi x)
B(0)

}2�1 ∑σ−1
t=0 D̃(�2)

i

(
xβt

) .

If B(0) > B(x) for all x ∈ Aβ = {α j | j = 0, 1, . . . , 2m−1
σ
−

1}, for all i = 1, 2, . . . , s, we have lim�→∞ D(�)
i (0) = 1, i.e.,

the decoding is successful. If there exists x ∈ Aβ such that
B(0) < B(x), for all i = 1, 2, . . . , s we have lim�→∞ D(�)

i (0) =
0, i.e., no symbols are eventually correct.

Finally, we claim that no symbols are eventually cor-
rect, if there exists x ∈ Aβ such that B(0) = B(x). Note that
for all t ≥ 1 and i ∈ {1, 2, . . . , s},

D̃(sσt)
i

(
χ−1

i x
)
=

{
B(x)

}2tCi

(
χ−1

i x
)

D̃(sσt−1)
i

(
χ−1

i x
)
=

{
B(x)

}2t
{
Ci

(
χ−1

i x
)}−1
.

Hence for t ≥ 1 and i ∈ {1, 2, . . . , s}
D̃(sσt)

i

(
χ−1

i x
)
D̃(sσt−1)

i

(
χ−1

i x
)
=
{
B(x)

}4t

=
{
B(0)

}4t

=D̃(sσt)
i (0)D̃(sσt−1)

i (0). (2)
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The i-th symbol is eventually correct if there exist L such
that D̃(�)

i (0) > D̃(�)
i (x) for � > L and x ∈ F2m \ {0}. How-

ever, from Eq. (2), for all i ∈ {1, 2, . . . }, if D̃(sσt−1)
i (0) >

D̃(sσt−1)
i (χ−1

i x), then D̃(sσt)
i (0) < D̃(sσt)

i (χ−1
i x). Thus, no sym-

bols are eventually correct. This completes the proof. �
By Using Theorem 1, we have the following corollary.

Corollary 1: Let σ be the order of β. For a given chan-
nel output, if the zigzag cycle with cycle parameter β such
that σ � 2m − 1 is successfully decoded, then the zigzag
cycle with cycle parameter β such that σ = 2m − 1 is also
successfully decoded.

proof: We consider zigzag cycle of symbol code length s.
Since the channel output is given, we are able to fix the ini-
tial message Ci for i = 1, 2, . . . , s. From Theorem 1, if the
zigzag cycle with cycle parameter β such that σ � 2m − 1
is successfully decoded, then for all x ∈ Aβ = {α j | j =
0, 1, . . . , 2m−1

σ
− 1}

∏s
k=1(Ck(0))σ >

∏σ−1
t=0

∏s
k=1 Ck

(
βt x

∏k−1
j=1 γ j

)
.

From the product of the above equation over all x ∈ Aβ, we
have

∏
x∈Aβ

∏s
k=1(Ck(0))σ

>
∏

x∈Aβ
∏σ−1

t=0
∏s

k=1 Ck

(
βt x

∏k−1
j=1 γ j

)
⇐⇒ ∏s

k=1(Ck(0))2m−1 >
∏

x∈F2m \{0}
∏s

k=1 Ck(x).

From this condition, the zigzag cycle with cycle parameter
β such that σ = 2m − 1 is also successfully decoded. �

Discussion 1: Corollary 1 shows that the zigzag cycles
with cycle parameter β such that the order of β is 2m − 1
have the best decoding performance. We claim that the or-
der of β is 2m − 1 if and only if β � Hm, where

Hm :=
⋃

0<r<2m−1:r|2m−1

{
αi 2m−1

r | i = 0, . . . , r − 1
}
. (3)

Firstly, we show that the order of β is 2m − 1 if β � Hm. For
r < 2m − 1, we define

H (r)
m :=

{
αi 2m−1

r | i = 0, . . . , r − 1
}
.

If β � H (r)
m , there exist integers i ∈ {0, 1, . . . , r − 1} and

j ∈ {1, . . . , (2m − 1)/r − 1} such that β = αi(2m−1)/r+ j. Hence,
we have

βr = α{i(2
m−1)/r+ j}r = α jr.

Since jr < 2m − 1, we get β = α jr � 1. Thus, we have the
order of β is not r if β � H (r)

m . Since the order of β is less
than or equal to 2m − 1 for β ∈ F2m \ {0}, the order of β is
2m − 1 if β � Hm. Secondly, we show that β � Hm if the
order of β is 2m − 1. Obviously, the order of β ∈ H (r)

m is less
than or equal to r. Hence, the order of β ∈ Hm is less than
2m − 1. From the contraposition, β � Hm if the order of β is
2m − 1. Therefore, we see that the order of β is 2m − 1 if and

Table 1 The elements inHm for m = 2, 3, 4, 5, 6.

Field The elements ofHm

F22 1

F23 1

F24 1, α3, α5, α6, α9, α10, α12

F25 1

F26
1, α3, α6, α7, α9, α12, α14, α15, α18, α21, α24, α25, α27, α28, α30,
α33, α35, α36, α39, α42, α45, α48, α49, α51, α54, α56, α57, α60

Fig. 2 The symbol error rate for the zigzag cycle code defined over F24

of symbol code length 3 over the AWGN channel with channel variance
σ2 = 1. The horizontal line corresponds to the cycle parameter.

only if β � Hm.
Thus, the zigzag cycles with the cycle parameter

β � Hm have the best decoding performance. Note that
{αi(2m−1)/r | i = 0, . . . , r − 1} represents a proper subgroup of
F2m . Table 1 shows the elements in Hm for m = 2, 3, 4, 5, 6.
Figure 2 shows the symbol error rate for the zigzag cy-
cle code define over F24 of symbol code length 3 over the
AWGN channel with channel variance σ2 = 1. From Fig. 2,
we see that the zigzag cycle codes with the cycle parameter
β � H4 have the best decoding performance.

By using the log-likelihood ratio, Theorem 1 is sim-
plified for the zigzag cycle codes with the cycle parameter
β � Hm over the MBIOS channel.

Corollary 2: We consider the zigzag cycle codes of sym-
bol code length s with the cycle parameter β � Hm over
the MBIOS channel. Let Zv,i(Yv,i) be the log-likelihood ratio
corresponding to the i-th channel output in the v-th variable
node, i.e.,

Zv,i(Yv,i) = log
Pr(Yv,i | Xv,i = 1)

Pr(Yv,i | Xv,i = −1)
.

In the limit of large �, all the symbols in the zigzag cycle
code are eventually correct if and only if

∑s
v=1

∑m
i=1 Zv,i(Yv,i) > 0.

Moreover, in the limit of large �, no symbols in the zigzag
cycle code are eventually correct if and only if

∑s
v=1

∑m
i=1 Zv,i(Yv,i) ≤ 0.

proof: To simplify the notation, we define for k ∈
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{1, 2, . . . , s} and i ∈ {1, 2, . . . ,m}
pk,i := Pr(Yk,i | Xk,i = 1),

p̄k,i := Pr(Yk,i | Xk,i = −1).

Note that for k ∈ {1, 2, . . . ,m}
Ck(0) =

∏m
i=1 pk,i,∏2m−2

t=0 Ck

(
βt ∏k−1

s=1 γs

)
=

∏
x∈F2m \{0}Ck(x)

=
∏m

i=1 p2m−1−1
k,i p̄2m−1

k,i .

From Theorem 1, all the symbols in the zigzag cycle are
eventually correct if and only if

∏s
k=1(Ck(0))2m−1 >

∏2m−2
t=0

∏s
k=1 Ck

(
βt x

∏k−1
j=1 γ j

)
⇐⇒ ∏s

k=1
∏m

i=1 p2m−1
k,i >

∏s
k=1

∏m
i=1 p2m−1−1

k,i p̄2m−1

k,i

⇐⇒ ∑s
k=1

∑m
i=1 log pk,i

p̄k,i
> 0.

Hence, we see that all the symbols in the zigzag cycle code
are eventually correct if and only if

∑s
k=1

∑m
i=1 Zk,i(Yk,i) > 0.

Similarly, no symbols in the zigzag cycle code are eventu-
ally correct if and only if

∑s
k=1

∑m
i=1 Zk,i(Yk,i) ≤ 0. �

Let Pzz(s,m, a) be the symbol error rate for the zigzag
cycle code defined over F2m of symbol code length s with
cycle parameter β � Hm over the MBIOS channel char-
acterized by its L-density [8] a under BP decoding. Let
a1, a2, . . . , ak denote independent and identically distributed
random variables with density function a. Define Z(k) :=∑k

i=1 ai. From Corollary 2, we have the symbol error rate of
zigzag cycle code is given by

Pzz(s,m, a) = Pr(Z(sm) ≤ 0). (4)

Figure 3 shows the symbol error rate for the zigzag cy-
cle code defined over F24 of symbol code length 3 with the
cycle parameter β � H4 over the AWGN channel. The cir-
cles in Fig. 3 show the simulation results. The solid curve
shows the theoretical symbol error rate. For the AWGN
channel with channel variance σ, the theoretical symbol er-
ror rate of the zigzag cycle codes defined over F24 of sym-
bol code length s with cycle parameter β � Hm is given by

Q(
√

sm
σ

), where Q(y) := 1√
2π

∫ ∞
y

exp[− x2

2 ]dx. From Fig. 3,

Fig. 3 Symbol error rate of zigzag cycle codes defined over F24 of sym-
bol code length 3 with cycle parameter β � H4. The solid curve shows the
theoretical symbol error rate. The circles show the simulation result.

we see that the theoretical result gives the symbol error rate
of zigzag cycle code with the cycle parameter β � Hm.

4. Analysis of Error Floors

In the previous section, we give a condition for the decoding
error to the zigzag cycle code. By using this result, in this
section, we give lower bounds of the symbol error rates in
the error floors of non-binary LDPC code ensembles over
the MBIOS channel under BP decoding.

4.1 Code Ensemble

A stopping set S is a set of variable nodes such that all the
neighbors of S are connected to S at least twice. Since the
stopping sets depend only on the structure of a Tanner graph,
we are able to extend the definition of the stopping set for
the non-binary LDPC codes. Obviously, the zigzag cycles
form stopping sets.

It is empirically known that (2, k)-regular non-binary
LDPC codes exhibit good decoding performance among
other LDPC codes for q ≥ 64 [4]. However, this is not
the case for q < 64. In this paper, we consider the irreg-
ular non-binary LDPC codes which contain variable nodes
of degree two for the generality of code ensemble. Note
that the (2,k)-regular non-binary LDPC code ensembles are
included in the irregular non-binary LDPC code ensembles
which contain variable nodes of degree two.

From Discussion 1, we see that the cycle parameter β
is an important parameter to improve the decoding error rate
in the error floor. The following definition gives expurgated
ensembles parameterized by the cycle parameter β.

Definition 1: Let LDPC(N,m, λ, ρ) denote LDPC code en-
semble of symbol code length N over F2m defined by Tan-
ner graphs with a degree distribution pair (λ, ρ) [8] and la-
bels of edges chosen elements from F2m \ {0} with equal
probability. Let sg ∈ N \ {1} be an expurgation parameter.
The expurgated ensemble ELDPC(N,m, λ, ρ, sg) consists of
the subset of codes in LDPC(N,m, λ, ρ) which contain no
stopping sets of weight in {1, . . . , sg − 1}. Note that the
expurgated ensemble ELDPC(N,m, λ, ρ, 1) is equivalent to
LDPC(N,m, λ, ρ). Let sc ∈ N be an expurgation parame-
ter for labeling in the Tanner graph, where sg < sc. Define
expurgated ensemble E(N,m, λ, ρ, sg, sc,H) as the subset of
codes in ELDPC(N,m, λ, ρ, sg) which contain no zigzag cy-
cles of weight in {sg, . . . , sc − 1} with the cycle parameter
β ∈ H .

Recall that α is a primitive element of F2m . De-
fine Hm as in Eq. (3). Note that the expurgated ensem-
ble constructed by our proposed method and the cycle
cancellation is represented as E(N,m, λ, ρ, sg, sc,Hm) and
E(N,m, λ, ρ, sg, sc, {1}), respectively.

4.2 Analysis of Error Floors

In this section, we analyze the symbol error rates in the error
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floors for the expurgated ensembles defined in Definition 1.
The following theorem gives a lower bound on the symbol
error rate under BP decoding for the expurgated ensemble
E(N,m, λ, ρ, sg, sc,Hm).

Theorem 2: Let Ps(E, a) be the symbol error rate of the ex-
purgated ensemble E(N,m, λ, ρ, sg, sc,Hm) over the MBIOS
channel characterized by its L-density a under BP decod-
ing. Let a1, a2, . . . , ak denote independent and identically
distributed random variables with density function a. De-
fine Z(k) :=

∑k
i=1 ai and μ := λ′(0)ρ′(1). Let B(a) be the

Battacharyya functional, i.e., B(a) :=
∫

a(x)e−x/2dx. The
symbol error rate for sufficiently large N and B(a) < μ−1/m

is bounded by

Ps(E, a) ≥ 1
2N

∞∑
s=sg

μsPr
(
Z(sm) ≤ 0

)
+ o

( 1
N

)
. (5)

proof: Let P̃(E, a) be the symbol rate rate caused
by the zigzag cycles under BP decoding over the
MBIOS channel with characterized by its L-density a for
E(N,m, λ, ρ, sg, sc,H). Hence, we have

Ps(E, a) ≥ P̃(E, a).

We will consider P̃(E, a). Let P̃1(E, a, s) be the symbol
error rate caused by the zigzag cycles of weight s under BP
decoding over the MBIOS channel with characterized by its
L-density a for E(N,m, λ, ρ, sg, sc,H). For the expurgated
ensemble E(N,m, λ, ρ, sg, sc,H), the weights of zigzag cy-
cles are at least sg. By [8, C. 37], if we fix a finite W and let
N tend to infinity, the zigzag cycles of weight at most W be-
come asymptotically non-overlapping with high probability
[8, p. 155]. Hence, for fixed W and sufficiently large N we
have

P̃(E, a) ≥
W∑

s=sg

P̃1(E, a, s).

From Corollary 2, no symbols in zigzag cycle codes of
weight s with cycle parameter β � Hm are eventually cor-
rect if Z(sm) ≤ 0. The symbol error rate for the zigzag cycle
codes with β � Hm is smaller than that for the zigzag cycle
codes with β ∈ Hm. Hence, no symbols in the zigzag cycle
of weight s are eventually correct, with probability at least
Pr(Z(sm) ≤ 0). By [8, C. 37] for fixed W, the expected num-
ber of zigzag cycles of weight s ≤ W is given by μs/2s, for
sufficiently large N. Each zigzag cycle of weight s causes a
symbol error probability s/N. Hence, for sufficiently large
N, we have for s ∈ {sg, . . . , sc − 1}

P̃1(E, a, s) =
1

2N
μsPr

(
Z(sm) ≤ 0

)
+ o

( 1
N

)
, (6)

and for s ∈ {sc, . . . ,W}

P̃1(E, a, s) ≥ 1
2N
μsPr

(
Z(sm) ≤ 0

)
+ o

( 1
N

)
, (7)

Thus, we have

Ps(E, a) ≥ P̃(E, a) ≥ 1
2N

W∑
s=sg

μsPr
(
Z(sm) ≤ 0

)
+ o

( 1
N

)
.

Note that Pr(Z(sm) ≤ 0) ≤ {
B(a)

}sm. Hence, we have

1
2N

W∑
s=sg

μsPr
(
Z(sm) ≤ 0

)
≤ 1

2N

W∑
s=sg

(
μ
{
B(a)

}m
)s
.

Thus, if B(a) < μ−
1
m and W tends to infinity, the left hand

side of this inequality converges. �

Corollary 3: Define

ε∗m :=

⎧⎪⎪⎨⎪⎪⎩
1
2 for μ ≤ 1,
1−
√

1−μ−2/m

2 for μ > 1.

For the BSC with crossover probability ε and ε < ε∗m, the
symbol error rate is lower bounded by

Ps(E, a)

≥ 1
2N

∞∑
s=sc

μs
∑

i≤ms/2

(
ms
i

)
εms−i(1 − ε)i + o

( 1
N

)
. (8)

Corollary 4: Define

σ∗m :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ for μ ≤ 1,√

m
2 ln μ for μ > 1.

For the AWGN channel with channel variance σ2 and σ <
σ∗m, the symbol error rate is lower bounded by

Ps(E, a) ≥ 1
2N

∞∑
s=sg

μsQ

( √
sm
σ

)
+ o

(
1
N

)
, (9)

where Q(y) = 1√
2π

∫ ∞
y

exp[− x2

2 ]dx.

4.3 Simulation Results

In this section, we compare the symbol error rate in the error
floor for the expurgated ensemble constructed by our pro-
posed method with (i) that constructed by the cycle cancel-
lation [5] in Sects. 4.3.1 and 4.3.2, and (ii) that constructed
by the combination of the cycle cancellation and the stop-
ping set mitigation [5] in Sect. 4.3.3.

4.3.1 AWGN Channel Case

First, we show the cases for regular non-binary LDPC code
ensembles. From Table 1, we have H4 = {1, α3, α5, α6, α9,
α10, α12}. Figures 4 and 5 compare the symbol error rates
for the expurgated ensembles constructed by our proposed
method E(315, 4, x, x2, 1, 8,H4) and E(1200, 4, x, x2, 2, 11,
H4) with the expurgated ensembles constructed by the cycle
cancellation [5] E(315, 4, x, x2, 1, 8, {1}) and E(1200, 4, x,
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Fig. 4 Comparison of the symbol error rate for the expurgated en-
semble E(315, 4, x, x2, 1, 8,H4) (proposed) with the expurgated ensemble
E(315, 4, x, x2, 1, 8, {1}) (cycle cancellation). The lower bound is given by
Eq. (9).

Fig. 5 Comparison of the symbol error rate for the expurgated ensem-
ble E(1200, 4, x, x2, 2, 11,H4) (proposed) with the expurgated ensemble
E(1200, 4, x, x2, 2, 11, {1}) (cycle cancellation). The lower bound is given
by Eq. (9).

Fig. 6 Comparison of the symbol error rate for the expurgated en-
semble E(1000, 4, λ, ρ, 1, 8,H4) (proposed) with the expurgated ensemble
E(1000, 4, λ, ρ, 1, 8, {1}) (cycle cancellation), where λ = 0.5x + 0.5x2 and
ρ = 0.5x3 + 0.5x5. The lower bound is given by Eq. (9).

x2, 2, 11, {1}), respectively. The lower bounds on symbol er-
ror rate are given by Eq. (9). Figure 5 is the case for sg > 1.
We see that our proposed codes exhibit better decoding per-
formance than codes designed by the cycle cancellation. We
see that Theorem 2 gives tight lower bounds for the symbol
error rates to the expurgated ensembles constructed by our
proposed method in the error floor.

Next, we show the case for an irregular non-binary
LDPC code ensemble. As an example, we employ the de-
gree distribution pair λ = 0.5x + 0.5x2 and ρ = 0.5x3 +

0.5x5. Figure 6 compares the symbol error rate for the

Fig. 7 Comparison of the symbol error rate for the expurgated en-
semble E(315, 6, x, x2, 1, 8,H6) (proposed) with the expurgated ensemble
E(315, 6, x, x2, 1, 8, {1}) (cycle cancellation). The lower bound is given by
Eq. (8).

Fig. 8 Comparison of the symbol error rate for the expurgated ensem-
ble E(1200, 4, x, x2, 2, 11,H4) (proposed) with the expurgated ensemble
E(1200, 4, x, x2, 2, 11, {1}) (cycle cancellation). The lower bound is given
by Eq. (8).

expurgated ensemble constructed by our proposed method
E(1000, 4, λ, ρ, 1, 8,H4) with the expurgated ensemble con-
structed by the cycle cancellation. E(1000, 4, λ, ρ, 1, 8, {1}).
The lower bounds on the symbol error rates are given by
Eq. (9). We see that our proposed codes exhibit better de-
coding performance than codes designed by the cycle can-
cellation. We see that Theorem 2 gives a tight lower bounds
for the symbol error rates to the expurgated ensembles con-
structed by our proposed method in the error floor.

4.3.2 BSC Case

Figures 7 and 8 compare the symbol error rates for the ex-
purgated ensembles constructed by our proposed method
E(315, 6, x, x2, 1, 8,H6) and E(1200, 4, x, x2, 2, 11,H4) with
the expurgated ensembles constructed by the cycle cancella-
tion E(315, 6, x, x2, 1, 8, {1}) and E(1200, 4, x, x2, 2, 11, {1}),
respectively. The lower bounds for the symbol error rates
are given by Eq. (8). Figure 8 is the case for sg > 1. From
Figs. 7 and 8, we see that our proposed codes exhibit bet-
ter decoding performance than codes designed by the cycle
cancellation.

We see that Theorem 2 gives tight lower bounds for the
symbol error rates to the expurgated ensembles constructed
by our proposed method in the error floor.
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Fig. 9 Comparison of the symbol error rate for the codes designed by
the proposed method and the codes designed by the method which uses
both the cycle cancellation and the stopping set mitigation. The base code
ensemble is ELDPC(60, 4, x, x3, 3). The solid curve (proposed) shows the
symbol error rate for the codes designed by our proposed method. The
dotted curve (ssm) shows the symbol error rate for the codes designed by
the method which uses both the cycle cancellation and the stopping set
mitigation.

4.3.3 Comparison with Stopping Set Mitigation

In [5], Poulliat et al. also proposed the stopping set mitiga-
tion. To lower the error floor further, Poulliat et al. proposed
to use both the cycle cancellation and the stopping set miti-
gation. We refer to the Hamming weight of the binary repre-
sented non-binary codeword as binary weight. The stopping
set mitigation is a method to design the labels on the edges,
which are connecting to the nodes in the smallest stopping
set, so that the binary minimum distance in the stopping sets
takes the maximum value.

Figure 9 compares the symbol error rate for the codes
designed by the proposed method and the codes designed
by the method which uses both the cycle cancellation and
the stopping set mitigation [5]. In order to make the stop-
ping set mitigation work effectively, we employ as the base
codes the codes whose Tanner graphs include many small
stopping sets. For example, this condition is met by the code
ensemble ELDPC(60, 4, x, x3, 3). By applying our proposed
method and the method which uses both the cycle cancel-
lation and stopping set mitigation, we get resulting codes
which are the subsets of ELDPC(60, 4, x, x3, 3). We see
Fig. 9 that the symbol error rate for our proposed method
is lower than that for the method using both the cycle can-
cellation and the stopping set mitigation.

5. Conclusion

In this paper, we provide a necessary and sufficient condi-
tion for successful decoding of zigzag cycle codes over the
MBIOS channel by the BP decoder. Based on this condi-
tion, we propose a design method of selecting labels so as to
eliminate small zigzag cycles which degrade decoding per-
formance for non-binary LDPC codes. Finally, we show
lower bounds of the error floors for the expurgated LDPC
code ensembles over the MBIOS channel.
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