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 (fatty acid-binding proteins: FABPs) 

FABP7

FABP7

FABP7  (FABP7-KO) lipopolysaccharide (LPS) 

toll-like receptor 4 (TLR4) 

 (mitogen-activated protein kinases (MAPKs) nuclear factor-kappa B 

(NF- B)) tumor necrosis factor-  (TNF- ) 

FABP7-KO glial cell-line derived neurotrophic factor (GDNF) 

GDNF family receptor -1 (GFR 1) 

FABP7-KO

caveolin-1

FABP7-KO

caveolin-1

early endosome antigen-1 (EEA-1) 

FABP7-KO caveolin-1

FABP7 caveolin-1



FABP7



 (Simons and 

Toomre 2000)

 (Yamada 1955)

 (caveolin) 

(Parolini et al. 1999; Rothberg et al. 1992)  (cavin) 

 (Bastiani et al. 2009; Izumi et al. 1997; Mineo et al. 1998; 

Vinten et al. 2001) cavin-1 caveolin

 (Harvey and Calaghan 2012; Voldstedlund 

et al. 2003) (Fig. 1)

Fig.1. Structure of caveolae and its compornents Caveolae are specialised lipid rafts 

enriched in cholesterol and sphingolipids, characterised by the presence of caveolin and 

cavin proteins. Cartoon of a caveolae depicting the organisation of caveolin (red) and 

cavin (green) proteins. Figure taken form “Harvey et al. 2012” with modification. 



TLR4

LPS Toll/IL-1R (TIR) 

domain-containing adapter protein TIR domain-containing adapter inducing 

IFN- -related adapter molecule

MAPKs NF- B  (Allen et al. 2007; Piao et al. 2013; 

Triantafilou et al. 2002) (Fig. 2)

Fig.2. Membrane organization of transmitter signaling molecules The lipid raft 

signalling proposes that microdomains spatially organize signalling molecules at the 

membrane to promote kinetically interactions that are necessary for signal transduction. 

Alternatively, lipid raft microdomains inhibit interactions by separating signalling 

molecules, thereby dampening signalling responses. Figure taken form “Allen et al. 

2007”. 



GDNF  (Tansey et al. 2000; Trupp et al. 

1999) epidermal growth factor (EGF)  (Hofman et al. 2008) RAS

 (Roy et al. 1999)  (Mastick et al. 1995)

 (Incardona and Eaton 2000) 

 (Benveniste 

1998)

 (Cannella and Raine 1995)  (Akiyama 

et al. 1993)  (Dong and Benveniste 2001) 

 (polyunsaturated fatty 

acids: PUFAs)  (Williams et al. 2012)

 (docosahexaenoic acid: DHA) 

 (eicosapentaenoic acid: EPA) n-3 PUFAs

 (Schley et al. 2007)

 (Lauritzen et al. 



2000)  (Fan et al. 2004)  (Jolly 

et al. 1997) T  (Arrington et al. 2001) 

n-3 PUFAs  (Kremer et al. 1985)

 (Arm et al. 1988)  (Weinstock-Guttman et al. 2005)

 (Vedin et al. 2012)  (Peet 2004) 

PUFAs

PUFAs

 (Fatty 

Acid Binding Protein: FABP) PUFAs

14-15 kDa FABP

 (Jefferson et al. 1990)  (Glatz et al. 1995)

(Furuhashi and Hotamisligil 2008) 

peroxisome proliferator-activated receptor

 (Wolfrum et al. 2001) (Fig.3) FABP 12

FABP7 brain-typed FABP  (Owada et al. 1996) 

FABP7

 (Watanabe et al. 2007) FABP7

(FABP7-KO)

(Owada et al. 2006)  (Kipp et al. 2011)

 (Teunissen et al. 2011) FABP7



FABP7

FABP7

FABP7-KO

FABP7

Fig. 3. Cellular functions of FABPs Scheme showing putative cellular functions of 

FABPs through trafficking of fatty acids to specific compartments in the cell such as 

membrane (composition of phospholipid); mitochondria (oxidation); endoplasmic 

reticulum (ER stress); cytosolic (intracellular signaling); nucleus (transcriptional 

regulation via several transcriptional factors).  



FABP7

FABP7-KO

FABP7

LPS-TLR4  (TLR4

) (Fig. 4) FABP7

FABP7

FABP7

 ( ) 



Fig. 4. LPS-TLR4 signaling Scheme shows well-known LPS-TLR4 signaling cascade. 

LPS induces TLR4 recruitment into lipid rafts (caveolae), activation of its downstream 

cascade including MAPKs and NF- B signaling and production such as TNF- . In this 

study, we focused whether FABP7 is involved in these cascades.    



4-1.

anti-mouse FABP7

(Abdelwahab et al. 2003) anti-caveolin-1 glial fibrillary acidic protein (GFAP)

(Cell Signaling Technology, MA, USA) anti-cavin-1 cavin-3  (Abcam, 

Cambridge, England) anti-early endosome antigen-1 (EEA-1)  (BD Transduction 

Laboratories, CA, USA) goat anti-rabbit IgG-Alexa488

goat anti-guinea-pig IgG-Alexa 555 goat anti-rat IgG-Alexa568 (Life Technologies, CA, 

USA) 

anti- total-I B- p38 MAPK

phospho-p38 MAPK (Thr180/Tyr182) SAPK/JNK phospho-SAPK/JNK 

(Thr183/Tyr185) p44/42MAPK (Erk1/2) phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204)  (Cell Signaling Technology, MA, USA) anti-non-phospho- 

I B- TLR4 GFR 1 caveolin-1 flotillin-1 -actin  (Santa Cruz Biotechnology, 

TX, USA) anti-cavin-1 cavin-3 (Abcam, Cambridge, England) 

horseradish peroxidase (HRP)-conjugated goat-anti rabbit IgG

HRP-conjugated goat anti-mouse IgG  (Merck Millipore, MA, USA) 

 (Table 1)



Table.1 List of primary antibodies used in this study 

4-2. 

C57BL/6J  ( ) 

FABP7-KO

 (Owada et al. 2006) 0.8 mg/ml 

protease K (Promega, WI, USA) DNA PCR

common 5’: aggcagcagcttctgctgag, wild 3’: tgtcagcttccaggttgcgc, 

mutant 3’ ggtcagcttgccgtaggtgg

12 12



4-3. 

FABP7-KO

Sharifi  (Sharifi et al. 2011)

 (P0-1) 20 

mM D-glucose 1 Penicillin-Streptmycin (Gibco, USA) Hanks’ balanced 

salt solutions (Sigma, USA) 

0.25% trypsin (Gibco) 37 10

10% fetal bovine serum (FBS) (Hyclone, USA) 1% 

Penicillin-Streptmycin Dulbecco’s modified Eagle’s medium (DMEM, 

Invitrogen, USA) 

100 m  (Falcon, USA) 1300  rpm 5

DMEM T75

 (Falcon) 20×106 37 5% CO2

Bio-Shaker (Taitec, USA) 

200 rpm/min, 24

2

0.05%trypsin

2×105 /ml

95 anti-GFAP



4-4. 

24 1% 

FBS, 1% Penicillin-Streptmycin DMEM

LPS (Escherichia coli O111:B4 Sigma-Aldrich Japan) GDNF (Pepro Tech Inc. 

NJ, USA) Semple LPS 10-10000 ng/ml

0 24  (Semple et al. 2010) Pierchala

GDNF 50 ng/ml 10

 ( ) Murphy

N,N-Dibutyladenosine 3',5'-phosphoric acid (db-cAMP, Sigma-Aldrich 

Japan) 250 M 21 3 db-cAMP

 (Murphy et al. 1997)

FABP7 Liao

Madeira

MG132 (Sigma-Aldrich Japan) 5 M 24

MG132 0.1 DMSO

(Liao et al. 2013; Madeira et al. 2011)

4-5. 

MTS [3-(4,5-dimethylthiazol-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] 

MTS CellTiter 96 Aqueous 

nonradioactive cell proliferation assay kit (Promega) 

490 nm Multi-Spectrophotometer (Viento

) KC4TM version3.0 software



4-6. ELISA TNF-

LPS 1,000 rpm, 10 4°C

-20 TNF-  ELISA kit (R&D 

system) TNF-

490 nm Multi-Spectrophotometer (Viento ) KC4TM version 

3.0 software

4-7. Real-time PCR

RNeasy plus Mini kit (Qiagen) total RNA

total RNA

 (Promega) DU 640 spectrophotometer (Beckman coulterTM, USA) 

RNA anchored-oligo(dt)18

Transcriptor High Fidelity cDNA Synthesis Kit (Roche, Suisse) 

Real-time PCR Applied Biosystems 

StepOnePlusTM real-time PCR system (Applied Biosystems, USA) 

TaqMan  (Applied Biosystems) glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH): Mm03302249_g1, FABP7: Mm00445225_m1, TNF- : 

Mm00443258_m1, TLR4: Mm00445273_m1, GFR 1: Mm00439086_m1, caveolin-1: 

Mm00483057_m1, caveolin-2: Mm00516827_m1, cavin-1 (Ptrf): Mm00477266_m1, 

cavin-2 (Sdpr): Mm00507087_m1, cavin-3 (Prkcdbp): Mm00466330_g1, cavin-4 

(Murc): Mm00471507_m1 and flotillin-1: Mm01275485_m1

GAPDH Ct  (cycle threshold) Ct

Ct Ct Ct

Applied Biosystems StepOnePlusTM real-time PCR system software v2.0 (Applied 



Biosystems) 

4-8. 

LPS

LPS (1,000 g/mL) 4

FABP7-KO 3 RNA integrity number (RIN) 

9.5 RIN RNA6000 nano kit

Agilent 2100 Bioanalyzer (Agilent, CA, USA) 

GeneChip® Mouse Gene 1.0 ST Array (Affymetrix) Ambion® 

WT Expression kit (Life Technologies) Affymetrix® GeneChip® WT Terminal 

Labeling kit (Affymetrix) 200 ng total RNA cDNA

GeneChip® system (Affymetrix) Partek® Genomics Suite 6.5 (Partek, MO, 

USA) 

4-9. 

Park Wong

 (Park et al. 2009; Wong et al. 2009)

8×106  (PBS) 2 MEB buffer 

(20 mM 2-Morpholinoethanesulfonic acid, monohydrate (MES) (Sigma-Aldrich Japan), 

150 mM NaCl, 1% Triton-X protease inhibitor (Roche, Suisse), pH6.5) 1.5 ml

10

13 PET  (HITACHI, Japan) 80%

/MEB buffer 30% /MEB buffer

5 ml 5% /MEB buffer 3ml P40ST



 (HITACHI) 4 21 40000 rpm

1 ml

/  ( 15%) 

SDS-PAGE sample buffer

4 7 8 11

BCA

4-10. 

 (Roche Diagnostics, Mannheim, 

Germany) SDS-PAGE sample buffe BCA protein 

Assay Kit 10%  15% 

SDS-polyacrylamide Immobilon-PSQ polyvinylidene difluoride 

membrane (Millipore, USA) 5% BSA 

(Wako, Japan)  0.1% Tween-20 (Wako) Tris-buffered saline

1 4

1 ECL kit (Amersham Pharmacia Biotech, Piscataway, NJ, 

USA) NIH image J



4-11. 

PBS 2 4% 5

0.1% Triton X-100/PBS 30

5%

1 4

1 4',6-diamidino-2- 

phenylindole (DAPI, life Technologies, CA, USA) 

 (Zeiss LSM510META, Carl Zeiss, Oberkochen, Germany) 

Caveolin-1 Zen software (Carl Zeiss) 

40 m 2 m

1 10 10

caveolin-1 EEA-1

Ippolito NIH Image J Puncta analysis

FABP7-KO

4-12. 

Head Amplex  Red cholesterol 

assay (Life Technologies) BCA



4-13. 

FABP7-KO FABP7

caveolin-1

BLOCK-iT Inducible PolII miR RNAi expression vecor kit with EmGFP (Life 

Technologies) 

cDNA FABP7 cDNA caveolin-1 

cDNA PCR pDONR221

pENTR™-mFABP7 ( mCav-1) 

pENTR5/CMV promoter pLenti6.4/R4R2/V5- DEST

pLenti6.4/CMV/mFABP7 ( mCav-1) 

293FT 10% FBS 1% penicillin-streptomycin 1% sodium pyruvate (Wako, 

Tokyo, Japan) 1% non-essential amino acids (Sigma Aldrich Japan) DMEM

Lipofectamine 2000 (Life Technologies) pLenti6.4/CMV/ 

mFABP7 ( mCav-1) 72

Lenti-X p24 Rapid Titer Kit (Takara Bio Inc. Tokyo, Japan)

1×105 pg/mL

LacZ

pLenti6.4/CMV/LacZ

4-14. 

± 2 student’s t-test

one-way ANOVA

(Tukey's test) 5



5-1. FABP7-KO

LPS TLR4

 (Wong et al. 2009) n-3

 (Lee et al. 2003; Wong et al. 2009) 

LPS TLR4 FABP7

FABP7 LPS

 (Fig. 5A, B) FABP7-KO

LPS 10 TLR4

 (Fig. 5D, E) FABP7-KO TLR4

 (Fig. 5C)

flotillin-1 FABP7-KO

 (fraction 4 7) LPS

 (Fig. 5D, F) TLR4

 (fraction 8-11) 

TLR4 FABP7-KO

LPS TLR4

 (Fig. 5G, H, I)





Fig. 5. FABP7-deficiency in astrocytes decreased the recruitment of TLR4 into lipid 

raft fractions after LPS stimulation.

(A) Protein level of FABP7 in astrocytes in the presence or absence of LPS was 

evaluated by Western blotting. Astrocytes were stimulated with LPS (1,000 ng/mL) for 

0, 1, 4, 8, 12 and 24 h. Total proteins from WT and FABP7-KO olfactory bulb were 

used as a positive and a negative control, respectively. Band density was analyzed using 

NIH-Image J. -actin was used as loading control. (B) Localization of FABP7 in 

astrocytes before and after LPS stimulation for 10 min was examined by 

immunofluorescence staining. (FABP7 (green), nucleus (blue)), scale bar: 50 m (C) 

Protein level of TLR4 in astrocytes in the presence or absence of LPS was evaluated by 

Western blotting. (D) Recruitment of TLR4 and accumulation of flotillin-1 to lipid raft 

fractions 10 min after LPS stimulation were measured by Western blotting. The 9 

fractions from the top of gradient were shown. Coomassie brilliant blue staining showed 

that the proteins of lipid raft fractions from WT and FABP7-KO astrocytes were equally 

isolated and loaded in SDS-PAGE. (E, F) The sum of fraction 4-7 density of TLR4 and 

flotillin-1 were analyzed using NIH-Image J. (G) The levels of TLR4 and flotillin-1 in 

total pool, lipid raft fraction pool and non-lipid raft fraction pool with or without LPS 

stimulation for 10 min were measured by Western blotting. (H, I) Band density of TLR4 

protein levels in lipid raft pool and non-lipid raft pool was analyzed using NIH-Image J. 

Data shown are the means ± s.e.m. and representative of 3 independent experiments. 

*p<0.05; Student’s t-test versus WT astrocytes 



FABP7

GFR

GFR FABP7-KO

 (Fig. 6C) FABP7-KO GDNF

GFR  (Fig. 6A, B)

GDNF GFR FABP7- 

KO  (Fig. 6C, D, E)

FABP7-KO



Fig.6. FABP7-deficiency in astrocytes decreased the accumulation of GFR 1 in lipid 

raft fractions after GDNF treatment. (A) Accumulation of GFR 1 in lipid raft fractions 

10 min after GDNF treatment (50 ng/ml) was evaluated by Western blotting. Coomassie 

brilliant blue staining showed that the proteins of lipid raft fractions from WT and 

FABP7-KO astrocytes were equally isolated and loaded in SDS-PAGE. (B) The sum of 

fraction 4-7 density of GFR 1 before and after GDNF treatment were analyzed using 

NIH-Image J. (C) The levels of GFR 1 and flotillin-1 in total pool, lipid raft fraction 

pool and non-lipid raft fraction pool with or without GDNF treatment for 10 min were 

evaluated by Western blotting. (D, E) Band density of GFR 1 protein level in lipid raft 

pool and non-lipid raft pool was analyzed using NIH-Image J. Data shown are the 

means ± s.e.m. and representative of 3 independent experiments. *p<0.05; Student’s 

t-test versus WT astrocytes 



5-2. FABP7-KO

FABP7-KO

LPS TLR NF- B

MAPKs MAPKs (ERK1/2 (ERK)

p38MAPK (p38) SAPK/JNK (JNK)) 

FABP7-KO LPS 30 ERK p38

JNK  (Fig. 7A) I B-

FABP7-KO

LPS 30 I B-  (Fig. 7A)

I B-  ( I B- I B- ) 

FABP7-KO  (Fig. 7A)

FABP7-KO NF- B

NF- B MAPKs

LPS 4

 (TNF- , interleukin-6 (IL-6)  chemokine 

(C-C motif) ligand 7 (CCL7)  C-X-C motif chemokine 5 (Cxcl5) monocyte 

chemotactic protein-1 (MCP-1)) FABP7-KO

 (Fig. 7B) LPS TNF-  mRNA

Real-time PCR TNF- ELISA

TNF- FABP7-KO

 (Fig. 7C, D, E)

LPS MTS



FABP7-KO

 (Fig. 8)

Fig. 7. FABP7-deficiency in astrocytes decreased the activity of MAPKs (p38, ERK1/2, 

JNK) and NF- B, and TNF-  production after LPS stimulation. (A) Induction of 

phosphorylation of p38MAPK, ERK1/2, SAPK/JNK and I B-  after LPS stimulation 

(1,000 ng/mL) was examined by Western blotting. The non-phospho-I B-  antibody 

detected just non-phospho-protein and total I B-  antibody detected both phospho- and 

non-phospho-I B- . The p38MAPK, ERK1/2, and SAPK/JNK antibodies detected total 

protein. (B) Gene expression of TNF- , IL-6, Ccl7, Cxcl5 and MCP1 4 h after LPS 

stimulation was examined by microarray analysis. (C) Gene expression of TNF- was 

examined by qPCR. (D, E) Production of TNF-  after LPS stimulation was measured 

by ELISA. (D) Astrocytes were stimulated with LPS for 24 h. (E) Astrocytes were 

stimulated with LPS (1,000 ng/ml). Data shown are the means ± s.e.m. and 

representative of 3 independent experiments. # p<0.05; one-way ANOVA versus 

non-treated WT astrocytes, *<0.05; Student’s t-test versus WT astrocytes 



Fig. 8. Cell viability did not change after LPS stimulation between WT and 

FABP7-KO astrocytes. To evaluate the cell viability of WT and FABP7-KO astrocytes 

after LPS stimulation, the MTS assay (A, B) and trypan blue exclusion test (C, D) were 

performed. (A, C) Astrocytes were stimulated for 24 h with LPS (0, 10, 100, 1000 and 

10000 ng/ml). (B, D) Astrocytes were stimulated with LPS (1,000 ng/ml) for 0, 4, 8, 12 

and 24 h. 



5-3. FABP7-KO caveolin-1

Caveolin cavin flotillin-1 ( )

 (Bucci et al. 2000; Mundy et al. 2012)

caveolin-1 2 cavin-1 2 3 4 flotillin-1

real-time PCR caveolin-1 cavin-3

flotillin-1  (Table 2)

Table 2. The mRNA expression of caveolin-1, but not caveolin-2, cavin-1, 2, 3, 4 or 

flotillin-1 was decreased in FABP7-KO astrocytes before and after LPS stimulation.

The mRNA expression of caveolae-related molecules in WT and FABP7-KO astrocytes 

before and after LPS stimulation for 4 h was evaluated by qPCR. Data shown are the 

means±s.e.m. and representative of 3 independent experiments. *p<0.05; Student’s 

t-test versus WT astrocytes 

**



FABP7-KO caveolin-1 cavin-1 cavin-3

flotillin-1

FABP7-KO caveolin-1 LPS

cavin-1 cavin-3 flotillin-1  (Fig. 

9A) FABP7-KO caveolin-1

 (Fig. 9B)

caveolin-1

(Hayer et al. 2010b) FABP7-KO

caveolin-1

MG132 caveolin-1

MG132 FABP7-KO

caveolin-1  (Fig. 9C) FABP7-KO

caveolin-1



Fig. 9. FABP7-deficiency in astrocytes decreased the expression of caveolin-1. 

(A) Protein levels of caveolin-1, cavin-1, 3 and flotillin-1 with or without LPS 

stimulation (1,000 ng/mL) in total cell lysates were measured by Western blotting. Band 

density was analyzed using NIH-Image J. (B) Gene expression of caveolin-1, cavin-1, 

cavin-3 and flotillin-1 after LPS stimulation was examined by qPCR. (C) The level of 

caveolin-1 after treatment of MG132 (5 M) for 24 h was evaluated by Western blotting. 

Band density was analyzed using NIH-Image J. Data shown are the means ± s.e.m. and 

representative of 3 independent experiments. *<0.05; Student’s t-test versus non-treated 

WT astrocytes 



caveolin-1 cavin-1 cavin-3

caveolin-1

FABP7-KO

 (Fig. 10A, B, C, D, E, F)

Fig. 10. FABP7-deficiency in astrocytes decreased the accumulation of caveolin-1 in 

lipid raft fractions. (A) Accumulation of caveolin-1, cavin-1, 3 and flotillin-1 with or 

without LPS stimulation for 10 min in lipid raft fractions was measured by Western 

blotting. Coomassie brilliant blue staining showed that the proteins of lipid raft fractions 

from WT and FABP7-KO astrocytes were equally isolated and loaded in SDS-PAGE. (B, 

C, D) The sum of fraction 4-7 density of caveolin-1 (B), cavin-1 (C) and cavin-3 (D) 

were analyzed using NIH-Image J. (E) The levels of caveolin-1 and flotillin-1 in total 

pool, lipid raft fraction pool and non-lipid raft fraction pool with or without LPS 

stimulation for 10 min were evaluated by Western blotting. (F) Band density of 

caveolin-1 protein levels was analyzed using NIH-Image J. Data shown are the means ± 

s.e.m. and representative of 3 independent experiments. *p<0.05; Student’s t-test versus 

WT astrocytes 



5-4. FABP7-KO

caveolin-1

 (Mundy et al. 2012) FABP7-KO

caveolin-1

FABP7-KO

caveolin-1

 (Fig. 11A, B) cavin-1, cavin-3  (Fig. 

11A) caveolin-1

EEA-1  ( ) (Li et al. 2013) FABP7-KO

 (Fig. 11C, D, E) FABP7-KO

caveolin-1

caveolin-1

 (Head et al. 2011) FABP7-KO

 (Fig. 11H)

FABP7-KO  (Fig. 11F)

FABP7-KO  (Fig. 11G)

FABP7-KO caveolin-1



Fig. 11. FABP7-deficiency in astrocytes affected the caveolin-1-positive early 

endosome and the levels of cholesterol in lipid raft fractions. (A) The localization 

and expression of caveolin-1, cavin-1 and cavin-3 were evaluated by 

immunofluorescence staining. scale bar: 50 m (B) Fluorescence intensity of caveolin-1 

in the membrane and cytoplasm was evaluated by Zen software. (C) The expression of 

EEA-1 and co-localization of EEA-1 with caveolin-1 were evaluated by 

immunofluorescence staining (caveolin-1 (green), EEA-1 (red)). scale bar: 50 m (D, 

E) The levels of EEA-1-positive compartments and co-localization of EEA-1 with 

caveolin-1 were analyzed using puncta analyzer. (F, G, H) The levels of cholesterol in 

lipid raft (fraction 4-7), in non-lipid raft (fraction 8-11) and in total cells were evaluated. 

Data shown are the means ± s.e.m. and representative of 3 independent experiments. 

*<0.05; Student’s t-test versus WT astrocytes 



5-5. Caveolin-1 FABP7-KO

FABP7 caveolin-1

FABP7-KO

caveolin-1

FABP7-KO

FABP7 caveolin-1

(Fig. 12A) caveolin-1

 (Fig. 12B) caveolin-1

FABP7-KO caveolin-1

LPS TLR4 TNF-

 (Fig. 12C) FABP7-KO

caveolin-1



Fig. 12. Rescue expression of caveolin-1 in FABP7-KO astrocytes improved TLR4 

recruitment into lipid raft fractions and TNF-  production after LPS treatment.

(A) The levels of FABP7, caveolin-1 and TLR4 in FABP7-reexpressed- and caveolin-1- 

transfected-FABP7-KO astrocytes were evaluated by Western blotting. LacZ-expressed 

FABP7-KO astrocyte (CTRL) was used as control. Band density of caveolin-1 protein 

level was analyzed using NIH-Image J. (B) The localization and expression of 

caveolin-1 in FABP7-reexpressed FABP7-KO astrocytes were evaluated by 

immunofluorescence staining. scale bar: 50 m (C) Recruitment of TLR4 and levels of 

caveolin-1 and flotillin-1 in lipid raft fractions 10 min after LPS stimulation in 

caveolin-1-transfected FABP7-KO astrocytes were measured by Western blotting. 

Coomassie brilliant blue staining showed that the proteins of lipid raft fractions from 

caveolin-1-transfected FABP7-KO and CTRL were equally isolated and loaded in 

SDS-PAGE. (D) Production of TNF-  after LPS stimulation in FABP7-reexpressed- and 

caveolin-1-transfected FABP7-KO astrocytes was measured by ELISA. Data shown are 

the means ± s.e.m. and representative of 3 independent experiments. *<0.05; Student’s 

t-test versus LacZ-expressed FABP7-KO astrocytes  



 (Murphy et al. 1997)  (Baskin et al. 1997) 

db-cAMP FABP7-KO

 (Fig. 13)

FABP7

caveolin-1 LPS TNF-  (Fig. 14)

FABP7-KO caveolin-1

LPS TNF-

 (Fig. 14)



Fig. 13. There was no obvious morphological change before or after LPS stimulation 

between WT and FABP7-KO astrocytes cultured for 7 days or 21 days even though 

treated with db-cAMP. Morphology of primary cultured astrocytes was observed by 

phase-contrast microscopy. Astrocytes were treated with db-cAMP (250 M) for 7 days 

(7 DIC) or 21 days (21 DIC) after passage. At 7 DIC and 21 DIC, astrocytes were 

stimulated with LPS (1,000 ng/ml) for 4 h. scale bar: 100 m 



Fig. 14.  The mRNA expression of TNF- , caveolin-1 and FABP7 was decreased in 

WT astrocytes at DIC 21 compared with at DIC 7, and the difference in TNF-  and 

caveolin-1 levels between WT and FABP7-KO astrocytes was not detectable at DIC 

21. The mRNA expression of TNF-  (A), caveolin-1 (B) and FABP7 (C) was measured 

by qPCR. Astrocytes were treated with db-cAMP (250 M) for DIC 7 or DIC 21 after 

passage. At 7 DIC and 21 DIC, astrocytes were stimulated with LPS (1,000 ng/ml) for 4 

h. Data shown are the means ± s.e.m. and representative of 3 independent experiments. 
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Fig.15. Schematic illustration depicting the putative functions of FABP7 in the 

astrocytes (A) In WT astrocyte, FABP7 regulates the caveolin-1 gene expression. The 

receptors recruit into lipid rafts in response to the stimuli, and the downstream signaling 

is initiated. FABP7 suppresses the degradation of caveolin-1. (B) In FABP7-KO 

astrocyte, the decreased expression of caveolin-1 impaired lipid raft function and its 

downstream signaling. 
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