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The remaining life prediction is a crucial part of the systematization of maintenance 
planning whereby it can be used to estimate the life span of the bridge. A large number of 
reinforced concrete (RC) bridges in Japan have aged, requiring increased maintenance, 
decision making concerning whether to maintain or to demolish the aged bridges. The 
results of the remaining life prediction can be used to assist in the decision making of 
whether to carry out maintenance works such as repairs/strengthening or demolish works 
of the aged bridges. 

The reinforced concrete (RC) structures, such as bridges which are exposed to the 
environment become highly influenced by environmental conditions, causing reduction in 
their remaining life. High level of carbon dioxide in the environment resulting from high 
traffic volume leads to carbonation of concrete, which causes deterioration of concrete. 
Chloride attack should be considered as another factor of deterioration if the location of 
the bridge is near the sea. Either carbonation or chloride attack or both can lead to 
corrosion of the reinforcing bars.  

This thesis introduces the details of how to predict the remaining life of an aged RC-T 
girder bridge based on carbonation test. Carbonation test is one of the field tests required 
to determine the performance of concrete from material point of view which is affected by 
an environmental condition. Moreover, to establish a method to predict the remaining life 
based on the chloride ion and carbonation tests results of the concrete cores and the cross-
section cutting-off girders. A flowchart is presented for the proposed method to predict the 
remaining life of an RC bridge based on the extent of deterioration due to carbonation and 
chloride attack. The demolition of the SK Bridge provided a good opportunity to obtain 
many types of useful information from an existing bridge.  

The concrete cores were tested for carbonation and chloride ions whereas the cross-
section cutting-off girders were tested for carbonation only. The results of the concrete 
cores investigation show that the main factor in the deterioration of the bridge is 
carbonation and that chloride ion attack has also contributed to the deterioration of the 
bridge. The end of the service life was defined as the point at which the cumulative 
amount of steel corrosion reached a critical value of Q = 75 mg/cm2 which is obtained by 
BREX system.  
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1.1 Background 

Lifetime management for civil infrastructure is becoming the most important issue in 

sustainable development of societies around world. In advanced countries the benefits of 

long-term management of civil infrastructure has been recognized by the experts of the 

discipline. Integrated lifetime management and maintenance planning includes continuous 

condition assessment, predictive modeling of performance, maintenance planning and 

decision-making procedures regarding maintenance action [1]. 

Remaining life prediction is a crucial part of the systematization for maintenance 

planning because it can be used to estimate the end of bridge's life. The reinforced 

concrete (RC) structures such as bridges are exposed to the environment are strongly 

influenced by environmental conditions during their service life resulting in reducing of 

the remaining life. High level of carbon dioxide as a result of the high traffic volume leads 

to carbonation process. Chloride attack should be considered as another factor of 

deterioration if the location of the bridge is near the sea. Either carbonation or chloride 

attack or both can lead to corrosion of the reinforcing bar. The most serious deterioration 

mechanisms that occur in RC bridges are associated with corrosion [2].  

An integrated lifetime management system for civil infrastructure in Japan, 

particularly bridges, becomes crucial based on the large number of aged bridges that need 

to gain attention. If the remaining life of an aged bridge is to be maximized, it is necessary 

to regularly assess the structural performance of the bridge. It is important to make 

appropriate safety evaluations and remaining life predictions [3~5]. 

The Bridge Management System (J-BMS), which integrated with a Bridge Rating 

EXpert system (BREX), is one of the useful methods to evaluate the remaining life 

prediction of an existing concrete bridge [6,7]. However, the BREX system result needs to 

be verified. To verify this system, concrete cores were extracted from some parts of the 

target bridge to conduct the carbonation and chloride ion tests. The results of carbonation 

and chloride ion tests will be used to assume the remaining life prediction [8,9].  
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In this thesis, remaining life prediction is obtained from the results of chloride ion and 

carbonation test of concrete cores and cross-section cutting-off girders of SK Bridge. 

Remaining life prediction estimates are from concrete cores which represent the local 

evaluation results of the girders. In contrast, remaining life prediction based on cross-

sections cutting-off girders represents the entire girders.  

1.2 Significance 

The remaining life prediction is important as a part of the bridge maintenance system. 

An aged bridge requires increased maintenance and requires that decisions be made 

concerning whether to maintain or to demolish these aged bridges. Remaining life 

prediction is one of the methods to estimate the end of life of the bridge and moreover to 

determine how best to make these decisions.  

This thesis establish the new method to predict the remaining life of an aged bridge 

using the limited number of concrete cores, and verify the remaining life prediction results 

using cross-section cutting-off girders.  

The performance of the concrete based on concrete cores represents performance of 

the locations from which the cores are extracted. Carbonation and chloride ion tests were 

conducted on concrete cores. Remaining life prediction results from concrete cores 

represent the local evaluation results of the girders. In contrast, remaining life prediction 

based on cross-sections cutting-off girders represent the entire girders. This thesis 

describes the first known application of carbonation testing to cross-section cutting-off 

girders of the bridge.  

Remaining life of both concrete cores and cross-section cutting-off girders was 

calculated using some equations according to the method to predict the remaining life, 

with the requirement that the cumulative amount of steel corrosion (QCR) equal 75 mg/cm2. 

This value is similar with the remaining life as indicated by the BREX system in the 

evaluation of deterioration of the bridge due to chloride ion attack [4,5]. 
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Therefore the possibilities will be open to identifying the relationships between local 

evaluation results (were obtained by examining concrete cores), overall structural 

evaluation results (were obtained from the BREX system), and the entire evaluation results 

(were obtained by examining cross-section cutting-off girders). By expanding the scope of 

an evaluation from local to the entire structure of the bridge, it may also be possible to 

enhance testing efficiency by reducing the total number of the concrete cores which are 

necessary for testing. 

1.3 Objectives 

The main objectives of this study are:

1. Develop a method for estimating the remaining life prediction of an aged bridge 

through the chloride ion and carbonation tests on concrete cores and cross-section 

cutting-off girders. 

2. Determine the main deterioration factor of an aged bridge, whether due to chloride 

attack or carbonation, through the chloride ion and carbonation tests on concrete 

cores and cross-section cutting-off girders. 

3. Estimate the remaining life and service life prediction from concrete cores and cross-

section cutting-off girder. The service life prediction is restricted by a criterion value 

i.e. cumulative amount of steel corrosion Q = 75 mg/cm2, which is obtain by the 

BREX system. 

4. Verify the remaining life prediction results of the concrete cores with cross-section 

cutting-off girders.    
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1.4 Organization 

The flow of this study is developing of a method for assuming the remaining life 

prediction as shown in Fig. 1.1. The organization of this thesis is based on and presented 

by the flow analyses. This thesis consists of six chapters. The outline of the thesis can be 

summarized as follow: 

Chapter 1 deals with the introduction of this thesis. The background of this study, 

significance, objectives and organization of the thesis are discussed. 

Chapter 2 reviews the literature related to remaining life, service life, and the influencing 

factors, i.e., carbonation, chloride ion and corrosion. 

Chapter 3 discusses the implementation of chloride ion and carbonation tests on concrete 

cores to define the main deterioration factor of an aged bridge. Moreover it explains a 

method for estimating the remaining life prediction of an aged bridge through the chloride 

ion and carbonation tests on concrete cores. 

Chapter 4 deals with the chloride ion and carbonation tests which have been applied to 

cross-section cutting-off girders. This study describes the first known application of 

carbonation testing to cross-sections cutting-off girders from a bridge. The main 

deterioration factors, whether due to chloride attack or carbonation were also discussed. 

Finally, estimate the remaining life prediction using the method that is developed in 

Chapter 3.  

Chapter 5 studies the verification of remaining life prediction results of concrete cores 

using cross-section cutting-off girders of an aged bridge. According to the results of 

investigation on concrete cores (in Chapter 3) and cross-section cutting-off girders (in 

Chapter 4), the remaining life predictions were compared. Furthermore, it will verify how 

local evaluation results based on concrete cores tests can be used for the evaluation of the 

entire span based on cross-section cutting-off girders. 

Chapter 6 concludes the objectives of the thesis have been achieved. A few suggestions 

concerning further studies necessary in this field are provided. 
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2.1 Introduction 

This chapter deals with a literature review according to remaining life prediction 

method of reinforced concrete (RC) structure based on carbonation test. First, this chapter 

explains the definition of remaining life and service life predictions then defines how this 

is used to estimate the remaining life prediction, i.e. carbonation, chloride ion content and 

corrosion. 

2.2 Remaining life prediction 

Remaining life prediction is a period between the time of investigation (elapsed time) 

and the end of service life.  The remaining life prediction for a concrete structure in cases 

where section loss is due to steel corrosion is expressed as the number of years of life 

expected if the section loss is left uncorrected [1].

The Bridge Management System (J-BMS), which integrated with a Bridge Rating 

EXpert system (BREX), is one of the useful methods to assume the remaining life 

prediction of an existing concrete bridge [2,3]. BREX is a system that is designed for 

evaluating the present performance of the target bridge. The outputs are load-carrying 

capability and durability of each structure member. The input data for rating the concrete 

bridge are the technical specification of the target bridge, environmental conditions, traffic 

volume, and other subjective information that can be obtained through detailed visual 

inspection results. Evaluation results were thus obtained as the soundness level of the 

remaining life. This information processing approach makes it possible to deal with cases 

involving a large number of influencing factors.  

In the remaining life prediction by the BREX system, deterioration curves are applied 

to structural soundness scores obtained on the basis of visual inspection results. It has also 

been reported that in the prediction method by the BREX system, the cumulative amount 

of steel corrosion in the last year of the predicted remaining life was Q = 75 mg/cm2 [4,5].
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There are few opinions regarding the definition of service life. Ref. [6] defined the 

service life of RC structures as a period of a structure that can meet the performance 

requirement based on defined repair and maintenance. According to Ref. [7] service life of 

the RC or PC structures at the initial time of steel corrosion was started when the 

carbonation occurred in a concrete surface until protection's steel disappeared. Ref. [8] 

considered that the service life is a period during initial use until the depassivation of the 

reinforcing bar occurred. Ref. [9] defined the end of service life was reached when 

depassivation of the reinforcement had occurred due to carbonation. Ref. [10] considers 

that the service life only corresponds to corrosion initiation stages, it is assumed when the 

chloride content at the level of reinforcement has reached a critical value of 1.2 kg/m3. Ref. 

[11] defined the residual service life is time remaining for the crack to increase on the 

surface of concrete caused by expansion of corrosion. 

Service life of RC structures has been divided into several stages by previous 

researchers. Fig. 2.1 shows the Tutti's model for predicting deterioration. This model 

divided the service life of RC structures into two stages, i.e., initiation and propagation 

stages [12]. Initiation stage is the time required for carbon dioxide or chloride ion to reach 

the reinforcing bar and start the initiation corrosion. Propagation stage is the time between 

the initiation corrosion and the initiation cracking has occurred. 

Fig. 2.1 Service life model by Tutti (1982) 
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Fig. 2.2 shows the model of service life prediction by Verma. In this model, service 

life prediction of RC structures is also divided into two stages, initiation and propagation 

stages, similar to Tutti's model. Initiation stage is the time period required for the initiation 

corrosion either when the carbonation depth is reached in the concrete cover or the 

chloride ion has reached the threshold value. Propagation stage is the time period between 

initiation and failure of the structures [13]. 

According to Ahmad's model, the state of corrosion process has three stages, depassivation, 

propagation and final state, as shown in Fig. 2.3. Depassivation is the loss of oxide 

(passive layer) on the reinforcing bar which protects the reinforcing bar from corrosion.  

Depassivation was initially formed when the concrete became acidic due to the carbon 

dioxide or chloride penetration. The process of depassivation takes an initiation period, 

which is the time from initial condition (construction) to the time due to initiation of 

corrosion (depassivation). The propagation phase starts from the time of depassivation to 

the final stage. During the final stage, the corrosion will lead to cracking and spalling of 

concrete cover [11]. The critical time, tcr, can be define as follows:  

Fig. 2.2 Service life model by Verma (2013) 
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(2.1) 

Where tcr is critical time in years, tp is time from construction to the time of initial 

corrosion (depassivation) in years and tcor is time from the depassivation to the final stage 

in years, when it has reached the critical time. Therefore, the service life can be estimated 

to the critical time as given by Eq. 2.1. 

Based a conceptual model illustrated in Fig. 2.4 which shows a two-stage service life 

model. The service life (ts) can be defined as the total time to reach a given corrosion 

induced damage level, which is the sum of the corrosion-initiation time (ti) and the 

propagation time (tp) corresponding to a given level of damage, as follows: 

(2.2) 

Several different estimates of service life can be obtained using this conceptual model. 

In Ref. [14] the end of service life is defined as the time to onset of spalling.  

corpcr ttt

Fig. 2.3 Stages of reinforcing bar corrosion model by Ahmad (2002) 

pis ttt
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2.3 Carbonation 

Deterioration of concrete in service may be the result of physical and chemical process 

such as attack by chloride and carbon dioxide. In reinforced concrete (RC) the most 

deterioration mechanisms are due to corrosion of the reinforcing bar [15]. Reinforcing bar 

in the RC structures are protected from corrosion by a thin oxide layer that form in 

reinforcing bar's surface due to the high alkalinity of concrete. The water void in the 

concrete has the pH value in the range of 12.5-13.5. The high pH level makes the steel 

reinforcement passive and protects it from corrosion. Corrosion may start when this 

passivation layer is destroyed, either by chloride penetration or due to a reduction in the 

pH value of concrete below a value of 9. Such a reduction in alkalinity is the result of 

carbonation of the Ca(OH2) in the concrete mass, i.e., its reaction with the atmospheric 

CO2 that diffuses through the pores of concrete. The corrosion of steel reinforcement 

induces cracking and then peeling of concrete cover [16].  

Carbonation in structures means the carbonation reaction of carbon dioxide and 

cement hydrate as result of the penetration of the carbon dioxide of the air into concrete 

[17]. It is generally recognized that the environment is an important factor in the 

Fig. 2.4 Schematic description of the service life model 
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carbonation process [18,19]. The reaction of carbon dioxide and cement hydrate as 

follows: 

Ca(OH)2 + CO2 3 + H2O                             (2.3) 

Deterioration due to carbonation and steel corrosion during the incubation stage, 

propagation stage, acceleration stage and deterioration stage is shown in Fig. 2.5 and 

Table 2.1 as follow: 

Stage of 
deterioration Definition Factor determining 

the stage

Initiation stage  
Until the depth of carbonation reaches 
the limit state for the occurrence of 
corrosion  

Rate of carbonation  

Propagation stage  From the initiation of corrosion steel 
until cracking due to corrosion  Rate of steel corrosion  

Acceleration stage  Stage in which steel corrodes at a high 
rate due to cracking due to corrosion  

Rate of corrosion of 
steel with cracks  

Deterioration stage  
Stage in which load bearing capacity is 
reduced considerably due to increased 
steel corrosion  

Figure 2.5 Conceptual view of deterioration progress due to carbonation 

Table 2.1 Definition of deterioration stages due to carbonation 
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The performance of degradation of an RC structure due to carbonation is examined 

when the carbonation depth reaches the limit of the initial steel corrosion as the initiation 

stage. The propagation stage is restricted by the initiation of corrosion to cracking due to 

carbonation.  In the acceleration stage and the deterioration stage, factors determining 

these stages are the rates of corrosion of the steel due to cracking [20]. 

The model of carbonation of concrete is mostly based on Fick's first law of diffusion. 

The amount of carbon dioxide (CO2) which penetrates the concrete due the CO2 gradient 

between the outer air of environment and the content in the concrete can be balanced:  

(2.4) 

where dm is mass increment of CO2 transported by diffusion during the time interval dt in 

kgCO2, D is CO2 diffusion coefficient of carbonated concrete in m2/s, A is surface area 

considered in m2, c1 is CO2 concentration of environment in kgCO2/m3, c2 is CO2

concentration at the carbonation front in the concrete in kgCO2/m3, dt is time interval in 

second, and x is depth of carbonation in meter.   

At the carbonation front, CO2 reacts with alkalis of the pore water solution to form 

various types of carbonates phases, which can be balanced: 

(2.5) 

where dm is mass of CO2 transported required for the complete carbonation of the depth 

increment dx in kgCO2, a is CO2 binding capacity of non-carbonated concrete in 

kgCO2/m3, A is surface area considered in m2, and dx is depth increment in meter.   

The balances of the diffusion and the reaction process can be combined: 

(2.6) 

dt
x

ccADdm ... 21

dxAadm ..

dtcc
a
Ddxx ).(. 21
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Assuming D, a and (c1 c2) to be neither time-dependent nor depth-dependent, integration 

leads to: 

(2.7) 

Where t* is the exposure time. 

Combining the single concentrations c1 and c2 into the concentration gradient Cs and 

solving for penetration depth gives: 

(2.8) 

Combining the material parameters D and a with the environmental parameter Cs and 

expressing the exposure time t* as the different in age t and the moment once the surface 

is exposed to CO2 finally equates to a simple square root of time (root t) approach 

including only the carbonation rate K, which can be determined by structure investigations 

without further knowledge of the environmental condition or material properties.  

(2.9) 

texp = 0, then: 

(2.10) 

Where K is the carbonation rate in mm/s0.5, t is the age of concrete at time of inspection in 

second, texp is the time until surface is exposed to CO2 in second. 

Usually the time until exposure texp equal with zero as it is negligibly short compared 

to the service life. With the data of the age of structure and the exposure time (elapsed 

time), the equation can be solved for K [21].   

The previous model is similar to the predicting the rate of carbonation progress 

according to Ref. [20]. The predicting of the carbonation rate is important to estimate the 

time length of initiation stage. In the case where the carbonation depth has been measured 

on the period of carbonation, the rate of carbonation can be obtained by the root t law. 

*
21

2 ).(.2 tcc
a
Dx

t
a

CDtx s
c ...2)(

)()( expttKtxc
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 It confirmed that the carbonation depth is in proportion of the square root of the 

period of carbonation, as follows:

(2.11) 

Where d(t) is carbonation depth in mm at time t in year, A is carbonation rate in 

mm/year0.5, and t is the period of carbonation in year. 

2.4 Chloride attack 

Performance degradation of RC structure due to corrosion initiated by chloride attack 

is a severe problem, particularly on RC structure which is located near the sea. The 

chloride ion ingresses in the concrete cover and lead to the initiation of corrosion [22]. 

Corrosion can be initiated by changes to the passivating alkaline to the acidic environment 

with the presence of aggressive compound such as chloride [23]. Chloride attack in RC 

structure due to corrosion leads cracking and spalling in the concrete cover. 

Deterioration due to chloride attack and steel corrosion progresses during the initiation 

stage, propagation stage, acceleration stage and deterioration stage as shown in Table 2.2 

and Fig. 2.6 Initiation stage was reached when the chloride ion concentration on the 

surface of steel reaches the marginal concentration for the occurrence of corrosion is 1.2 

kg/cm3 in accordance with Ref. [24].  

In order to evaluate the accurate estimation of the length of initiation stage, the 

predicting of chloride ion diffusion should be conducted. Fick's second law in of diffusion 

equation Eq. (2.12) is one of the methods to obtain the predicting of chloride ion 

distribution. Eq. (2.13) is a solution of Eq. (2.12) which is obtained on the basis of 

assumption that the surface chloride ion content is constant. Eq. (2.13) has been generally 

used for analyzing the rate of chloride penetration. 

t
tdA )(
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The chloride ion content in Eq. (2.13) is the total chloride amount per unit volume of 

concrete. The chloride ion diffusion coefficient in Eq. (2.13) is referred as an apparent 

diffusion coefficient. 

(2.12) 

Stage of 
deterioration Definition Factor determining the 

stage

Initiation stage  Until the chloride ion concentration on 
the surface of steel reaches the marginal 
concentration for the occurrence of 
corrosion  

Diffusion of chloride ion 
Initially contained chloride 
ion concentration 

Propagation stage  From the initiation of corrosion steel 
until cracking due to corrosion  Rate of steel corrosion  

Acceleration stage  Stage in which steel corrodes at a high 
rate due to cracking due to corrosion  

Rate of corrosion of steel 
with cracks  Deterioration stage  Stage in which load bearing capacity is 

reduced considerably due to increased 
steel corrosion  

Fig. 2.6 Conceptual view of deterioration progress due to chloride ion 

Table 2.2 Definition of deterioration stages due to chloride ion 

2

2

x
CD

t
C

c
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Where C is chloride ion concentration in the liquid phase in kg/m3, Dc is chloride 

diffusion coefficient in cm2/year, x is depth from concrete surface in meter, and t is time in 

year. 

(2.13) 

Where C(x,t) is the chloride ion content in depth x at time t in kg/m3, C0 is the chloride 

ion content at the concrete surface in kg/m3, Dap is the apparent diffusion coefficient of the 

chloride ion in cm2/year, and Ci(x,0) is the initial chloride ion content in concrete in kg/m3 . 

The surface chloride ion content and apparent chloride ion diffusion coefficient were 

predicted by fitting curve of data of the distribution of chloride ion content using Eq. 

(2.13). The apparent diffusion coefficient of chloride ion can be obtained from the 

distribution of chloride ion content in accordance with JSCE-G 573 "Measurement method 

for distribution of total chloride ion in concrete structure [25]. 

2.5 Corrosion 

The most serious deterioration mechanisms that occur in RC bridges are associated 

with corrosion. The direct effects of corrosion are loss of reinforcing bar cross-section, 

increase in reinforcing bar diameter as the result of corrosion product, also change in the 

mechanical characteristics of the reinforcing bar. Effects of corrosion in reinforcing bar in 

RC are divided into two aspects, on the reinforcing bar itself and on the concrete [26]. 

  The effect of corrosion in structural behavior of RC mainly is reduced strength as the 

result of loss of section of reinforcing bar. General corrosion is caused by ingress of 

chloride ion or carbonation of concrete [21]. It is generally associated with forming of rust 

steel oxides, which make an expansion of reinforcing bar as it corrodes, leads to cracking 

and eventually spalling of the concrete cover. The residual cross-sectional area Ares can be 

evaluated by Eq. (2.14): 

                      (2.14) 

)0,()
)(2
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Where A0 is original cross-sectional area in mm2, Acorr is loss in cross-sectional area in 

mm2, bd is original reinforcing bar diameter in mm and p(t) is corrosion penetration depth 

in mm2. 

Fig. 2.7 shows the corrosion process due to chloride ion or carbonation in concrete. 

The corrosion process of reinforcing bar begins with the rust expanding on the surface of 

the reinforcing bar and causing cracks near the steel. Over time, the corrosion formed and 

causes more severe cracking until the concrete cover breaks away from the reinforcing bar, 

eventually causing spalling. 

Based on Ref. [20] to simplify the method of measurement of reinforcing bar corrosion, 

the state of reinforcing bar corrosion is graded for evaluation it was shown in Table 2.3. 

Grade of corrosion State of steel 

I Mild scale. Thin and compact rust layer all over the steel. No rust 
adhesion on concrete surface. 

II Swelling rust exist at some locations but it spotty in small area 

III 
No lack of section can be visually recognized. Swelling rust 
exists all around the reinforcing bar or throughout the length of 
reinforcing bar 

IV Lack of section of reinforcing bar 

Fig. 2.7 Corrosion process 

Table 2.3 Grade of corrosion and state of steel 
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Table 2.4 can be used as a guideline of condition steel corrosion when the monitoring 

of steel corrosion is conducted by using a non-destructive test and electrochemical 

methods which were applied to corrosion caused by carbonation (in fewer cases) and 

chloride ion attack. In cases where the performance of structure could not evaluated 

directly from the state of concrete and steel, the defect of the concrete structure appearance 

provides data for performance evaluation. Table 2.4 shows the grade of structural 

appearance and stage of deterioration due to carbonation and chloride ion attack. 

Grade of structural 
appearance 

State of deteriotation 

Due to carbonation Due to chloride ion attack 

I-1 (initiation stage) 

No defect found in appearance.  
Remaining concrete cover is at 
or more than the limit of rush 
development 

No defect found in 
appearance.  
The marginal chloride ion 
concentration for the 
occurrence of corrosion has 
not been exceeded. 

I-2 (propagation 
stage) 

No defect found in appearance.  
Remaining concrete cover is 
below more than the limit of 
rush development 

No defect found in 
appearance.  
The marginal chloride ion 
concentration for the 
occurrence of corrosion has 
been exceeded. 
Corrosion initiates. 

II-1 (first half of 
acceleration stage) 

Cracking occurs due to 
corrosion 

Cracking occurs due to 
corrosion. Leaching of rush is 
observed. 

II-2 (second half of 
acceleration stage) 

With the progress of cracking 
due to corrosion, peeling or 
spalling is found. No lack of 
section of steel. 

Numerous cracks occur due to 
corrosion. Leaching of rush is 
observed. Partial peeling or 
spalling is found. The 
corrosion amount of steel 
increases. 

III (deterioration 
stage) 

Peeling or spalling are found 
with cracking due to corrosion. 
Lack of section of steel. 

Numerous cracks occur due to 
corrosion. Crack width is 
large. Leaching of rush is 
observed. Peeling or spalling 
are found. Great displacement 
and deflection are observed. 

Table 2.4 Grade of structural appearance corrosion and stage of deterioration 
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Corrosion is generally caused by penetration of chloride ion or carbonation of concrete. 

Steel corrosion due to carbonation accelerates the degradation of RC structures 

performance. Corrosion will occur as the pH values drop around the steel. It is difficult to 

define an indicator for determining the initiation of corrosion, so previous researches 

identified that the initiation of corrosion using the thickness of remaining concrete cover. 

The thickness of remaining concrete cover is the difference between the thickness of 

concrete cover and the carbonation depth. It can be seen in Fig. 2.8. 

As the limit of corrosion, previous researches concluded that corrosion occurs as the 

thickness of remaining concrete cover falls below 10 mm. The thickness of concrete cover 

can be obtained using the carbonation depth and the thickness of concrete cover 

measurements as the results of carbonation test. 

In order to determine the volume of corroded steel which cause cracks due to corrosion 

caused by carbonation, electrolytic test should be conducted. The result of electrolytic 

testing can be used for reference because the corrosion progresses uniformly around the 

reinforcing bar during the test were conducted. The volume of corroded steel as the 

reference of the initiation of crack due to corrosion is approximately 10 mg/cm2.  

Fig. 2.8 Remaining concrete cover 
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Corrosion due to chloride attack was also occurred as pH values drop around the steel. 

If the chloride ion exists and exceeded the value of chloride ion content in the reinforcing 

bar, the passivated layer will be destroy and the reinforcing bar will start corroding. The 

initiation corrosion due to chloride ion attack can be determined as the marginal chloride 

ion concentration. The value of marginal chloride is 1.2 kg/cm3 in accordance with Ref. 

[24].   

Corrosion rate is the speed at which any steel deteriorates in a specific environment. 

The speed or rate of deterioration depends on the environmental conditions and the type 

and condition of steel under reference. Environmental condition in this case is chloride 

and carbon dioxide. Ref. [27,28] introduced the equation to estimate steel corrosion rate 

which involving several factors that affect the corrosion rate as (1) chloride ion content at 

reinforcing bar location, (2) remaining concrete cover which is obtained by the thickness 

of concrete cover minus carbonation depth, (3) moisture content in the surface of concrete 

cover, and (4) temperature. Steel corrosion rate V is calculated using Eq. (2.15) if the 

remaining concrete cover at time t is greater than 10 mm, or using Eq. (2.16) if the 

remaining concrete cover is not greater than 10 mm. 

(2.15) 

(2.16) 

Where V is the steel corrosion rate in mg/cm2/year, Cl is the chloride ion content at the 

reinforcement location in kg/m3, C is the remaining concrete cover in mm, W is the surface 

moisture content of concrete in percent, and k is the correction at temperature tmp in , 

which can be calculated by Eq. (2.17) as follows:  

(2.17) 

The results of Steel corrosion rate V will be used to estimate the remaining life or the 

service life which is restricted by the cumulative amount of steel corrosion Q as the end of 

service life. Table 2.5 shows the review of several literatures relating to this study.  
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In recent years, the lifetime management of civil infrastructure has become one of the 

important issues in sustainable development in world societies. Civil infrastructure such as 

a bridge needs to be regularly assessed to make sure the continuity of the life of the bridge. 

Many efforts are now under way to ensure the longevity of the existing bridge through the 

improvement of the structural performance such as structural safety, remaining life, and so 

on, and management activities based on effective maintenance plans. An integrated 

lifetime management system for civil infrastructure in Japan, particularly bridges, 

becomes crucial based on the large number of aged bridges that need to gain attention. If 

the remaining life of an aged bridge is to be maximized, it is necessary to assess the 

structural performance of the bridge regularly. On the other hand, making a decision to 

remove an aged bridge is also an option. In order to make such a decision, it is important 

to make appropriate safety evaluation and remaining life prediction [1,2,3]. 

The Bridge Management System (J-BMS), which integrated with a Bridge Rating 

EXpert system (BREX), is one of the useful methods to assume the remaining life 

prediction of an existing concrete bridge [4,5]. BREX is a system that is designed for 

evaluating the present performance of the target bridge. The outputs are load-carrying 

capability and durability of each structure member. The input data for rating the concrete 

bridge are the technical specification of the target bridge, environmental conditions, traffic 

volume, and other subjective information that can be obtained through detailed visual 

inspection results. Evaluation results were thus obtained as the soundness level of the 

remaining life. This information processing approach makes it possible to deal with cases 

involving a large number of influencing factors. However, the BREX system result needs 

to be verified. To verify this system, concrete cores were extracted from some parts of the 

target bridge to conduct the carbonation and chloride ion tests. The result of carbonation 

and chloride ion tests will be used to assume the remaining life prediction. 
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This study aimed to evaluate the deterioration process of concrete cores extracted from 

an aged bridge (approximately 72 years old in service). Considering the most dominant 

factor affecting the deterioration of the bridge, between carbonation and chloride attack, 

based on the location of the bridge. In particular, propose a method of remaining life 

prediction in a case where the deterioration factor is caused mainly by chloride ion and the 

deterioration factor is caused mainly by carbonation. Furthermore, considering how local 

evaluation results based on concrete cores tests can be used for the evaluation of the entire 

span. 

The investigation was conducted by extracting concrete cores from an aged bridge (SK 

Bridge). SK Bridge had been constructed on the main route of the National Highway No. 2. 

Carbonation is considered to be the main deterioration factor because of the heavy traffic 

volume. There is also concern about the possibility of chloride attack because SK Bridge 

is located within 1 km upstream from the mouth of the river pouring into the Seto Inland 

Sea; it can be seen in Fig. 3.1.  

SK Bridge is a T-girder concrete bridge. It has eight spans, and each span consists of 

five girders. Table 3.1 shows the geographical location of SK-Bridge. The bridge has a 

total length of 168 m and a width of 11 m. SK Bridge had been completed in 1942. After 

approximately 70 years in service, the bridge had been demolished in 2013. The general 

view of SK Bridge can be seen in Fig. 3.2.  

Fig. 3.1 Geographical location of SK-Bridge
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The research purpose is to evaluate the deterioration factor of concrete cores extracted 

from SK Bridge. Also to develop a method for predicting the remaining life of the bridge 

in case where the deterioration factor is caused mainly by chloride ion and deterioration 

factor is caused mainly by carbonation. 

This study was started by extracting concrete cores from SK Bridge. Then concrete 

cores were analyzed to consider the main deterioration factors, either carbonation or 

chloride attack. The results of concrete cores analysis will be used to decide which the 

most dominant factor affected the deterioration of the bridge, between carbonation and 

chloride attack. Finally, the remaining life can be predicted by choosing the prediction 

flow related to the main factor of deterioration.  

The steps in the flow is possible to make clear the relationship between the concrete 

core test results and the evaluation results obtained from the BREX system based on visual 

inspection results. Based on visual inspection, the reinforcing bars have been found 

corroded. The thickness of concrete cover is approximately 40~45 mm. In the flow, the 

remaining life prediction on the end of service life was calculated using equations with the 

requirement that the cumulative amount of steel corrosion (QCR) equal with 75 mg/cm2. 

This value is similar with the remaining life as indicated by the BREX system in the 

evaluation of deterioration of the bridge due to chloride ion attack [1,6]. 

Fig. 3.2 General view of SK Bridge
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Moreover it will open the possibilities to identifying the relationship between local 

evaluation results were obtained by examining concrete cores extracted from the bridge 

and overall structural evaluation results were obtained from the BREX system or making 

effective use of different evaluation methods for assessment. By expanding the scope of an 

evaluation from local to the entire structure of the bridge, it may also be possible to 

enhance testing efficiency by reducing the total number of concrete cores which are 

necessary for testing. 

In this study, concrete cores were extracted from Girder 1 to Girder 5 of Spans 1 and 3 

(Fig. 3.3), which are the inspected girder spans. The coring locations are shown in Fig. 3.4 

for Spans 1 and 3 with black dots ( ) and white dots ( ). The concrete cores were 

extracted from four regions roughly demarcated according to cross beam locations in each 

span. It was assumed, for purpose of this study that each core shows the average state of 

internal deterioration in each region [7]. The extracted concrete cores were examined for 

chloride ion content test called C-series that is identified as and C . The numbers of C-

series are 11 specimens for Span 1 and 12 specimens for Span 3. M-series were examined 

for carbonation test that is identified as and M . The numbers of M-series are 15 

specimens for Span 1 and 20 specimens for Span 3 as shown in Table 3.1. Fig. 3.5 shows 

extraction of the concrete cores and concrete cores specimen is shown in Fig. 3.6.  

The concrete cores of C-series were analyzed for chloride ion content. The concrete 

cores at depth between 0 and 105 mm in depth direction were divided into seven pieces (at 

interval of 15 mm) and, thus, prepared for analyzing the chloride ion content. The 

depth at which the initial chloride ion content could be determined. In the test method, the 

total amount of chloride ion contained in the powder sample which is extracted with nitric 

acid, and its mass rate to the sample was measured. The chloride ion content test 

equipment can be seen in Fig. 3.7. 
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Fig. 3.4 Concrete cores locations  

:  concrete coring location for chloride ion investigation 
:  concrete coring location for carbonation depth investigation

Fig. 3.3 Spans 1 and 3 of SK Bridge
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No Girder

Number of specimen

C-series M-series

Span 1 Span 3 Span 1 Span 3

1 G1 3 3 3 4

2 G2 1 2 3 4

3 G3 3 3 3 4

4 G4 1 2 3 4

5 G5 3 3 2 4

The concrete cores of the M-series were analyzed for carbonation test. The 

measurement of carbonation depth was conducted in accordance with JIS A 1152: 2011; 

Method for Measuring Carbonation Depth of Concrete. The carbonation test is most 

commonly carried out by spraying 1% phenolphthalein solution on the surface of the 

concrete cores (see Fig. 3.8). The carbonation depth was assessed using 1% 

phenolphthalein solution, the indicator that appears pink (or purple) in contact with 

alkaline concrete. Colored area is detected alkaline area, defined as the healthy concrete 

area (un-carbonated). Colorless area is defined as the carbonation area. To avoid further 

carbonation on the cutting-off surface, the carbonation test was carried out immediately 

within 30 minutes after cleaning. Carbonation depth is the distance between the concrete 

cover surface and the boundary between colored and uncolored areas. 

Fig. 3.5 Extraction concrete cores Fig. 3.6 Concrete cores specimen

Table 3.1 Number of concrete cores 
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The initial chloride ion and surface chloride ion contents were predicted by fitting 

curve of data. Based on the analysis results obtained previously, the apparent diffusion 

coefficient of chloride ion was calculated from the following equation: 

        (3.1) 

Where C(x,t) is the chloride ion content in depth x at time t, C0 is the chloride ion content 

at the concrete surface, Dap is the apparent diffusion coefficient of the chloride ions, and 

Ci(x,0) is the initial chloride ion content in concrete. 

The results related to the chloride ion test of concrete cores (C-series) divided into two 

cases, in order to get the values of the chloride ion content. The 1st case, the chloride ion 

content distribution of concrete cores can be classified into three types as shown in Fig. 

3.9 [8,9]. Table 3.2 shows the chloride ion content distribution types of different cores 

corresponding to Fig. 3.9. Type (a) is affected by small chloride ion content and 

carbonation, type (b) is affected by large chloride ion content and carbonation, and type 

(c) is affected by only chloride ion content. In this case, as it can be seen from the chloride 

ion content, distributions are shown in Fig. 3.9. Eq. (3.1) is difficult to apply to the type (a) 

Fig. 3.7 Chloride ion test Fig. 3.8 Carbonation test
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and type (b) distributions are shown in Table 3.2. Therefore, Table 3.2 shows the 

calculated values of C0, Dap, and Ci(x,0) for only type (c) distribution. 

The unknown parameters corresponding to Eq. (3.1) were determined by using the 

respective analysis results obtained from the divided concrete cores specimens. The 

thickness concrete cover was approximately 40 mm on average from cross-sectional 

observation. The analysis results, therefore, obtained from corresponding depth (30 45 

mm) in concrete cores were used as chloride ion contents at the reinforcement locations. 

Table 3.2 shows the calculated values regarding the chloride ion content analysis only 

in Span 3. The number of concrete cores is 12 specimens. The number of type (c) 

specimens is 8 specimens. Therefore, the calculation of remaining life prediction in 1st

case is only performed on concrete cores C-series type (c).  

Surface 
chloride ion 

content

Apparent 
diffusion 

coefficient                           
x 10-8

Initial chloride 
ion content

Chloride ion 
content at 

reinforcement 
location

C 0 D ap C i (x, 0) C(x,t)
(kg/m3) (cm2/s) (kg/m3) (kg/m3)

C1131 - - - 0.58 (a)
C1134 1.00 0.08 0.30 0.32 (c)
C1138 - - - 0.53 (a)
C2031 - - - 0.90 (a)
C2136 - - - 1.36 (b)
C3134 1.10 0.45 0.10 0.46 (c)
C3138 0.85 0.10 0.15 0.21 (c)
C4031 0.85 0.50 0.15 0.48 (c)
C4136 1.32 0.05 0.12 0.14 (c)
C5031 1.27 0.04 0.22 0.21 (c)
C5134 1.32 0.04 0.12 0.16 (c)
C5038 1.30 0.03 0.30 0.30 (c)

4

5

Girder 
No.

Core 
specimen 

No.

Types 
shown in 
Figure 3.9

1

2

3

Table 3.2 Results of chloride ion content analysis (1st case)
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Fig. 3.9 Types of chloride ion content distribution in Span 3
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The 2nd case, the influence of carbonation is considered on the calculation of the 

chloride ion contents results. The Table 3.3 shows the calculated values of C0, Dap, and 

Ci(x,0). The thickness concrete cover was approximately 45 mm on average from cross-

sectional observation. The analysis results also obtained from corresponding depth (30 45 

mm) in concrete cores were used as chloride ion contents at the reinforcement locations. 

Table 3.3 shows the calculated values regarding the chloride ion content analysis both 

in Spans 1 and 3. The number of concrete cores is 23 specimens. Therefore, the 

calculation of remaining life prediction in 2nd case is performed on all of concrete cores 

C-series. Fig. 3.10 shows the chloride ion content distribution of Span 1. 

Surface 
chloride ion 

content

Apparent 
diffusion 

coefficient                           
x 10-8

Initial chloride 
ion content

Chloride ion 
content at 

reinforcement 
location

C 0 D ap C i (x, 0) C(x,t)

(kg/m3) (cm2/s) (kg/m3) (kg/m3)
C1014 1.10 0.60 0.60 1.00
C1111 0.60 0.50 0.40 0.60
C1115 0.80 0.60 0.60 0.90

2 C2113 2.30 0.90 0.65 1.80
C3011 2.50 1.80 0.90 2.50
C3015 2.60 1.80 0.50 2.10
C3114 3.80 1.50 0.80 3.00

4 C4113 3.10 0.40 0.40 1.30
C5111 3.90 1.80 0.80 3.20
C5114 1.80 1.80 0.60 1.70
C5115 1.40 1.80 0.30 1.20
C1131 0.70 0.40 0.40 0.60
C1134 0.70 0.08 0.30 0.30
C1138 0.90 0.40 0.30 0.55
C2031 2.50 0.40 0.50 1.20
C2136 1.90 0.40 0.65 1.20
C3134 1.00 0.40 0.10 0.40
C3138 0.70 0.10 0.15 0.18
C4031 0.90 0.08 0.18 0.20
C4136 1.20 0.05 0.12 0.12
C5031 1.30 0.05 0.20 0.20
C5134 1.10 0.05 0.12 0.12
C5038 0.80 0.05 0.30 0.30

Core 
specimen 

No.

1

2

Span 1

Span 3

Span                          
No.

3

4

5

1

3

5

Girder 
No.

Table 3.3 Results of chloride ion content analysis (2nd case)
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The results of the chloride ion content analysis in the investigated main girders (2nd

case) almost half of the number is relatively higher than the requirement of the critical 

chloride ion content for steel corrosion is assigned by 1.2 kg/m3. The chloride ion test 

results reveal some specimens which are affected by large chloride ion content and also 

carbonation. 

Fig. 3.10 Chloride ion content distributions in Span 1



  42 

Table 3.4 shows the results of carbonation depth measurement for concrete cores (M-

series). The carbonation depth results shown in Table 3.4 are the average of the values 

obtained from 10-point measurements, maximum values, standard deviations, and 

carbonation rate values corresponding to the average.

M1112 65.6 72 5.3 7.84
M1113 39.6 48 8.7 4.73
M1116 59.4 65 4.6 7.10
M2014 46.8 52 3.3 5.59
M2111 51.2 60 7.5 6.12
M2115 41.6 50 5.3 4.97
M3013 74.4 77 2.4 8.89
M3112 45.6 54 6.1 5.45
M3116 55.0 62 3.7 6.57
M4014 68.0 85 12.9 8.13
M4111 125.4 135 6.8 14.99
M4115 76.8 82 4.6 9.18
M5112 45.0 52 8.0 5.38
M5113 52.2 70 16.0 6.24
M5116 56.0 62 4.6 6.69
M1132 54.0 60 5.7 6.45
M1033 52.6 55 2.1 6.29
M1137 40.2 47 5.9 4.80
M1039 52.4 56 1.9 6.26
M2132 43.6 48 4.3 5.21
M2134 58.2 56 4.2 6.96
M2037 53.8 57 3.1 6.43
M2039 79.8 90 8.5 9.54
M3032 11.2 15 4.5 1.34
M3133 44.6 80 27.0 5.33
M3136 46.0 55 5.3 5.50
M3039 40.8 58 14.5 4.88
M4032 58.4 77 9.6 6.98
M4134 51.4 55 2.9 6.14
M4137 42.2 47 3.7 5.04
M4039 51.6 70 12.1 6.17
M5032 56.8 62 2.8 6.79
M5133 37.4 48 7.0 4.47
M5136 60.6 90 19.9 7.24
M5139 43.8 55 9.5 5.24

Carbonation rate  
(mm/year0.5)

Girder No.

1

1

Carbonation depth (mm)
Span No.

Core 
specimen 

No.
Standard 
deviation

Average 
value

Maximum 
value

3

4

5

Span 3

Span 1

2

3

4

5

2

Table 3.4 Results of carbonation depth measurement
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Based on Ref [10], the critical chloride ion content for steel corrosion is assigned by 1.2 

kg/m3. As shown in Table 3.2, the average chloride ion content in the investigated main 

girders (1st case) of 0.47 kg/m3 which is lower than the critical chloride ion content for 

steel corrosion (1.2 kg/m3). It can be seen in Table 3.2 that only 1 of the 12 points on the 

bridge older than 70 years at which measurements were taken showed a value slightly 

higher than the critical chloride ion content for steel corrosion. Table 3.3 shows the 

average chloride ion content in the investigated main girders (2nd case) of 1.07 kg/m3

which is also lower than the requirement. However, the average chloride ion content in 2nd

case is relatively higher than the 1st case. The chloride ion test results reveal some 

specimens which are affected by large chloride ion content and carbonation. 

 Table 3.4 shows the result of carbonation depth measurements. As shown in Table 3.4, 

the average value of the carbonation depth in the main girder is 49 mm, which is greater 

than the thickness of concrete cover. This means that the requirement of the remaining 

(un-carbonated) concrete cover (10 mm) [10], which is an indicator of the degree of 

influence of carbonation, was considerably exceeded. In nearly half of the concrete cores 

investigated, the maximum value of carbonation depth was reaching 60 mm or greater, 

which is considerably greater than the concrete cover. 

To take the concrete coring environment into consideration, the water samples taken 

near the SK Bridge (the target bridge) and the estuary were analyzed. This water analysis 

revealed that the Cl  and the Na+ contents of the water near the SK Bridge were lower than 

those of the seawater in the estuary, and that they were also lower than half the Cl and 

Na+ contents of the water near KT Bridge [11], which was deemed to have deteriorated 

because of chloride attack. 

From these results, it was concluded that the deterioration of the SK Bridge was caused 

mainly by carbonation in view of the fact that the chloride ion contents at the 

reinforcement locations had not reached the critical chloride ion content for steel corrosion 

and that the carbonation depth was considerably greater than the thickness concrete cover. 
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The remaining life prediction for a concrete structure in a case where section loss due 

to steel corrosion is expressed as the number of years of life expected if the section loss is 

left uncorrected [12]. Therefore, the remaining life R can be expressed using the life 

expectancy X (years) and the period of service N (years) as Eq. (3.2). 

Remaining life (R) Life expectancy (X) Period of service (N)  (3.2) 

The method for predicting the service life is available for calculation based on 

allowable stress, remaining reinforcing bar cross-sectional percentage, and limited state 

design method. In this paper, however, the remaining life was assessed in terms of the 

progress of deterioration over time due to carbonation, which is a deterioration factor 

identified in Section 3.5.3. It is assumed that the deterioration due to carbonation provides 

an environment that affects factors contributing to corrosion of the reinforcing bar, such as 

chloride ion and moisture content. Attention is paid on the cumulative amount of steel 

corrosion due to the spread of carbonation, and the service life of a bridge is deemed to 

exceed when the cumulative amount of steel corrosion reaches the critical value. The 

remaining life then was predicted by using Eq. (3.2).  

Figure 3.11 shows the flowchart of the remaining life prediction methods in the case 

where deterioration is caused by chloride attack and the case where it is caused by 

carbonation (area shown by a dotted line). Based on Fig. 3.11, it can be seen that when the 

remaining concrete cover is 10 mm or less, it can be recognized that the main deterioration 

factor is carbonation. In order to predict the life expectancy X in year, it is necessary to 

have three types of information: carbonation depth, cumulative amount of steel corrosion, 

and steel corrosion limit as the criterion for determining service life. 

The carbonation depth d(t) in mm at time t in year is calculated by using the 

carbonation rate coefficient A by Eq. (3.3). The changes in the carbonation depth over time 

are predicted in accordance with the     law and the carbonation rate coefficient A is 

calculated from the carbonation depth d(t) at time t by using the following equation:  
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Fig. 3.11 Flowchart of remaining life prediction 
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(3.3) 

To estimate steel corrosion, the steel corrosion rate V is calculated as follows: the steel 

corrosion rate V is calculated by using Eq. (3.4) if the remaining concrete cover (concrete 

cover  carbonation depth) at time t is greater than 10 mm, or using Eq. (3.5) if the 

remaining concrete cover is not greater than 10 mm [13,14]. 

(3.4) 

(3.5) 

Where V (mg/cm2/year) is the steel corrosion rate, Cl (kg/m3) is the chloride ion content at 

the reinforcement location, C (mm) is the remaining concrete cover, W (%) is the surface 

moisture content of concrete, and k is the correction at temperature tmp ( ), which can be 

calculated by Eq. (3.6) as follows: 

(3.6) 

The cumulative amount of corrosion Q(t) in Eq. (3.12) was obtained from the basic 

equation using Riemann Integral for the discreet data. The illustration is shown in Fig. 

3.12.  The basic equation of Riemann Integral as the sum of the areas of the rectangles is 

shown in Eq. (3.7) as follows:   

(3.7) 

t
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kClV )2.1(32.1

kWClClC
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Fig. 3.12 Illustration of the basic equation to calculate Q   
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Figure 3.12 shows that the steel corrosion rate V at time t equal with time step t, can be 

expressed using Eq. (3.8) for the midpoint value, as follows: 

(3.8) 

The Eq. (3.8) was substituted into Eq. (3.7) and the equation can be formed as Eq. (3.9) as 

follows: 

(3.9) 

The summation of Riemann integral over t= t, ..., x should be equal to Q(t) Q(0) as 

shown in Eqs. (3.10) and (3.11) as follows: 

 (3.10) 

(3.11) 

Hence, based on Ref. [14,15] the cumulative amount of steel corrosion Q(t) at time t 

can be calculated by Eq. (3.12) as follows: 

  (3.12) 

Where Q(0) can be calculated by Eq. (3.13) as 

    (3.13) 

Past studies [1,11] reported a simple calculation method using the incubation period 

and a method that defines the cumulative amount of steel corrosion as methods that can be 

used in the case where the main deterioration factor is chloride ions. In this paper, the 

remaining life R was calculated from Eq. (3.2) on the basis of the time t = t1 elapsed 

before the cumulative amount of steel corrosion calculated by using Eq. (3.12) reaches the 

cumulative amount of steel corrosion Q(t1) at which the service life is assumed to the end. 
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3.5.2 Remaining life prediction results 

It has been reported [17] that the criterion value Q of steel corrosion assumed for the 

purpose of the remaining life prediction ranges widely from 1 to 576 mg/cm2. In the 

remaining life prediction by the BREX system, deterioration curves are applied to 

structural soundness scores obtained on the basis of visual inspection results. It has also 

been reported [1,6] that in the prediction method by the BREX system, the cumulative 

amount of steel corrosion in the last year of the predicted remaining life was Q = 75 

mg/cm2. 

In this paper, therefore, the remaining life prediction was made both in the case where 

the criterion value Q is defined as the cumulative amount of steel corrosion of Q = 10 

mg/cm2, which is said to be the critical amount of corrosion for initial cracking due to 

carbonation [10], and the case where Q is defined as the cumulative amount of steel 

corrosion of Q = 75 mg/cm2, which is the same as the remaining life indicated by the 

BREX system in the evaluation of deterioration due to chloride ions shown in Fig. 3.12. 

For 1st case, this prediction was made for the eight concrete cores (C-series) shown in 

Table 3.2 for which the apparent diffusion coefficient of chloride ions was determined. For 

the carbonation rate, the results for M-series concrete cores extracted from the nearest 

locations shown in Fig. 3.4 were used. The values used for concrete cover, tmp in Eq. 

(3.6) and W in Eq. (3.5), were 40 mm, 16°C (mean temperature), and 4% [18,19], 

respectively. 

Table 3.5 shows the results of the remaining life prediction in 1st case where the 

calculation of remaining life only in the concrete cores C-series type (c) in Span 3. As 

shown in Table 3.5, the time before reaching the critical amount of corrosion for initial 

cracking due to carbonation [17] is 37.5 years on average, and approximately 40 years 

later, the cumulative amount of steel corrosion specified as the criterion value indicating 

the end of the remaining life is reached. Furthermore, the average value of the remaining 

life prediction is 7.9 years on average, and it can be seen that the remaining life prediction 

varies between -13 years and 40 years, depending on the coring locations. 

Figure 3.13 show the plotted of remaining life prediction based on the location of 

extracted concrete cores on Span 3 (1st case). In this figure, the result of remaining life 

prediction in the actual bridge were varies significantly, however, the average value of the 
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remaining life prediction was used to estimate the remaining life prediction of the entire 

span 3. Based on the remaining life prediction method that have been established in this 

thesis, the remaining life prediction of SK Bridge is 7.9 years, means the end the life of the 

SK Bridge is 77.9 years.  

Q=10mg/cm2

1 C1134 27 62 -8 -9
C3134 38 69 -1 3
C3138 46 92 22 21
C4031 24 57 -13 -15
C4136 44 95 25 21
C5031 28 62 -8 -6
C5134 54 110 40 38
C5038 39 76 6 9

37.5 77.9 7.9 7.8

Q=75 mg/cm2

Average (years)

Girder 
No.

Core 
Specimen 

No.
Remaining life R 

(years)
Cracking limit 

(years)
Predicted life X 

(years)

3

4

5

Result of                  
Eq. (12)                         
(years)

Table 3.5 Results of remaining life prediction (1st case)

Fig. 3.13 Plotted of remaining life prediction based on the location  
of extracted concrete cores in Span 3 (1st case) 
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The results of the remaining life prediction of Spans 1 and 3 are shown in Table 3.6. 

The time before reaching the critical amount of corrosion for initial cracking is 33.0 years 

and 49.8 years in average, respectively.  

Q = 10 mg/cm2

C1014 24 42 -30 -29
C1111 60 87 15 16
C1115 29 49 -23 -23

2 C2113 42 55 -17 -16
C3011 38 50 -22 -21
C3015 19 30 -42 -41
C3114 29 38 -34 -33

4 C4113 24 41 -31 -30
C5111 32 49 -23 -22
C5114 34 48 -24 -25
C5115 32 49 -23 -23

33.0 48.9 -23.1 -22.5

C1131 36 61 -11 -11
C1134 38 73 1 1
C1138 61 89 17 18
C2031 51 69 -3 -3
C2136 34 52 -20 -20
C3134 52 85 13 13
C3138 63 110 38 39
C4031 35 74 2 2
C4136 62 114 42 41
C5031 36 75 3 3
C5134 76 132 60 60
C5038 53 91 19 19

49.8 85.4 13.4 13.5

Result of                  
Eq. (12)                         
(years)

SPAN 1

Q = 75 mg/cm2

Cracking limit 
(years)

Remaining life R 
(years)

Predicted life X 
(years)

Girder 
No.

Core 
Specimen 

No.

5

Average (years)

Average (years)

1

3

5

SPAN 3

1

2

3

4

Table 3.6 Results of remaining life prediction (2nd case)
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There is relatively significant difference in the calculation of the life expectancy. In 

Span 1, the cumulative amount of steel corrosion indicating the end of the remaining life is 

reached on 48.9 years in average. That means the age of the bridge is shorter than the 

period of service (72 years) when the investigation was conducted. On the other hand, the 

life expectancy of Span 3 reached 85.4 years in average. There are about 23 years left until 

the end of the remaining life is reached. The average value of the remaining life prediction 

is -23.1 years in Span 1 which means the end of life of the bridge has been exceeded. In 

the Span 3, the average value of the remaining life prediction is 13.4 years on average. 

From Table 3.6, it can be seen that the remaining life prediction varies between -42 years 

and 60 years, depending on the location of extracting the concrete cores. 

Figure 3.14 show the plotted of remaining life prediction based on the location of 

extracted concrete cores on Span 1 (2nd case). In this figure, the result of remaining life 

prediction in the actual bridge were varies significantly, The remaining life prediction of 

SK Bridge is -23.1 years, means the end the life of the SK Bridge is 48.9 years.  

The plotted of remaining life prediction based on the location of extracted concrete 

cores on Span 3 (2nd case) is shown in Fig. 3.15. The result of remaining life prediction in 

the actual bridge were also varies significantly. The remaining life prediction of SK 

Bridge is 13.4 years, means the end the life of the SK Bridge is 85.4 years.  

The comparison of the results of predicted life of concrete cores between 1st case and 

2nd case can be seen in Fig. 3.16. According to the time of investigation equal with 72 

years, the aged of Span 3 (1st case) and Span 3 (2nd case) both are more than 72 years, so 

the remaining life prediction of both are positive value. On the other hand the remaining 

prediction of Span 1 (2nd case) is negative value, meaning the Span 1 have already reached 

the end of life before the time of investigation.  
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Fig. 3.14 Plotted of remaining life prediction based on the location  
of extracted concrete cores in Span 1 (2nd case) 

Fig. 3.15 Plotted of remaining life prediction based on the location  
of extracted concrete cores in Span 3 (2nd case) 
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3.5.3 Discussion 

In the remaining life prediction shown in Table 3.5, the cumulative amount of steel 

corrosion of 75 mg/cm2, which is similar with prediction obtained from the BREX system, 

was used in the case where the main deterioration factor is chloride attack [1,6]. However, 

because the setting value is thought to be important in the remaining life prediction, the 

degree of influence of assumed values of the cumulative amount of steel corrosion on the 

remaining life prediction results for each core was investigated. Table 3.7 shows the 

relationship between the assumed values of the cumulative amount of steel corrosion Q 

and life expectancy X. Hence, the relationship between the remaining life R and the 

cumulative amount of steel corrosion Q in 1st case can be represented by Eq. (3.14) as 

follows: 

(3.14) 707.13 403.0QR

Fig. 3.16 Comparison of predicted life of extracted concrete cores  
                          between 1st case and 2nd cases. 
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It can be seen from Fig. 3.17, if the criterion value Q is assumed to be 100 mg/cm2 (10 

times the critical amount of corrosion for initial cracking due to carbonation), the averages 

service life is 89 years from Eq. (3.14); therefore, the remaining life is 19 years. In this 

case, the remaining life is longer than the results shown in Table 3.5 by 10 years or more 

years. 

If the criterion value Q is assumed to be 50 mg/cm2 (five times the critical amount of 

corrosion for initial cracking due to carbonation), the remaining life is 6 years (i.e., a 

negative value). It is found, therefore, that although the criterion value Q was assumed to 

be 75 mg/cm2 in Table 3.5, it is necessary to consider the value of parameter Q through 

comparison with the results of the remaining life prediction by the BREX system, taking 

into consideration the fact that main deterioration factors may be different. 

The relationship between the assumed values of the cumulative amount of steel 

corrosion Q and life expectancy X in 2nd case for both Spans 1 and 3 is shown in Table 

3.9. The results are shown in Figs. 3.19 and 3.20. The relationship between the remaining 

life R and the cumulative amount of steel corrosion Q in 2nd case for each Spans 1 and 3 

can be represented by Eq. (3.15) and Eq. (3.16) as follows: 

(3.15) 

(3.16) 

There is the difference between 1st case and 2nd case in the period of service. In 1st

case, the period of service was assumed by 70 years and in 2nd case was assumed by 72 

years.   

Equations (3.15) and (3.16) show the remaining life prediction in Spans 1 and 3. From 

the equations it can be seen that the remaining life prediction of Span 1 (Eq. (3.15)) is 

lower than the remaining life prediction of Span 3 (Eq. (3.16)). The results are similar with 

the result of remaining life prediction that shown in Table 3.6.  

7236.17 241.0QR

7205.23 303.0QR
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The remaining life prediction shown in Table 3.5 is based on measured values obtained 

by using concrete cores. The moisture content in Eq. (3.5), however, was assumed to be 

4% in view of data such as exposure test results [18,19]. In the case of a bridge exposed to 

an environment with tidal action, the moisture content may be greater than 4%. The 

influence of the moisture content, therefore, on the remaining life was evaluated.  

Life expectancy X at moisture contents W of 4%, 6%, 8%, and 10% was calculated for 

the concrete cores shown in Table 3.8. The results are shown in Fig. 3.18. The relationship 

between the remaining life R and the moisture content W in 1st case was given by Eq. 

(3.17) as follows: 

 (3.17)

Figure 3.18 shows that the replacement moisture content W tends to affect the 

remaining life prediction. It can be seen from Fig. 3.18 that when the moisture content W

is low (approximately 5% or lower), it tends to greatly affect the remaining life. On the 

other hand, when the moisture content W is high (higher than approximately 5%), its 

influence on the remaining life is small. It can be concluded, therefore, that it is good 

practice to measure the moisture content of the concrete surface in advance if the 

remaining life is to be predicted with higher accuracy than can be achieved through 

concrete cores testing. 

The relationship between the assumed values of the replacement moisture content W 

and life expectancy X in 2nd case for both Spans 1 and 3 is shown in Table 3.10. The 

results are shown in Figs. 3.21 and 3.22. The relationship between the replacement 

moisture content W and the remaining life in 2nd case for each Spans 1 and 3 can be 

represented by Eq. (3.18) and Eq. (3.19) as follows: 

(3.18) 

(3.19) 

70205 746.0WR

72654.74 333.0WR

7246.125 403.0WR
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Q = 10 mg/cm2 Q = 50 mg/cm2 Q = 75 mg/cm2 Q = 100 mg/cm2 Q = 200 mg/cm2

1 C1134 29 52 62 71 96
C3134 39 60 69 77 102
C3138 48 78 92 103 103
C4031 26 45 53 60 81
C4136 47 80 95 107 139
C5031 27 52 64 74 97
C5134 57 93 110 124 163
C5038 39 63 76 88 123

39.0 65.4 77.6 88.0 113.0Average (years)

3

4

5

Cracking limit 
(years)

Predicted life 
X (years)

Predicted life 
X (years)

Predicted life 
X (years)

Predicted life 
X (years)

Girder 
No.

Core 
Specimen 

No.

1 C1134 62 43 36 32
C3134 69 52 45 41
C3138 92 63 52 48
C4031 53 39 32 28
C4136 95 62 51 46
C5031 64 43 34 30
C5134 110 72 61 56
C5038 76 53 44 41

77.6 53.4 44.4 40.3Average (years)

Moisture content (W)

3

4

5

4% 6% 8% 10%
Girder 

No.
Core Specimen 

No.

Fig. 3.17 Relationship between assumed  
                cumulative amount of steel  
                corrosion (Q) and life expectancy (X) 

Table 3.7 Results of assumed cumulative amount of steel corrosion (Q) and 
                life expectancy(X) (1st case)

Table 3.8 Results of Influence of moisture content (W) on life expectancy(X) (1st case)

Fig. 3.18 Influence of moisture content (W)
                on life expectancy(X)
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Q = 10 mg/cm2 Q = 50 mg/cm2 Q = 75 mg/cm2 Q = 100 mg/cm2 Q = 200 mg/cm2

C1014 24 36 42 47 47
C1111 60 78 87 96 125
C1115 29 42 49 55 75

2 C2113 42 51 55 60 75
C3011 38 47 50 54 66
C3015 19 26 30 33 44
C3114 29 35 38 41 52

4 C4113 24 36 41 45 58
C5111 32 46 49 52 63
C5114 34 43 48 52 67
C5115 32 43 49 54 71

33.0 43.9 48.9 53.5 67.5

C1131 36 53 61 69 93
C1134 38 62 73 83 114
C1138 61 80 89 98 126
C2031 51 63 69 75 93
C2136 34 46 52 57 73
C3134 52 75 85 94 122
C3138 63 95 110 123 162
C4031 35 62 74 84 111
C4136 62 97 114 127 166
C5031 36 63 75 85 113
C5134 76 113 132 147 191
C5038 53 78 91 103 140

49.8 73.9 85.4 95.4 125.3Average (years)

SPAN 3

SPAN 1

1

2

3

4

5

Average (years)

3

5

1

Cracking limit 
(years)

Predicted life 
X (years)

Predicted life 
X (years)

Predicted life 
X (years)

Predicted life 
X (years)

Girder 
No.

Core 
Specimen 

No.

Table 3.9 Results of assumed cumulative amount of steel corrosion (Q) and  
                 life expectancy(X) (2st case)
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4% 6% 8% 10%

C1014 42 34 30 21
C1111 87 72 66 63
C1115 49 39 35 32

2 C2113 55 49 46 44
C3011 50 46 45 44
C3015 30 25 23 22
C3114 38 35 33 32

4 C4113 41 34 30 27
C5111 49 46 45 44
C5114 48 42 39 37
C5115 49 41 37 35

49 42.1 39.0 36.5

C1131 53 48 42 39
C1134 62 53 45 41
C1138 80 73 67 64
C2031 63 60 56 54
C2136 46 43 39 37
C3134 75 65 57 53
C3138 95 78 67 63
C4031 62 51 42 37
C4136 97 76 65 60
C5031 63 52 42 38
C5134 113 91 80 75
C5038 78 67 58 55

73.9 63.1 55.0 51.3

Moisture content (W)

1

3

5

Average (years)

1

2

3

4

5

Average (years)

SPAN 1

SPAN 3

Girder 
No.

Core Specimen 
No.

Table 3.10 Results of Influence of moisture content (W) on life expectancy(X) (2st case)
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3.5.3.3 Simple method of the remaining life prediction 

In Table 3.5, X0 represent the service life in case where Q is assumed to be 10 mg/cm2

and let X1 represent the service life in case where Q is assumed to be 75 mg/cm2. The 

relationship between X0 and X1 can be found in Eq. (3.20) as follows: 

(3.20) 

Fig. 3.19 Relationship between assumed   
                cumulative amount of steel  
                corrosion (Q) and life expectancy (X) 

Fig. 3.20 Relationship between assumed  
                cumulative amount of steel  
                corrosion (Q) and life expectancy (X)

Fig. 3.21 Influence of moisture content (W)
                on life expectancy (X)

Fig. 3.22 Influence of moisture content (W)
on life expectancy (X)

01.2 XXl
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From Eq. (3.20), it can be seen that the service life at Q = 75 mg/cm2 is 2.1 times the 

time before the amount of steel corrosion reaches the critical amount of corrosion for 

initial cracking due to carbonation. The proportionality coefficient in Eq. (3.20), which 

varies depending on the cumulative amount of steel corrosion, determined for the 

remaining life prediction, was 1.7 when Q was 50 mg/cm2 and 2.4 when Q was 100 

mg/cm2. This indicates that the method of multiplying the time before the critical amount 

of corrosion for initial cracking due to carbonation by a coefficient can be used as a simple 

method of the remaining life prediction. 

The remaining life prediction shown in Table 3.5 is estimated based on local 

evaluation because it is based on a small number of the concrete cores evaluations. In this 

chapter, we consider how local evaluation results can be used for the evaluation of the 

entire span [1]. 

The remaining life R predicted from Table 3.5 is expressed as a cubic function of x 

and y as shown in Eq. (3.21) for the concrete coring location (x,y) shown in Fig. 3.4: 

(3.21) 

Because there are a total of nine unknown coefficients, a-i, these can be obtained by the 

least-square method. Then this is the numerical expression between the concrete coring 

locations and the remaining life prediction results. In the equation, x ranges from 0.5 to 4.5 

(x=0.5~4.5) from left to right in the longitudinal direction of the bridge, and y is the 

direction from Girder 1 to Girder 5 (y=1~5). 

The remaining life prediction results shown in Table 3.5 were substituted in Eq. (3.21), 

and the values of the coefficients were determined so that the differences were minimized. 

The coefficients thus determined were as follows: a = 136, b = 115, c = 29.7, d = 19.7, 

e = 11.75, f = 5.15, g = 1.52, h = 5.20, and i = 2.41. From the obtained cubic function, 

the predicted remaining life distribution contours were drawn as shown in Fig. 3.23. In Fig. 

3.23, a remaining life of 5 years or less is shown in red color region, and a remaining life 

of 15 years or more is shown in blue color region. As shown in Fig. 3.23, in all main 

girders, there are regions with a negative value of the remaining life on the east side. In 

223322 ixyyhxgyfxeydycxbxaR
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Girder 1 and Girder 2 located on downstream side, there are regions extending to the 

middle section of the girder where a negative value of the remaining life is shown. Thus, it 

has been found that the condition of the entire span of each girder can be visualized. 

Table 3.5 shows the predicted (calculated) remaining lives obtained from the 

approximation formula and the average values that take into account the remaining life 

distribution obtained by using the approximation formula. These indicate that the 

approximation results are close to the original prediction results and that the average value 

(7.8 years) that takes into account the remaining life distribution obtained by use of the 

approximation formula is close to the simply calculated averages of the concrete cores test 

results shown in Table 3. 

Figure 3.20 shows the results in the case where the main deterioration factor is 

carbonation. It can be seen from Table 3.2 that in the cases shown in Figs. 3.9(a) and 

3.9(b), the chloride ion content tends to be high at the reinforcement locations under the 

influence of carbonation. It can be inferred, therefore, that the remaining lives of both 

Girders 1 and 2, in which there are Type (a) and Type (b) distributions, are shorter than the 

predicted remaining lives given by the approximation formula shown in Fig. 3.9.  

Hence, it is thought likely that there will be large expenses of red color regions 

indicating a remaining life of 5 years or shorter. For a distribution of the type shown in 

Fig. 3.9(a), therefore, the chloride ion contents at the reinforcement locations, where there 

are no changes over time, were used for Cl in Eq.(3.5). For a distribution of the type 

shown in Fig. 3.9(b), the coefficients in Eq. (3.1) were determined from the chloride ion 

contents at deeper levels. The remaining life prediction results thus obtained were used in 

conjunction with the results shown in Table 3.5 to derive an approximation function.  The 

coefficients determined were as follows: a = 42.6, b = 84.3, c = 27.8, d = 75.1, e = 33.8, 

f = 3.68, g = 4.24, h = 2.52 and i = 1.83. On the basis of the equation with the 

coefficients, the remaining life distribution contours shown in Fig. 3.23 were obtained. 

The contours thus obtained show remaining lives of both Girders 1 and 2 that are shorter 

than the results shown in Fig. 3.23. In this case, the average of the remaining lives taking 

into account the distributions obtained by using the approximation formula was 7.8 years. 

From this fact, it can be concluded that if the concrete cores test results that make it 

possible to derive an approximation formula, such as Eq. (3.21), for simulating the 
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predicted remaining life with a certain level of accuracy are available, those results 

including distribution visualizations such as Figs. 3.23 and 3.24 can be used for evaluation 

of the entire spans. 

Fig. 3.23 In-span distribution of remaining life of main girder in case where only  
                Type (c) distribution in Fig. 3.9 is involved 
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This study considered a method of predicting the remaining life of an existing bridge 

based on the deterioration of concrete cores extracted from an aged bridge (about 72 years 

in service). The results of this study are summarized as follows: 

1. The results of chloride ion content distribution and carbonation depth tests of concrete 

cores extracted from the target bridge have found that carbonation is the main 

deterioration factor with the presence of corrosion in the reinforcing bar of the bridge. 

2. From the concrete cores tests, the carbonation rate coefficient and coefficient related to 

the apparent diffusion of chloride ions were determined, and a method of the remaining 

life prediction of the bridge in the case where deterioration is caused mainly by 

carbonation has been shown. 

3. The remaining life is affected by the cumulative amount of steel corrosion (Q), which 

is used as an end of life indicator. The remaining life prediction made by a cumulative 

amount of steel corrosion of Q = 75 mg/cm2 as an end of life indicator showed that the 

remaining life of the bridge is predicted approximately seven years. 

Fig. 3.24 In-span distribution of remaining life of main girder in case where both 
               Type (a) and Type (b) distribution in Fig. 3.9 are included 
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4. It has been found that the localized concrete cores test results can be used for entire 

span evaluation by visualized distribution results by use of an approximating function. 
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4.1 Introduction 

A large number of reinforced concrete (RC) bridges in Japan have become aged, 

requiring increased maintenance and requiring decisions be made concerning whether to 

maintain or to demolish these aged bridges. Remaining life prediction is a crucial part of 

the systematization of bridge maintenance.  

The remaining life of a bridge is highly influenced by environmental conditions. 

Bridges are typically exposed to a range of environmental conditions during their service 

lives. High levels of carbon dioxide as a result of high traffic volumes contribute to 

carbonation, which can result in significant deterioration and can have a significant effect 

on the service life of an RC bridge. Chloride ion attack should be considered as another 

factor in RC bridge deterioration if the bridge is located near the sea. Both carbonation and 

chloride ion attack can lead to corrosion of the reinforcing bars. The most serious 

deterioration mechanisms that occur in RC bridges are associated with corrosion.  

Various definitions of service life and remaining life have been proposed [1~6]. In this 

study, the end of the service life was defined as the point at which the total amount of steel 

corrosion due to carbonation and/or chloride ion attack reached a critical value. The 

remaining life was calculated as the elapsed time EL (in this case, 72 years) minus the 

service life SL in years [7]. The service life was divided into four stages: initiation, 

propagation, acceleration, and deterioration. The initiation stage is identified on the basis 

of the measured carbonation depth and the thickness of remaining concrete cover. The 

initiation of corrosion occurs when the thickness of remaining concrete cover falls below 

10 mm. The propagation stage can be defined as the stage in which cracking occurs due to 

corrosion. Cracking will be occurred if the cumulative amount of steel corrosion 

approximately 10 mg/cm2. [8] The acceleration and the deterioration stages are defined 

with respect to the critical value of the total amount of steel corrosion, which in this study 

was taken to be 75 mg/cm2  [9][10]. Fig. 4.1 shows a schematic illustration of service life 

prediction.
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Under ordinary circumstances, concrete cores are extracted from some parts of a 

bridge to evaluate the performance of the concrete. Many studies of carbonation in RC 

bridges have been conducted. However, this paper describes the first known application of 

carbonation testing to girder cross sections cut from a bridge. In addition, many studies 

have proposed methods to predict the service life of RC bridges. However, such methods 

are typically based on the deterioration due only to carbonation or only to chloride ion 

attack.  

This chapter proposes a method to predict the remaining life of an aged RC bridge 

based on the extent of deterioration due to carbonation and chloride ion attack. In addition, 

a flowchart for this remaining life prediction method is presented. The bridge considered 

in this study was demolished, and girders were removed from it. Cross-section cutting-off 

were cut from these girders, and these cross-sections cutting-off were examined to 

determine the thickness of the concrete cover and the carbonation depth of the sea sides, 

bottom sides, and mountain sides of the girders. The remaining prediction method makes 

use of the following types of information: (1) the thickness of the concrete cover, (2) the 

carbonation depth, (3) the carbonation rate, (4) the chloride ion content, (5) the average 

temperature, and (6) the surface moisture content. Information on items (4) (6) were 

obtained from tests on concrete cores. The service life predicted by the proposed method 

represents the predicted remaining life for the entire span of the bridge.  

Fig. 4.1 Schematic illustration of service life prediction 
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4.2 Target bridge and research purpose 

In this study, carbonation tests were conducted on cross-sections cutting-off girders of 

an aged bridge, SK Bridge, which is a T-girder RC bridge (Fig. 4.2). The bridge had eight 

spans, and each span consisted of five girders. The bridge had a total length of 168 m and 

a width of 11 m. Construction of SK Bridge was completed in 1942. After 72 years of 

service, the bridge was demolished in 2013. SK Bridge was constructed on the main route 

of National Highway No. 2, which connects Waki-shi in Yamaguchi Prefecture and 

Otake-shi in Hiroshima Prefecture. SK Bridge was exposed to high levels of carbon 

dioxide during its service life because of the high traffic volume on the main route. The 

main deterioration factor was suspected to have been carbonation. However, chloride ion 

attack may also have contributed to the deterioration of the bridge because the bridge was 

located less than 1 km upstream from the estuary of the Sagawa River, which flows into 

the Seto Inland Sea. 

The research purpose are considering which is the more dominant factor affect the 

deterioration of the bridge, between carbonation and chloride ion, based on the location of 

the bridge. Assuming the remaining life prediction used the cross-section cutting-off 

girders of an aged bridge, which is affected by carbonation with the presence of chloride 

attack based on the location of the bridge and comparing the remaining life prediction in 

which the deterioration caused by carbonation and chloride ion and caused only by 

carbonation. 

4.3 Method of cross-section cutting-off girder tests 

4.3.1 Cross-section cutting-off girders 

The demolition of the bridge provided a good opportunity to obtain many types of 

useful information. Two spans, Span 1 and Span 3, shown in Fig. 4.3, were inspected. 

Each span consisted of five girders, Girder 1 (G1) through Girder 5 (G5). Table 4.1 shows 

the total number of cross-sections cutting-off girders of Spans 1 and 3. The figure and the 

sketch of cross-section cutting-off girders are shown in Figs. 4.4 and 4.5, respectively. 

The girders had been cut into pieces with the maximum weight approximately 10 tons, 

in order to move from the bridge location to the demolishing place. The total number of 

cross-section cutting-off girders of Span 1 and Span 3 were 49 and 67, respectively. Table 

4.1 shows the number of cross-section cutting-off girders based on its location.  
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Each cross-section cutting-off girders has an identification symbol. It was given the 

identity as: H-number-Y, where "H" is Hiroshima side and "Y" is Yamaguchi side. 

"Number" is the number of cross-section cutting-off girders, 1 to 116 pieces. The cross-

section cutting-off girders locations with the identification symbol for each cross-section 

cutting-off girders are shown in Fig. 4.5(a) for Span 1 and Fig. 4.5(b) for Span 3.  

No Girder symbol 
Number of cutting-off cross section 
Span 1 Span 3 

1. G1 8 11 
2. G2 11 15 
3. G3 11 15 
4. G4 11 15 
5. G5 8 11 

Total 49 67 

Fig. 4.3 Spans 1 and 3 of SK-Bridge 

Fig. 4.2 General view of SK Bridge 

Table 4.1 Number of cross-section cutting-off girders  
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Fig. 4.4 Cross-section cutting-off girder of SK-Bridge 

Fig. 4.5 Sketch of cross-section cutting-off girder of SK-Bridge 
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Fig. 4.6 Cross-section cutting-off girders locations 

(b)Span 3 

(a)Span 1 

(a) Span 1 
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2.6.1 Examination of cross-section cutting-off girder  

The demolition of SK Bridge began with the removal of each span of the main girders 

of the bridge. The first girder removed was the outer girder on the mountain side, G5. The 

outer girder on the sea side, G1, was removed next, and then the inner girders, G4, G2, and 

G3 were removed. After the girders were removed from the bridge, they were placed on a 

temporary bridge as seen in Fig. 4.7. 

On the temporary bridge the removed full girders were cut into parts as shown in Table 

4.2. The cutting process used the special equipment for cutting concrete called a wire saw 

machine with the diamond wire. Fig. 4.8 shows a wire saw machine and the cutting 

process. The cross-section cutting-off girder was cut with a maximum weight 

approximately 10 tons, it is the maximum weight that could be moved by a truck to a 

particular place to be demolished. 

2.6.2 The thickness of concrete cover measurement 

The cross-sections cutting-off girders were examined to measure the thickness of the 

concrete cover on the reinforcement. The thickness of the concrete cover is very important 

because the concrete cover serves to protect the reinforcing bars from damage due to 

environmental exposure. Among the environmental effects that may cause corrosion in 

reinforcing bars are attacks by carbon dioxide, acid, and salt [11]. As we know, corrosion 

in the reinforcing bar affected the deterioration of the reinforced concrete structures. 

Therefore, the thickness of concrete cover should be controlled to meet the minimum 

requirements needed.  

The thickness of concrete cover is the thickness of concrete between the concrete 

cover surface and the outer reinforcing bar. In this investigation, the location of embedded 

reinforcing bars is quite varied. Then, the value of thickness of concrete cover was 

assumed by average values of the measurement. This was measured for the sea sides, 

bottom sides, and mountain sides of the girders. It is shown in Fig. 4.9. 
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2.6.3 Carbonation test 

Figure 4.10 shows the carbonation test. Carbonation testing is most commonly carried 

out by spraying a phenolphthalein solution on freshly exposed surfaces of concrete or on 

concrete cores. In this study, this carbonation test method was applied to the cut surfaces 

of the cross-sections cutting-off from the concrete girders. To avoid further carbonation of 

the cut surfaces, the testing was conducted within 30 minutes of the cross sections being 

cleaned and prepared for testing. In accordance with Japanese Industrial Standard JIS A 

1152, the depth of carbonation is assessed by examining the area of the surface that 

appears pink or purple after application of the phenolphthalein solution (Fig. 4.11).  

The concrete in areas where this coloring appears is alkaline and is considered to be 

healthy and to have experienced no carbonation. The concrete in areas that remain 

colorless is not alkaline and is considered to be concrete that has experienced carbonation. 

4.3.5 Carbonation depth measurement 

The carbonation depth of the cross sections cut from the girders was also measured. 

The carbonation depth is the distance between the concrete cover surface and the boundary 

between colored and uncolored areas. It can be seen in Fig. 4.12. 

Fig. 4.8 Wire saw machine  Fig. 4.7 Removal girder  
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4.4 Results of cross-section cutting-off girder tests 

4.4.1 Concrete cover thickness measurement results 

Table 4.2 shows the concrete cover thickness measurement results for the cross-section 

cutting-off girder of Spans 1 and 3. The results shown are the averages of the values 

obtained by measuring the distances between the concrete cover surface and the outer 

reinforcing bars. Figs. 4.13 and 4.14 also show the concrete cover thickness measurement 

results for the cross-section cutting-off girder of Spans 1 and 3 on averages. Figs. 4.15 to 

4.17 and Figs. 4.18 to 4.20 show the normal distribution on both Spans 1 and 3, 

respectively. 

   Fig. 4.9 Measurement of the thickness  
                of concrete cover 

Fig. 4.10 Carbonation test 

Fig. 4.12 Carbonation depth measurement Fig. 4.11 Spraying phenolphthalein  
               solution 
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In an RC bridge, the most serious deterioration mechanisms are those that lead to 

corrosion of the reinforcing bars, resulting in a reduction in the effective cross-sectional 

area of the reinforcing bars and in spalling of the concrete cover [11]. The nature of the 

deterioration in an RC bridge may be chemical, such as reinforcing bar corrosion due to 

carbon dioxide and chloride attack on the concrete. Concrete cover serves to protect the 

reinforcing bars from environmental exposure that leads to corrosion. In the deterioration 

process caused by carbonation, the thickness of the concrete cover affects the time 

required for carbon dioxide to reach the reinforcing bars. A thicker cover concrete 

increases the diffusion time of carbon dioxide in the concrete. Moreover, the thickness of 

the concrete cover can be used to predict the initiation of corrosion due to carbonation. 

The initiation of corrosion is frequently identified from the remaining thickness of the 

concrete cover, or the difference between the thickness of the concrete cover and the 

carbonation depth. In previous studies, researchers have concluded that the initiation of 

corrosion occurs when the thickness of remaining concrete cover falls below 10 mm [8]. 

Thus, the thickness of the concrete cover affects the initiation of corrosion. 

No. Girder 

Thickness of concrete cover Standard deviation 

Sea side Bottom side Mountain 
side Sea side Bottom side Mountain 

side 
mm mm mm Mm mm mm 

SPAN 1
1 G1 56.44 49.06 51.25 20.25 14.41 17.89 
2 G2 68.33 55.35 61.05 9.15 6.23 12.22 
3 G3 47.17 54.92 50.38 9.60 11.46 13.65 
4 G4 52.83 52.58 48.72 7.00 9.24 11.98 
5 G5 48.92 63.41 68.00 6.22 5.95 5.05 

Average 54.74 55.06 55.88 10.44 9.46 12.16 
SPAN 3

6 G1 49.79 45.59 42.70 9.16 4.79 8.15 
7 G2 64.98 45.82 49.06 11.27 10.66 13.85 
8 G3 40.38 56.15 76.81 17.47 7.19 10.60 
9 G4 82.10 53.28 43.63 14.38 7.28 9.84 

10 G5 59.85 51.47 62.96 7.47 10.23 6.81 
Average 59.42 50.46 55.03 11.95 8.03 9.85 

Table 4.2 Thicknesses of concrete cover of Spans 1 and 3 
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Fig 4.13 Thickness of concrete cover in Span 1 

Fig. 4.14 Thickness of concrete cover in Span 3 
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Fig. 4.15 Normal distribution of the thickness of concrete cover in Span 1 sea side 

Fig. 4.17 Normal distribution of the thickness of concrete cover in Span 1 mountain side 

Fig. 4.16 Normal distribution of the thickness of concrete cover in Span 1 bottom side 
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Fig. 4.18 Normal distribution of the thickness of concrete cover in Span 1 sea side

Fig. 4.19 Normal distribution of the thickness of concrete cover in Span 3 bottom side 

Fig. 4.20 Normal distribution of the thickness of concrete cover in Span 3 mountain side 
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4.4.2 Carbonation depth measurement results 

The results of the carbonation depth measurement were obtained by manual 

measurement on cross-section cutting-off girders after spraying phenolphthalein solution. 

It was measured in three parts: seaside, bottom side and mountain side of the girders. The 

carbonation depth measurement results for the cross-sections cutting-off girders of (Spans 

1 and 3) are shown in Figs. 4.21 and 4.22 and in Table 4.3. Figs. 4.23 to 4.25 and Figs. 

4.26 to 4.29 show the normal distribution on both Spans 1 and 3, respectively. 

The results shown are the averages of the values obtained from five to ten 

measurement points. The carbonation rate, which can be obtained from the carbonation 

depth measurements, can be used to predict the carbonation depth in future years. 

No. Girder 

Carbonation depth Standard deviation 

Sea side Bottom 
side 

Mountain 
side Sea side Bottom 

side 
Mountain 

side 

mm mm mm mm mm mm 
SPAN 1

1 G1 65.49 27.39 58.76 17.67 13.82 8.29 
2 G2 51.57 38.71 49.25 14.19 14.15 15.03 
3 G3 61.05 49.68 64.90 13.28 14.47 14.14 
4 G4 75.15 63.19 82.13 15.45 15.10 11.20 
5 G5 69.84 46.57 72.13 9.15 10.26 10.27 

Average 64.62 45.11 65.43 13.95 13.56 11.79 
SPAN 3

6 G1 59.88 22.29 55.83 10.13 16.79 9.85 
7 G2 62.43 25.17 57.78 11.31 11.46 10.72 
8 G3 58.36 43.33 50.81 16.02 55.09 14.29 
9 G4 72.02 50.01 64.71 16.23 14.21 18.31 
10 G5 55.72 43.83 56.18 15.49 12.16 9.71 

Average 61.68 36.93 57.06 13.84 21.94 12.58 

Table 4.4 Carbonation depths of Spans 1 and 3 
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Fig. 4.21 Carbonation depth in Span 1 

Fig. 4.22 Carbonation depth in Span 3 
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Fig. 4.23 Normal distribution of the carbonation in Span 1 sea side 

Fig. 4.25 Normal distribution of the carbonation in Span 1 mountain side 

Fig. 4.24 Normal distribution of the carbonation in Span 1 bottom side 
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Fig. 4.26 Normal distribution of the carbonation in Span 3 sea side 

Fig. 4.27 Normal distribution of the carbonation in Span 3 mountain side 
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Fig. 4.28 Normal distribution of the carbonation in Span 3 bottom side 
(repaired) 

Fig. 4.29 Normal distribution of the carbonation in Span 3 bottom side  
(no repaired) 
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4.4.3 Remaining concrete cover results 

The remaining concrete cover is the most important parameter to assume the 

carbonation process on the concrete. The remaining concrete cover is calculated using the 

thickness of concrete cover and the carbonation depth, it can be used to predict the 

initiation of corrosion due to carbonation. The initiation of corrosion is frequently 

identified from the remaining concrete cover, i.e., the difference between the thickness of 

concrete cover and the carbonation depth. In previous studies, researchers have concluded 

that the initiation of corrosion occurs when the remaining concrete cover falls below 10 

mm [8]. Thus, the remaining cover affects the initiation of corrosion. The remaining 

concrete cover results for Spans 1 and 3 are shown in Figs. 4.30 and 4.31.  

Fig. 4.30 Remaining concrete cover of Span 1

Fig. 4.31 Remaining concrete cover of Span 3 
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In these figures, differences in the remaining concrete cover are indicated using 

different colors. The red color indicates remaining concrete cover of 0 mm or less, 

meaning that the carbonation has reached the reinforcing bars. The yellow color indicates 

remaining concrete cover greater than 0 mm but less than 10 mm, meaning that the initial 

corrosion has begun to reach the reinforcing bars. The green color indicates remaining 

concrete cover of 10 mm or more, meaning that the initial corrosion has not occurred on 

the reinforcing bars. 

4.4.4 Carbonation rate coefficient 

The carbonation rate coefficient A can be obtained from measurements of the 

carbonation depth d(t) in mm at time (t) in years. The change in the carbonation depth over 

time is calculated according to the  rule, as shown in Eq. (4.1).  

         (4.1) 

The carbonation depth results are the averages of the values obtained from eight to sixteen 
measurements from the cross-sections cutting-off from each girder. Table 4.4 shows the 
carbonation rate coefficient of Span 1 and 3. 

No
. 

Girde
r 

Carbonation rate coefficient Standard deviation 

Sea side Bottom side Mountain 
side Sea side Bottom side Mountain 

side 
mm/ mm/ mm/ mm/ mm/ mm/

SPAN 1
1 G1 7.72 3.23 6.93 2.08 1.63 0.98 
2 G2 6.08 4.56 5.80 1.67 1.67 1.77 
3 G3 7.19 5.85 7.65 1.56 1.71 1.67 
4 G4 8.86 7.45 9.68 1.82 1.78 1.32 
5 G5 8.23 5.49 8.50 1.08 1.21 1.21 

SPAN 3
6 G1 7.06 2.63 6.58 1.19 1.98 1.16 
7 G2 7.36 2.97 6.81 1.33 1.35 1.26 
8 G3 6.88 5.11 5.99 1.89 6.49 1.68 
9 G4 8.49 5.89 7.63 1.91 1.67 2.16 
10 G5 6.57 5.17 6.62 1.83 1.43 1.14 

tAtd )(

Table 4.4 Carbonation rate coefficient of Spans 1 and 3 
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4.4.5 Chloride ion content 

In this study, although the carbonation is the main deterioration factor of SK Bridge 

based on the location is about 1 km upstream from the mouth of the river it spans, the 

chloride ion also affects on the deterioration of SK Bridge. Table 4.6 shows the chloride 

ion data was obtained from the concrete core test on SK Bridge [12,13]. 

The apparent diffusion coefficient of chloride ions was calculated from the following 

equation: 

 (4.2) 

where C(x,t) is the chloride ion content at depth x at time t, C0 is the chloride ion content at 

the concrete surface, Dap is the apparent diffusion coefficient of the chloride ion, and 

Ci(x,0) is the initial chloride ion content in the concrete. Table 4.5 summarizes the results 

of the chloride ion content tests (i.e., C(x,t), C0, and Ci(x,0)) of the concrete cores. The 

apparent diffusion coefficient of the chloride ion content Dap is an unknown parameter in 

Eq. (4.2) and is determined from the results of the chloride ion content tests. The results 

obtained for depths of 30 45 mm in the concrete cores were used as the chloride ion 

contents at the reinforcement depth C(x,t). The values used for concrete cover, tmp in Eq. 

(6) and W in Eq. (5), were 40 mm, 16 C (mean temperature), and 4% [15,16], respectively. 

4.4.6 Identification of main deterioration factor 

According to the Ref. [8], corrosion due to carbonation typically begins when the 

thickness of remaining concrete cover falls below 10 mm. This means that remaining 

concrete cover is an indicator of the degree of influence of carbonation. Tables 4.2 and 4.3 

show the results of the concrete cover thickness and carbonation depth measurements. As 

these tables show, the average values of the carbonation depth in the main girders of both 

Span 1 and Span 3 are greater than the average thicknesses of concrete cover, except for 

the bottom side of Span 3, which has received some repair work. The maximum value of 

the carbonation depth was 60 mm or greater in more than half of the girder cross sections 

(Figs. 4.21 and 4.22), which is considerably greater than the thickness of the concrete 

cover (Figs. 4.13 and 4.14). 

)0,()
)(2

1(),( 0 xC
tD

xerfCtxC i
ap



87 

The average chloride ion content determined from tests on concrete cores taken from 

SK Bridge was 1.07 kg/m3 [12,13] as shown in Table 4.5, this value is lower than the 

critical chloride ion content for steel corrosion of 1.2 kg/m3 given in Ref. [14]. This table 

also shows that only five of the 23 points on the bridge had higher chloride ion contents 

than the critical content for steel corrosion, and these contents were only slightly higher 

than the critical content.  

Surface 
chloride ion 

content

Apparent 
diffusion 

coefficient                           
x 10-8

Initial chloride 
ion content

Chloride ion 
content at 

reinforcement 
location

C 0 D ap C i (x, 0) C(x,t)

(kg/m3) (cm2/s) (kg/m3) (kg/m3)
C1014 1.10 0.60 0.60 1.00
C1111 0.60 0.50 0.40 0.60
C1115 0.80 0.60 0.60 0.90

2 C2113 2.30 0.90 0.65 1.80
C3011 2.50 1.80 0.90 2.50
C3015 2.60 1.80 0.50 2.10
C3114 3.80 1.50 0.80 3.00

4 C4113 3.10 0.40 0.40 1.30
C5111 3.90 1.80 0.80 3.20
C5114 1.80 1.80 0.60 1.70
C5115 1.40 1.80 0.30 1.20
C1131 0.70 0.40 0.40 0.60
C1134 0.70 0.08 0.30 0.30
C1138 0.90 0.40 0.30 0.55
C2031 2.50 0.40 0.50 1.20
C2136 1.90 0.40 0.65 1.20
C3134 1.00 0.40 0.10 0.40
C3138 0.70 0.10 0.15 0.18
C4031 0.90 0.08 0.18 0.20
C4136 1.20 0.05 0.12 0.12
C5031 1.30 0.05 0.20 0.20
C5134 1.10 0.05 0.12 0.12
C5038 0.80 0.05 0.30 0.30

Core 
specimen 

No.

1

2

Span 1

Span 3

Span                          
No.

3

4

5

1

3

5

Girder 
No.

Table 4.5 Chloride ion content results of Spans 1 and 3 
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Based on these results, it was concluded that the main cause of the deterioration of SK 

Bridge was carbonation, because the carbonation depth was considerably greater than the 

concrete cover thickness. The average chloride ion content did not exceed the critical 

chloride ion content for steel corrosion. However, given that the bridge is located less than 

1 km upstream from the mouth of the Sagawa River that it spans, which empties into the 

Seto Island Sea, chloride ion attack is believed to have also contributed to the deterioration 

of the bridge. 

4.5 Remaining life prediction method through cross-section cutting-off girders 
4.5.1 Concept of remaining life prediction method  

In this study, the end of the service life was defined as the point at which the total 

amount of steel corrosion due to carbonation and chloride ion attack reached a critical 

value of Q = 75 mg/cm2. This value was obtained from the BREX system, which is used in 

cases in which the main deterioration factor is chloride attack [9] [10].  

The remaining life R as the results of the cross-section cutting-off girders was 

calculated as the elapsed time EL (in this case, 72 years) minus the service life SL in years 

[7]. The service life SL in years can therefore be expressed as the sum of the elapsed 

service life, EL (in this case, 72 years) and the remaining service life R in years, as shown 

in Eq. (4.3). 

                                          (4.3)   

4.5.2 Remaining life prediction for the case in which the deterioration is mainly  
         caused by carbonation and also affected by chloride ion attack  

Figure 4.32 shows a flowchart of the remaining life prediction method for the case in 

which the deterioration is mainly caused by carbonation but is also affected by chloride 

ion attack. Initial corrosion due to carbonation is assumed to begin when the remaining 

concrete cover, i.e., the thickness of the concrete cover minus the carbonation depth, is 10 

cm or less [8]. 

The carbonation depth at 72 years was obtained from the measurements of the cross-

section cutting-off girders. The carbonation rate coefficient A was calculated from the 

carbonation depth d(t) at time t using Eq. (4.1).  
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Eq. (4.4) is used to calculate the reinforcing bar corrosion rate V if the remaining 

concrete cover thickness is 10 mm or less. If the remaining concrete cover at time t is 

greater than 10 mm, Eq. (4.5) should be used [17][18]. 

 (4.4)  

(4.5) 

where V (mg/cm2/year) is the steel corrosion rate, Cl (kg/m3) is the chloride ion content at 

the reinforcement location, C (mm) is the remaining concrete cover, W (%) is the surface 

moisture content of the concrete, and k is a correction for the temperature tmp ( ), which 

can be calculated from Eq. (4.6): 

(4.6) 

The total amount of steel corrosion Q(t) at time t, in kg/mm2, can be calculated from the 

steel corrosion rate V(t) at time t and the integration time step dt [12,13] using Eq. (4.7): 

     (4.7) 

where Q(0) can be calculated using Eq. (4.8): 

   (4.8) 

As in a previous study [12,13] the remaining life R of SK Bridge as indicated by the 

results of the tests on the concrete cores was calculated as the life expectancy X in years 

minus the period of service N in years. In this study, the service life SL was calculated 

based on the time t = t1 elapsed before the total amount of steel corrosion, calculated using 

Eq. (4.7), reaches the critical value Q(t1) = 75 mg/cm2, which was taken to be the indicator 

of the end of the service life. This is the critical value for the total amount of steel 

corrosion was used in the prediction method of the BREX system. [9][10]. Then the 

remaining life prediction can be calculated using Eq. (4.3). The remaining life R as the 

results of the cross-section cutting-off girders was calculated as the elapsed time EL (in 

this case, 72 years) minus the service life SL in years [7].
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Fig. 4.32 Flowchart of remaining life prediction in this study
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Tables 4.6 and 4.7 show the results of the predicted remaining life calculation in Span 1 

and Span 3. The results of Span 1 show that the time before reaching the critical amount of 

corrosion for initial cracking for the sea sides, bottom sides, and mountain sides of the 

girders were, on average, 46 years, 82 years, and 47 years, respectively. The predicted 

ends of the service life, which is indicated by the total amount of steel corrosion reaching 

75 mg/cm2, were, on average, 63 years, 121 years and 65 years for the sea sides, bottom 

sides, and mountain sides of the girders, respectively. Then the remaining life prediction 

can be calculated using Eq. (4.3). The prediction of remaining life were, on average, -9 

years, 49 years, and -7 years for the sea sides, bottom sides, and mountain sides of the 

girders, respectively. As these results show, the predicted remaining life varies from -34 

years to 145 years. 

The results of Span 3 show that the initial cracking limit for the sea sides, bottom sides, 

and mountain sides of the girders were, on average, 64 years, 135 years, and 67 years, 

respectively. The predicted ends of the service life were, on average, 99 years, 175 years, 

and 98 years for the sea sides, bottom sides, and mountain sides of the girders, 

respectively. The predicted of remaining life were, on average, 27 years, 103 years, and 26 

years for the sea sides, bottom sides, and mountain sides of the girders, respectively. As 

these results show, the predicted remaining life varies from -16 years to 178 years. 

The service life prediction for Span 1 and Span 3 are shown in Figs. 4.33 and 4.34, 

respectively. In these figures, differences in the service life prediction are indicated using 

different colors. The red color indicates the service life prediction less than 72 years (72 

years is time of investigation), meaning that the bridge's life has ended before the time of 

investigation. The green color indicates the service life prediction of 72 years or more, 

meaning that the initial corrosion has not occurred on the reinforcing bars. 

Figure 4.33 shows that on Span 1, the red color is dominant on the sea side and 

mountain side. On the bottom side the green color is dominant. The service life prediction 

on the sea side and mountain side has 63 and 65 years. On the bottom side, the service life 

prediction is 121 years. It means that on the sea side and mountain side 

has ended before the time of investigation (72 years). On the bottom side, it still remains 

49 years 
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Figure 4.34 shows that on Span 3, the green color is dominant on sea side and mountain 

side. On the bottom side, the green color is more dominant. The service life prediction on 

the sea side and mountain side has 99 and 98 years. On the bottom side, the service life 

prediction is 175 years. It means that on the sea side and mountain side, the end of 

has more than 100 years (103 years) before 

 The comparison of remaining life prediction due to carbonation and chloride ion 

between Span 1 and Span 3 is shown in Fig. 4.35. Based on this figure, the remaining life 

prediction on Span 1 has a negative value on the sea side and mountain side, however, the 

bottom side has a positive value. Span 3 has a positive value on the sea side, mountain side 

has already ended before the time of investigation. The positive value of remaining life 

Figure 4.36 shows the service life prediction due to carbonation and chloride ion on 

Span 1 and Span 3. It can simplify the explanation that based on the time of investigation 

equal with 72 years, the aged of Span 1 is less than 72 years on the sea side and mountain 

side, however, the bottom side is more than 72 years. The age of Span 3 is more than 72 

years on all sides due to the repair work on the bottom side of span 3, which stopped the 

deterioration process effectively. 

Table 4.8 shows the results of the remaining life calculation in both Spans 1 and 3. The 

results show that the initial cracking limit for the sea sides, bottom sides, and mountain 

sides of the girders were, on average, 55 years, 108 years, and 57 years, respectively. The 

predicted ends of the service life were, on average, 81 years, 147 years, and 81 years for 

the sea sides, bottom sides, and mountain sides of the girders, respectively. The remaining 

life predictions were, on average, 9 years, 75 years, and 9 years for the sea sides, bottom 

sides, and mountain sides of the girders, respectively. As these results show that the 

remaining life prediction varies from -34 years to 178 years. Fig. 4.37 shows the normal 

distribution of service life prediction due to carbonation and chloride ion in Spans 1 and 3. 
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Fig. 4.35 Remaining life prediction due to carbonation and chloride ion of Span 1 
                and Span 3 

Fig. 4.36 Service life prediction due to carbonation and chloride ion of Span 1 
                and Span 3 
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4.5.3 Remaining life prediction for the case in which the deterioration is caused  
          only by carbonation  

The remaining life prediction for the case in which the deterioration is caused only by 

carbonation can be seen in Tables 4.9 and 4.10. In Table 4.9, the remaining life prediction 

was calculated using the method of predicting the remaining life which is established in 

this study, with the assumption that the chloride ion content has no effect in the result or 

equal with zero. The comparison between the service life prediction of cross-section 

cutting-off girders deterioration due to chloride ion and carbonation and carbonation only 

was examined in order to determine the effect of chloride ion on the deterioration process 

of the bridge.  

Table 4.9 shows the results of the remaining life prediction due to carbonation only in 

both Spans 1 and 3. The remaining life predictions were, on average, 65 years, 136 years, 

and 65 years for the sea sides, bottom sides, and mountain sides of the girders, 

respectively. Fig. 4.38 shows the normal distribution of service life prediction due to 

carbonation only in Spans 1 and 3. 

Fig. 4.37 Normal distribution of service life prediction due to carbonation  
                 and chloride ion in Spans 1 and 3 
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The remaining life prediction for the case in which the deterioration is caused only by 

carbonation, was calculated using the  rule can be seen in Table 4.10. The initial 

corrosion due to carbonation is assumed to begin when the remaining concrete cover, i.e., 

the thickness of the concrete cover minus the carbonation depth, is 10 cm or less [8]. The 

service life as the predicted end of life, was calculated when the carbonation already 

reached the reinforcing bar (carbonation depth = thickness of concrete cover). The change 

in the time over carbonation depth was calculated according to the  rule, as shown in Eq. 

(4.1).  The predicted remaining life was estimated from the elapsed time EL (in this case, 

72 years) minus the service life SL in years. 

Table 4.10 shows the results of the predicted remaining life calculations. The 

remaining life predictions were, on average, 8 years, 90 years, and 8 years for the sea sides, 

bottom sides, and mountain sides of the girders, respectively. Fig. 4.39 shows the normal 

distribution of service life prediction due to carbonation only in Spans 1 and 3. 

Fig. 4.38 Normal distribution of service life prediction due to carbonation  
                 only in Spans 1 and 3 
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4.5.4 Discussion 

The remaining life predictions for the case in which the deterioration is mainly caused 

by carbonation and also affected by chloride ion attack is shown in Table 4.8. Based on a 

cumulative amount of steel corrosion of 75 mg/cm2, is the same as the criterion used in the 

BREX system, which is used in cases where the main cause of deterioration is chloride 

attack [9][10]. The predicted remaining life was almost the same for the sea sides and 

mountain sides of the girders, 9.0 years and 9.3 years, approximately 9 years. This means 

that on the sea side and the mountain side, the end of the service life of SK Bridge is 

approximately 81 years after the construction of the bridge. The predicted remaining life 

for the bottom side is much longer, at approximately 75 years, because of repair work 

done on the bottom side. This repair work was proven to work well. It effectively extended 

the service life by approximately 66 years, compared with that for the sea side and the 

mountain side. 

Fig. 4.39 Normal distribution of service life prediction due to carbonation  
                 only in Spans 1 and 3 calculated using the  rule 
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Figure 4.40 shows the comparison between the service life prediction of cross-section 

cutting-

It was examined using the method of predicting the remaining life which is established in 

this study in order to determine the effect of chloride ion on the deterioration process of 

the bridge. In this figure can be seen that the service life due to carbonation only is longer 

than due to carbonation and chloride ion. 

The percentage of influence of chloride ion on the deterioration process was calculated 

in order to estimate the effect of chloride ion on the deterioration process of the bridge. 

The results of the influence of chloride ion on the deterioration process are 69 % for the 

sea side and mountain side and 42 % for the bottom side. From these results, it can be 

concluded that although chloride ion was not the main deterioration factor, it was however 

a big influence on the deterioration process. The big influence of chloride ion may have 

been because the chloride ion content in SK Bridge is fairly high, 1.07 kg/m3, close 

enough with the requirement of the critical chloride ion content  for steel corrosion 1.2 

kg/m3 [8]. 

Fig. 4.40 Comparison of remaining life prediction due to carbonation and  
 chloride ion and carbonation only of Span 1 and Span 3 
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This study also compares between the remaining life prediction for the case in which the 

deterioration is mainly caused by carbonation and also affected by chloride ion attack and 

for the case in which the deterioration is caused only by carbonation that was calculated 

using the  rule. The results of the remaining carbonation in the sea side and mountain 

side of the girders on both cases were almost similar, approximately 9 years and 8 years, 

respectively. This was not because the chloride ion content had no effect on the remaining 

life prediction, but rather due to differences in the requirements and thresholds used in 

determining the end of bridge's life on these cases and the use of different equations. The 

remaining life prediction for the case in the which the deterioration is mainly caused by 

carbonation and also affected by chloride ion attack used Eq. (4.7) and for the case in 

which the deterioration is caused only by carbonation used Eq. (4.1). 

The predicted remaining life for the bottom side for both cases is quite different. The case 

in which the deterioration is caused only by carbonation is much longer at approximately 

15 years because of repair work done on the bottom side which was proven to stop the 

carbonation process very well. The chloride ion content already existed on the concrete 

before repair work was done, because the bridge was located near the sea. Therefore the 

chloride ion content has a greater effect on the remaining life prediction. 

4.6  Conclusions 

This chapter presents the details of carbonation tests of cross-section cutting-off 

girders of an aged RC bridge and proposes a method to predict the remaining life of an RC 

bridge based on the extent of deterioration related to corrosion of the reinforcing bars due 

to carbonation and chloride ion attack. In addition, a flowchart for the proposed remaining 

life prediction method is presented. The proposed method was used to predict the 

remaining life of a bridge that had been in service for 72 years. 

1. The results of the carbonation tests showed that the main factor in the deterioration of 

the bridge in question has been carbonation associated with corrosion of the reinforcing 

bars. However, because the bridge is located less than 1 km upstream from the mouth of 

the river it spans, which flows into the sea, chloride ion attack should be considered as 
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2. The remaining life prediction due to carbonation and chloride ion of the bridge was 

defined as the point at which the total amount of steel corrosion reached a critical value 

of Q = 75 mg/cm2. The remaining life of SK Bridge was predicted to be approximately 

9 years for the sea side and bottom side and approximately 75 years for the bottom side. 

The predicted remaining life for the bottom side was longer than for the other side 

because of the repair work that had been completed on the bottom side. 

3. The remaining life prediction due to carbonation only was calculated using the method 

of predicting the remaining life which is established in this study of SK Bridge was 

predicted to be approximately 65 years for the sea side and bottom side and 

approximately 136 years for the bottom side.  

4. The results of the calculation of the influence of chloride ion on the deterioration 

process are 69 % for the sea side and mountain side and 42 % for the bottom side. From 

these results, it can be concluded although chloride ion was not the main deterioration 

factor however it has a big influence on the deterioration process. The big influence of 

chloride ion maybe because the chloride ion content in SK Bridge is fairly high, 1.07 

kg/m3, close enough with the requirement of the critical chloride ion content  for steel 

corrosion 1.2 kg/m3. 

5. The remaining life prediction due to carbonation only was calculated using 

of SK Bridge was predicted to be approximately 8 years for the sea side and bottom 

side and approximately 90 years for the bottom side.  

6. The results of comparison between remaining life prediction for the case in which the 

deterioration is mainly caused by carbonation and also affected by chloride ion attack 

and for the case in which the deterioration is caused only by carbonation was calculated 

using the  rule. In the sea side and mountain side of the girders on both cases were 

almost similar, approximately 8 years. This caused by the differences in the 

requirements and thresholds used in determining the end of life on these cases and the 

use of different equations.  
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5.1 Introduction 

This chapter focused on verification of remaining life prediction results of concrete 

cores using cross-section cutting-off girders of an aged bridge, SK Bridge (approximately 

70 years old in service). Under ordinary circumstances, concrete cores are extracted from 

some parts of the bridge to evaluate the performance of the concrete. The performance of 

the concrete based on concrete cores represents performance of the locations from which 

the cores are extracted [1][2]. Carbonation and chloride ion tests were conducted on 

concrete cores. In this case, remaining life prediction results of concrete cores represent 

the local evaluation results of the girders. In contrast, remaining life prediction based on 

cross-sections cutting-off girders represent the entire girders. Many studies of carbonation 

in RC bridges have been conducted. However, all of them used concrete cores to evaluate 

the performance of concrete through carbonation test. This study describes the first known 

application of carbonation testing to cross-section cutting-off girders of SK Bridge [3]. 

According to the results of investigation on two different specimens, concrete cores 

and cross-section cutting-off girders, the remaining life predictions were compared. 

Furthermore, it will make a verification how local evaluation results based on concrete 

cores tests can be used for the evaluation of the entire span based on cross-section cutting-

off girders. The remaining life prediction on both concrete cores using cross-section 

cutting-off girders were examined from the results of carbonation and chloride ion tests. 

Figure 5.1 shows the diagram of the verification of remaining life prediction results of 

two different specimens, concrete cores and cross-section cutting-off girders. There are 

four different comparisons in order to examine the relationship between concrete cores 

and cross-section cutting-off girders on the main girders of the SK Bridge.
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5.2 Comparison between the results of  remaining life prediction of concrete cores 
and cross-section cutting-off girders in average 

Concrete cores were extracted from all of the girders in Spans 1 and 3 but only from 

the sea and mountain sides. On the bottom side, it was quite difficult to extract the 

concrete cores because of the reinforcing bars embedded in the bottoms of the girders.  

According to Chapter 3, the concrete cores were extracted from Girder 1 to Girder 5 of 

Spans 1 and 3 which are the inspected girder spans. Concrete cores were examined for 

chloride ion content test called C- -series 

are 11 specimens for Span 1 and 12 specimens for Span 3. M-series were examined for 

carbonation test that is identi -series are 15 specimens for 

Span 1 and 20 specimens for Span 3 as shown in Table 3.1 in Chapter 3.  

Table 5.1 shows the results of the remaining life prediction due to the carbonation and 

chloride ion of the concrete cores in Spans 1 and 3. And the service life prediction based 

on the location of extracted concrete cores of Span 1 and Span 3 are shown in Figs. 5.2 

and 5.3, respectively. 

Fig. 5.1 Diagram of the verification of remaining life prediction results
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The results of concrete cores in Span 1 show that the remaining life prediction were, on 

average, -20 years for the sea side and -31 years for the mountain side of the girders. Span 

3 show that the remaining life predictions were, on average, 11 years on the sea side and 

20 years on the mountain side of the girders. 

In Figs. 5.2 and 5.3, differences in the service life prediction are indicated using 

different colors. The red color indicates the service life prediction less than 72 years (72 

years is time of investigation), meaning that the bridge's life has ended before the time of 

investigation. The green color indicates the service life prediction of 72 years or more, 

meaning that the initial corrosion has not occurred on the reinforcing bars. Figure 5.2 

shows that on Span 1, the red color is dominant on the sea side and mountain side. The 

service life prediction on the sea side and mountain side has 52 and 40 years. The 

remaining life has a negative value. Meaning that on the sea side and mountain side the 

before the time of investigation (72 years). On the other hand Fig. 

5.3 shows that on Span 3, the green color is dominant on the sea side and mountain side. 

The service life prediction on the sea side and mountain side has 83 and 92 years. The 

remaining life has a positive value. Meaning that on the sea side and mountain side the 

The comparison of remaining life prediction between concrete cores and cross-section 

cutting-off girders (taken from Fig. 4.35 in Chapter 4) is shown in Fig. 5.4. This figure 

shows that the remaining life prediction of Span 1 both of concrete cores and cross section 

c

the time of investigation (72 years) on both the sea side and mountain side. The remaining 

life prediction of Span 3 both of concrete cores and cross section cutting off girders has a 

life on both the sea side and mountain side. Fig. 5.5 shows the comparison of service life 

prediction between concrete cores and cross-section cutting-off girders. It can be 

explained more clearly that according to the time of investigation is equal with 72 years, 

the aged of Span 1 is less than 72 years and Span 3 is more than 72 years. 



            Fig. 5.4 Comparison of remaining life prediction results between concrete cores  
                       and cross-section cutting-off girders in both Spans 1 and 3 on average  

    Fig. 5.5 Comparison of service life prediction results between concrete cores  
                 and cross-section cutting-off girders in both Spans 1 and 3 on average  



5.3 Comparison between the results of  remaining life prediction of concrete cores 
and cross-section cutting-off girders based on the location of extracting concrete 
cores 

Concrete cores C-series were extracted from the girders of Spans 1 and 3. The 

numbers of C-series are 11 specimens for Span 1 and 12 specimens for Span 3. The results 

of remaining life prediction of concrete cores C-series were compared with the results of 

cross-section cutting-off girders based on the location of extracted concrete cores. 

The remaining life prediction results of concrete cores will be compared to the results 

of cross-section cutting-off girders in order to verify the similarity between concrete cores 

and cross-section cutting-off girders. Correlation coefficient (r) was used to calculate a 

relationship between two variables. The mathematical formula for computing r as follows: 

                                    (5.1) 

The values of r is such that -1 < r < +1.  The + and  signs are used for positive linear 

correlation and negative linear correlation, respectively. A correlation coefficient that is 

greater than 0.8 described as strong correlation, whereas a correlation coefficient that is 

less than 0.5 described as weak correlation. 

Table 5.2 shows the remaining life prediction of concrete cores and cross-section 

cutting-off girders at 72 years. The correlation coefficient of the remaining life prediction 

was calculated using Eq. (5.1). According to the location of concrete cores that were 

extracted in Figs. 3.4 and 4.5,  the comparisons of the remaining life prediction were 

calculated using averages values of remaining life prediction of cross-section cutting-off 

girders; Yamaguchi (right-side) and Hiroshima (left-side). The two sets of remaining life 

predictions were compared. The relationship between service life predictions from the 

concrete cores and those from the girder cross sections had correlation coefficients 0.62 

and 0.59 for Spans 1 and 3, respectively, as shown in Tables 5.3 and 5.4. These correlation 

coefficients indicate a good correlation. The service life prediction based on tests on cores 

are considered to represent predictions based on local evaluation, whereas those based on 

tests on cross-section cutting-off girders are considered to represent the service life of the 

entire span of the bridge. It is also shown in Fig. 5.6. 
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A B C D

x- xmean y-ymean (x-xmean)2 (y-ymean)2

1 -30 0 -7.00 20.18 49.00 407.31 -141.27
2 15 39 38.00 59.18 1444.00 3502.49 2248.91
3 -23 -27 0.00 -6.82 0.00 46.49 0.00
4 -17 44 6.00 64.18 36.00 4119.31 385.09
5 -21 -51 2.00 -30.82 4.00 949.76 -61.64
6 -34 -31 -11.00 -10.82 121.00 117.03 119.00
7 -42 -42 -19.00 -21.82 361.00 476.03 414.55
8 -31 -26 -8.00 -5.82 64.00 33.85 46.55
9 -23 -53 0.00 -32.82 0.00 1077.03 0.00
10 -24 -42 -1.00 -21.82 1.00 476.03 21.82
11 -23 -33 0.00 -12.82 0.00 164.31 0.00

-23.00 -20.18 2080.00 11369.64 3033.00

r   =

r   = 0.62

3033.00
4863.007674

A*BNo x y

A B C D

x- xmean y-ymean (x-xmean)2 (y-ymean)2

1 -11 -12 -23.91 -15.36 571.64 236.04 367.33
2 1 10 -11.91 6.64 141.83 44.04 -79.03
3 17 -14 4.09 -17.36 16.74 301.50 -71.03
4 -3 -21 -15.91 -24.36 253.10 593.59 387.60
5 -20 -5 -32.91 -8.36 1083.01 69.95 275.24
6 13 -44 0.09 -47.36 0.01 2243.31 -4.31
7 38 1 25.09 -2.36 629.55 5.59 -59.31
8 2 -36 -10.91 -39.36 119.01 1549.50 429.42
9 42 55 29.09 51.64 846.28 2666.31 1502.15
10 3 53 -9.91 49.64 98.19 2463.77 -491.85
11 60 50 47.09 46.64 2217.55 2174.95 2196.15
12 -12.91 -3.36 166.64 11.31 43.42

12.91 3.36 6143.55 12359.86 4495.79

r   =

r   = 0.59

x y

4495.79
8713.980768

A*BNo

Table 5.3 Correlation coefficient calculation of remaining life prediction in Span 1  
                based on the location of extracted cores

Table 5.4 Correlation coefficient calculation of remaining life prediction in Span 3 
                based on the location of extracted cores



5.4 Comparison between the results of  remaining life prediction of concrete cores 
and cross-section cutting-off girders based on the location of girders of each span 

The comparison of remaining life prediction of concrete cores and cross-section 

cutting-off girders based on the location of girders of each span was assumed that the 

numbers of cross-section cutting-off girders in one girder as an unified girder, as shown in 

Fig. 5.7. The calculation of remaining life prediction of concrete cores and cross-section 

cutting-of girders is shown in Table 5.5. 

Figure 5.8 shows the relationship between service life predictions from the concrete 

cores and those from the girder cross sections had correlation coefficients 0.78 and 0.65 

for Spans 1 and 3, respectively, as shown in Tables 5.6 and 5.7. These correlation 

coefficients indicate a good correlation. The service life prediction based on tests on cores 

are considered to represent predictions based on local evaluation, whereas those based on 

tests on cross-section cutting-off girders are considered to represent the service life of the 

entire span of the bridge. 

Fig 5.6 Relationship between remaining life prediction of concrete cores and  
             cross-section cutting-off girders in Spans 1 and 3 based on the location 

of extracted cores



Concrete 
cores

Cross-section 
cutting-off 

girders

Concrete 
cores

Cross-section 
cutting-off 

girders

Concrete 
cores

Cross-section 
cutting-off 

girders

G1 -4 0 - 145 -30 -8
G2 -17 44 - 63 - 40

Span 1 G3 -34 -31 - 16 -32 -25
G4 -31 -24 - -4 - -34
G5 -23 -33 - 24 - -9
G1 3 3 - 75 - -16
G2 -20 12 - 178 -3 -14

Span 3 G3 25 71 - 159 - 148
G4 22 51 - 45 - 0
G5 19 61 - 58 20 11

Sea side Mountain sideBottom side

Span 
Number

Girder 
Number

Remaining life (years) Remaining life (years)Remaining life (years)

H-43-YH-38-Y

H-41-Y

H-42-Y

H-39-Y

H-47-Y

H-48-Y
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H-34-YH-26-YH-21-YH-16-Y

H-33-Y
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H-45-Y

H-46-Y

H-31-Y

H-32-Y
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H-39-YH-34-YH-26-YH-21-YH-16-YH-6-Y H-14-YH-1-Y

H-47-YH-35-Y H-40-Y H-44-YH-31-YH-22-Y H-27-YH-11-Y H-18-YH-7-YH-2-Y

H-41-Y H-48-YH-36-Y H-45-YH-32-YH-23-Y H-28-YH-12-Y H-19-YH-8-YH-3-Y

H-42-Y H-49-YH-33-Y H-37-Y H-46-YH-24-Y H-29-YH-13-Y H-20-YH-9-YH-4-Y

H-43-YH-38-YH-30-YH-25-YH-17-YH-15-YH-5-Y H-10-Y

Figure 5.7 Cross-section cutting-off girders based on the location of girders  
                  of each span

Table 5.5 Remaining life prediction of concrete cores and cross-section cutting-off girders  
                based on the location of girders of each span



A B C D
x- xmean y-ymean (x-xmean)2 (y-ymean)2

1 -4 0 20.43 11.00 417.33 121.00 224.71
2 -17 44 7.43 55.00 55.18 3025.00 408.57
3 -34 -31 -9.57 -20.00 91.61 400.00 191.43
4 -31 -24 -6.57 -13.00 43.18 169.00 85.43
5 -23 -33 1.43 -22.00 2.04 484.00 -31.43
6 -30 -8 -5.57 3.00 31.04 9.00 -16.71
7 -32 -25 -7.57 -14.00 57.33 196.00 106.00

-24.43 -11.00 697.71 4404.00 968.00

r   =

r   = 0.78

968.00
1752.92148

A*BNo x y

Table 5.6 Correlation coefficient calculation of remaining life prediction in Span 1 
                 based on the location of girders of each span 

A B C D

x- xmean y-ymean (x-xmean)2 (y-ymean)2

1 3 3 -6.43 -15.71 41.33 246.94 101.02
2 -20 12 -29.43 -6.71 866.04 45.08 197.59
3 25 7 15.57 -11.71 242.47 137.22 -182.41
4 22 51 12.57 32.29 158.04 1042.37 405.88
5 19 61 9.57 42.29 91.61 1788.08 404.73
6 -3 -14 -12.43 -32.71 154.47 1070.22 406.59
7 20 11 10.57 -7.71 111.76 59.51 -81.55

9.43 18.71 1665.71 4389.43 1251.86

r   =

r   = 0.65

1251.86
2703.984815

A*BNo x y

Table 5.7 Correlation coefficient calculation of remaining life prediction in Span 3 
                 based on the location of girders of each span 



In the target bridge, each span has five girders. Based on the position of the girders, G1 

and G5 were the outers girders, G2, G3 and G4 were the inner girders. Carbonation and 

chloride ion attack tend to affect the outer girders more severe than the inner girders. The 

outer girders faced the environmental attack directly, whereas the inner girders were 

sheltered because it was located in the middle of the span.  

Figure 5.9 shows a comparison between distribution of service life prediction of G1 to 

G5 in Span 1 and Span 3. It will be more obvious when referred to the normal distribution 

of service life prediction of Span 1 and Span 3 as shown in Figs. 5.10 to 5.15. From these 

figures, it can be found that the service life prediction of each location of each girder in 

both Span 1 and Span 3 varies greatly. However, these figures could not make a clear 

description of the influence of the location of girders on the end of life of the bridge.  

Fig. 5.8 Relationship between remaining life prediction of concrete cores and  
             cross-section cutting-off girders in Spans 1 and 3 based on the location  

of girders of each span





  122 

Figure 5.10 Normal distribution of service life prediction in Span 1 sea side 

Figure 5.11 Normal distribution of service life prediction in Span 3 sea side 
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Figure 5.12 Normal distribution of service life prediction in Span 1 bottom side

Figure 5.13 Normal distribution of service life prediction in Span 3 bottom side
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Figure 5.14 Normal distribution of service life prediction in Span 1 mountain side 

Figure 5.15 Normal distribution of service life prediction in Span 3 mountain side 
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Figure 5.16 shows the comparison of remaining life prediction of the unified girders 

both on Span 1 and Span 3. From the Fig. 5.16, it can be noticed that the environmental 

condition such as carbonation and chloride ion attack tend to affect the outer girders more 

severe than the inner girders. The outer girders faced the environmental attack directly, 

whereas the inner girders were sheltered because it was located in the middle of the span.  

From the results of remaining life prediction it can be concluded that in the SK Bridge 

the outer girders had a shorten age compared the inner girders because the outer girders 

faced the environmental attack directly.  

Figure 5.16 Comparison of remaining life prediction of cross-section cutting-off girders in 
                    Span 1 and Span 3 based on the location of girders of each span
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5.5 Comparison between the results of  remaining life prediction of concrete cores 
and cross-section cutting-off girders based on the location of girders  

The remaining life prediction of cross-section cutting-off girders based on the location 

of girders was assumed that each girder (G1 to G5) of Span 1 and Span 3 will be 

considered as full girders as shown in Fig. 5.17. The calculation of remaining life 

prediction of cross-section cutting-of girders is shown in Table 5.8. 

Figure 5.18 shows distribution of service life prediction of G1 to G5 in the full girders. 

It will be more obvious when referred to the normal distribution of service life prediction 

of Span 1 and Span 3 as shown in Figs. 5.19 to 5.21. From these figures, it can be found 

that the service life prediction of each location of each girder varies greatly.  

Cross-section 
cutting-off 

girders
Average

Cross-section 
cutting-off 

girders
Average

Cross-section 
cutting-off 

girders
Average

Span 1 0 217 -8
Span 3 3 147 -16
Span 1 44 135 40
Span 3 12 250 -14
Span 1 -31 88 -25
Span 3 7 231 148
Span 1 -24 68 -34
Span 3 51 117 0
Span 1 -33 96 -9
Span 3 61 130 11

Girder 
Number

Sea side Bottom side Mountain side
Remaining life (years) Remaining life (years)Remaining life (years)

Span 
Number

G1

G2

G3

G4

G5

2

28

-12

14

14

182

193

160

93

113

-12

13

62

-17

1

Figure 5.17 Merged girders of spans 1 and 3 based on the location of girders 

Table 5.8 Remaining life prediction of the merged girders of spans 1 and 3 
                based on the location of girders 



  127 

Figure 5.19 Normal distribution of service life prediction of spans 1 and 3 sea side 

Figure 5.18 Service life distributions of the merged girders of spans 1 and 3 
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Figure 5.20 Normal distribution of service life prediction of Spans 1 and 3 bottom side 

Figure 5.21 Normal distribution of service life prediction of Spans 1 and 3 mountain side 
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Figure 5.22 shows the comparison of remaining life prediction of the merged girders 

of Spans 1 and 3. In this figure, the remaining life prediction on the bottom side, especially 

in G1, G2 and G3 reminds quite a long time before it reached the end of the b

It is due to the repair work on the bottom side of Span 3. On the other hand, the remaining 

life of G1 and G4 on the mountain side, have already reached the end of life before the 

investigation time. Meaning the aged of G1 and G4 are less than 72 years.  

Unfortunately the influences of environmental conditions, such as carbonation and 

chloride ion attack tend to affect the outer girders more severe than the inner girders, 

however, this could not be confirmed clearly.  

Figure 5.22 Comparison of remaining life prediction of merged girders of  
                    Span 1 and Span 3 based on the location of girders
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5.6 Conclusions 

This chapter presents the comparison of remaining life and service life prediction as 

the results of carbonation tests of concrete cores and cross-section cutting-off girders of an 

aged RC bridge. Also, in addition the influence of the girders position is elaborated.  

1. The remaining life prediction which was obtained based on the concrete cores were 

similar to those obtained based on the cross-section cutting-off girders, which 

represent the entire span of the bridge. The relationship between the thickness of 

concrete cover and service life prediction tends to have a good correlation. 

2. Carbonation and chloride ion attack tend to affect the outer girders more severe than 

the inner girders. The outer girders faced the environmental attack directly, whereas 

the inner girders were sheltered because it was located in the middle of the span. 

From the results of service life prediction it can be concluded that in the SK Bridge 

the outer girders had a shorten service life prediction more so than the inner girders 

because the outer girders faced the environmental attack directly.  
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6.1 Conclusions 

The main objectives of this thesis as outlined in Chapter 1 are satisfied as follows:

1. Develop a method for estimating the remaining life prediction of an aged bridge 

through the chloride ion and carbonation tests on concrete cores and cross-section 

cutting-off girders. 

2. Determine the main deterioration factor of an aged bridge, whether due to chloride 

attack or carbonation, through the chloride ion and carbonation tests on concrete cores 

and cross-section cutting-off girders. 

3. Estimate the remaining life and service life prediction from concrete cores and cross-

section cutting-off girder. The service life prediction is restricted by a criterion value 

i.e. cumulative amount of steel corrosion Q = 75 mg/cm2, which is obtain by the 

BREX system. 

4. Verify the remaining life prediction results of the concrete cores together with cross-

section cutting-off girders.    

The main conclusions obtained in this thesis can be summarized as follows: 

1. This thesis introduces the details of how to predict the remaining life of an aged RC-T 

girder bridge based on carbonation test which is one of the field tests required to 

determine the performance of concrete which is affected by an environmental 

condition, i.e. carbon dioxide. Also, to try to establish the method to predict the 

remaining life based on the chloride ion and carbonation tests results of concrete core 

and cross-section cutting-off girders.

2. The results of the carbonation tests showed that the main factor in the deterioration of 

the bridge has been carbonation associated with corrosion of the reinforcing bars. 

However, because the bridge is located less than 1 km upstream from the mouth of 

the river it spans, which flows into the sea, chloride ion attack should be considered 
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3. The remaining life is affected by the cumulative amount of steel corrosion (Q), which 

is used as an end of life indicator. The remaining life prediction is restricted by a 

cumulative amount of steel corrosion of Q = 75 mg/cm2 (based on the BREX system) 

as an end of life indicator showed that the remaining life results of the bridge are 

predicted as follows:

The remaining life of concrete cores approximately 7 years (service life = 7 

years + 72 years = 79 years).  

The remaining life of cross-section cutting-off girders approximately 9 years 

(service life = 8 years + 72 years = 81 years) for sea side and mountain side. 

 The remaining life of cross-section cutting-off girders approximately 75 years 

(service life = 75 years + 72 years = 147 years) for bottom side. 

The predicted remaining life for the bottom side was longer than for the other side 

because of repair work that has been done on the bottom side. 

4. The extent of carbonation is typically assessed by examining concrete cores. In this 

study, however, it was possible to conduct carbonation test on cross-section cutting-

off girders of an existing bridge. The carbonation tests yielded a considerable amount 

of information, but the results exhibited vary greatly. Therefore, the results of the 

remaining life prediction of concrete cores were verified by the results of cross-

section cutting-off girders. The remaining life prediction obtained based on of 

concrete cores was similar to those obtained based on cross-section cutting-off girders, 

which represent the entire span of the bridge. 

6.2  Future work 

 This thesis introduces the details of how to predict the remaining life of an aged RC-T 

girder bridge based on carbonation test, and try to establish the method to predict the 

remaining life based on the chloride ion and carbonation tests results from the concrete 

cores and cross-section cutting-off girders by using the averages results. There are still 

several problems that should be considered. A few suggestions as to the future work can 

be given as follows: 
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1. The results of carbonation depth measurement in an actual bridge exhibited vary 

greatly. To estimate the remaining life prediction in this thesis using averages results 

of carbonation depth. Further consideration on using the statistical approaches to 

examine the results of carbonation depth in order to estimate the remaining life. 

2. The correlation of remaining life prediction between concrete cores which represent 

the local evaluation and cross-sections cutting-off girders which represent the entire 

span of the bridge were not clearly define. In future work, using statistical evaluations 

in the correlation between concrete cores and cross-section cutting-off girders are 

expected to derive more accurate results. 

3. This research is the part of SK Bridge research, and in this dissertation, the discussion 

only concentrated to establish the method to estimate the remaining life prediction 

from the material point of view, such as chloride ion and carbonation investigation. 

However there is also a data on axial compressive strength which was obtained from 

the concrete cores. Further consideration to discuss the remaining life prediction from 

the mechanical/structural point of view. 
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