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We discuss on the worldwide famous Sudoku puzzule by using mathematical
approach. In this paper we discuss on some basic techniques in Sudoku.

This paper is the second paper in our series, so we use the same notations
and terminologies in [1] without any descriptions.

4. Intersectable systems.

Let S={s1,52...,5,,}, T={t1,t3...,t,}CBLK for n,1=n<9. The pair (5,T) is
intersectable n —system provided that it satisfies the following conditions:

(i) s;ns;=¢, t;Nt;=¢ 1<i<n1<j<n,ixj

(i) s;nt;x¢, 1<i=nl<j=<n

(iii) s=s;UsyU...Us, , =t UfU...UL,.

We discuss on intersectable systems in this paper. First, we need the following.
Proposition 13. Let scbe BLK. For each K =(K,)qe eSMTX(f,f,), we

Ty1xJy
have that
(@) Jz—K.cflb—s).
Proof. Since K is a sudoku matrix associated with ( f,f,), we have
(1) flayeK, for eachaes,
By (1) we have
2) fls)=U{fle):aeslcU{K,  acs}=K..
Then by (2) we have
@) Js—f(s)D]5—
On the other hand, by (SDM), f | b:b— ], is bijective. Thus we have that
@) Js=fb)=f(s)U flb—s), fs)Nflb—s)=9¢.
By (4) we have that
©) Js—f(s)=f(b—s).
By (3) and (5), we have that
6) flb—s)D]3—

Hence, we show Proposition 13.

Under the conditions (i)—(iii) we show the following:
Proposition 14. Let K =(K eSMTX(f,fo) and (S,T) be an intersectable

a)aejlez

n—system. Then we have that

(b) Js—K,_,cJ;— flt—s),and

(€ J3—K, .CJ3— fls—1).

Proof. We show the condition (b). We assume that the condition (b) does not
hold. Thus there exists a k= J; such that

(1) keJ;—K,_,and k& J3— flt—3s).
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We have that
(2> n{]S_ Ksj—sjnt:jz 1,2,...,%} = n{]ﬂ._ Ksj—t:jz 1,2,...,”}
=J;— U{Ksift:]'=1,2,---”} =]3—Ku{s/.4:j=1,2 ..... n} =]3—Ku{s/.:j=1,2 ..... nj—t
=]3_Ks—t'
By (1) and (2), we have that
(3) ke n{jg—Ksj_sjm:jz 1,2,...,n} and ke f(t —s).

Now, take each i. Thus we have that
4) s;Nnt=s;,n(HUtU..UL,)=(s;NH)U(s;NE)U...U(s;NE,).
Since s;eBLK, by (4) and Proposition 13 we have that
©) Js—M, .0 Cf(siNt)=fs:iNt)U f(s;NEx)U...U f(s;N¢E,) and
(6) f|s;:s~];is bijective.
By the condition (i), for each j=j’, wehave(s;N¢;)N(s;Nt;)=s;Nt;Nt;=¢.
Thus by (6) we have that
(7) f(sint)Nnf(s;Nt;)=¢ for j=j".
By (3) we have that ke J;— M - Therefore by (5),(7) there is the unique j;

such that
8) l=j,=mandkef(s;Nt;).

Moreover by (6) and (8) there is the unique «;
9) @;;es;nt; and fla;;)=k.

. such that

J

Now, we put j(k)={j1,j3-.-.7,} and show the following:

Claim 1. jk)={j1,Jarn) =11,2ye,m}.

Proof of Claim 1. By (8) we have that j(k)c{1,2,..,n}. We assume that Claim 1
does not hold. Since jk)={j1,jzrJn} *{1,2,..,n} by the assumption, there are
i1, 15 such that

10) iy=i, 1=i,=n,1<i,=n, j; =j,-

Here, weput j*=j; =j;,. By (9) we have that
1) @, .€s;Nt., f(ailyj*)zk and

(12) aizyj*esizntj*, f(a ):k.

iy
We show that

13) a. .xa. ..
iyJ ig,]

We assume that (13) does not hold, that is, A = e By (11) and (12) we have

i
that

(14) Q o= aiz’j*e(si1 N tj,,> N (si2 N t],*)CS,‘1 nsi,
By (i) and (10), we have that $iNs;,= ¢ . This contradicts to (14). Hence we have

(13).

Alsoby (11)and (12) we have that

(15) a. .et., a .Et. ,f(aA .*):k,f(a
StV J J 19,

Since tj*eBLK, by (SDM) we have that

)zk.

inJ” ig "
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(16) f | t.it—J5 s bijective.

However, (13) and (15) contradict to (16). Hence we complete the proof of Claim 1.

Now we back to the main proof. By (3) we have that
(17) ke fit—s)= f(t,Ut,U ..Ut — ) = f((t,— s)U(ty— s)U...U(t, — $))
=f(ty—s)U fta—s)U..U f(t,—s).
Thus, by (17) there exists a j/ such that
(18) 1=j'=n and ke f(t; —s).
By Claim 1 there exists an ¢’ such that
(19 1<i’<n and j, =j'.
By (9) and (19) we have that
(20) a;/ ;€s;,Nt; and fla; ;) =k.
By (18) we have that
(21) kef(t;—s)=f(t;—s;Us,U...Us,)=f((t;, —s)N(t;—Ss)N..N(t;—5,))
CAtp—s)N ft;—s)N..Nf(t; —s,).
By (21) we have that
22) ke f(t;—s;).
By (22) there exists an a* such that
(23) a*et; —s; and fla*)=k.
Since a*et; —s; =t;—s;Nt;, by (20)and (2 )we have that
24) ;. j,a* €t ;% af, fla; ;)= fla*)=
On the other hand, since ¢;; € BLK, by (SD )
(25) f | t;:t;—]51s bijective.
However (24) contradicts to (25). Thus we have the condition (b).
Since our conditions (i)—(iii) are symmetrical, similarly we have(c). Hence we
complete the proof of Proposition 14.

Proposition 15. Let K =(K,) eSMTX(f,f,) and (S,T) be an intersectable

€ sy,

n—system. Then K'=(K'y)ee, , €SMTX(f,fo) and K'< K, where K’ is defined
1772

as follows:

K, for ae(J1X J,—sUt)U(sNt)
<1V> K/az KanKt—s:Ka_<]3_Kt—s> f07 ass—sNt

K.NK, ,=K,—(J;—K, ) for ast—snt

In notation, we put K'=T(S,T)(K).
Proof. Since KeSMTX(f,fo), by (SMTX)we have that
(1) fla)eK, for eachaes J,X J,.

By (iv) and (1) we have that
2) fla)eK, =K', for ac(J;X J,—sUHU(sNt).
Takeany ast—snNt=t—s and thus f(a)e f(t—s), that is, we have
@) fla)s J3— flt—s).

Since J,— K,_,C J;— f(t—s) by Proposition 14, by (3) we have that
@) fla)s];—

By (1),(4) we have that
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6) fla)eK,~(Js— K, ).
Since K,—(J;— K, )=K.Nn(J3—(J;—K,_))=K.NnK, ;=K’,, by (5) wehavethat
6) fla)eK’, for act—snt=t—s.
Takeany aes—snNt=s—t and thus fla)e f(s—¢), that is, we have
@) fl@)S J5— fls—1).
Since J;— K,_,C J;— f(s—1t) by Proposition 14, by (7) we have that
@) fla)& J3— K, .
By (1),(8) we have that
9) fla)eK,~(Js—K,_,).
Since K,—(J;— K, )=K.N(J3—(J;—K;_))=K.NnK, ;=K’,, by(9) wehavethat
(10) fla)e K’, for aecs—sNt=s—t.
By (2),(6) and (10) we have that K’ satisfies the condition (SMTX) and thus
K'eSMTX(f,f,). By the definition (iv), K'< K. Hence we complete the proof of
Proposition 15.

Proposition 16. Let KeSMTX(f,) and (S,T) be an intersectable n —system.
Then K'=T(S,T\(K)=SMTX(f).

Proof. Since K eSTMX(fo)=N{STMX(f,fo): f€SOL(f)}, for each feSOL(f,),
K eSTMX(f,f,). Thus, by Proposition 15, K'eSTMX(f,f,) for each feSOL(f,),
that is, K’'eSTMX(f,). Hence we show Proposition 16.

Remark 17. In the latter paper we classify pairs of intersectable » —systems.
Many cases give useful grid analysis techniques in sudoku. For example, X —
wing, Swordfish are appeared as the special type of intersectable 2—system,
intersectable 3—system, respectively. However, our representations of
intersectable 2—system, intersectable 3—system and representations of X —
wing, Swordfish are completely different, because we have the concept of
sudoku matrices.

5. Transformations of sudoku matrices.

For eachn,1=<n<9,weput SFS(n)={(s,b):b€BLK,sCb and |s|=n}and SFS
=Uj_,SFS(n).

Alsowe put IS(n)={(S,7):(S,T) is a pair o f intersectable n — system o f BLK}
and IS=U%_,IS(n). Weput BTOOL=SFSUIS. Notethat|BTOOL| <1.95
x 10,

For each we BTOOL wedefinea map T,:STMX(f,fo)—>STMX(f,f,) and a
map T,:STMX(fo)—>STMX(f,) as follows:

Let @ =(s,0)eSFS(n)c BTOOL. For each K=(K,) eSMTX(f,fo),

€ J %),
- nNSF((s,b),K) if |K|=lIsl=n

=1k if |K|=lsl=n"
Let w =(S,7)eIS(n)cIS. For eachK=(K,) eSMTX(f,fy),

XE J i),

T(K)=T(S,T)K).
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Now, weput TRF={T,:0€BTOOL}. Since BTOOL is a finite set, TRF is
also finite.

Proposition 18. For each we BTOOL, we have the followings:
(a) T(K)eSMTX(f,f,) for each KeSMTX(f,f).
(b) T,(K)=<K for each KeSMTX(f,fo)-
(c) T(L)=T,K) for each K,LeSMTX(f,f, with L<K.
(d) T(K)eSMTX(f,) for each KeSMTX(f).
(e T,K)<K for each KeSMTX(f,).
(f) T,L)=T,K) for eachK,LeSMTX(f,) with L<K.
Proof. The facts (a) and (b) follow from Proposition 5 and Proposition 15.
We show the fact (c). Takeany K={K,,},,E]1X/2, L={La}aejlezeSMTX(f,f0)

with LK. We must consider the following cases:

Casel. w=(s,b)eSFS(n) for somen and |K |=|s|=#.

Case2. w=(s,b)SFS(n) for somen and |K | =|s|=n.

Case3. w=(S,T)eIS(n)for some xn.

First, we consider Case 1. In this case, s is a naked » —self filled set of K. Since
L<K, by Proposition 4, s is also a naked n —self —filled set of L and K,=L,.
That is,

1) |L|=Is|=n,and

2 K,=L..

By (1),
Q) T, K)=nNSF(s,b),K) and T,(L)=nNSF((s,b),L).
By (3) and the definition we have

K, for acs
4) T(K),={K,—K, for acb—s and
K, for acJ; X J,—b
L, for acs
(5) T, L),={L,—L, for acb—s
L, for acJ; X J,—b

Since L<K,
6) L,cK,for eachae];X J,.
Takeany aeb—s. By (2),4),5) and (6)
nrl,=L,—LcK,—L=K,—K,=T,K),.
Takeany aesU(J;X J,—b). By (4),5) and (6)
@) To(L)a=LoCTKy=T ,(K),
Hence, by (7),(8)
9) TJL)=T,K).

Secondly, we consider Case 2. In this case, by definition
(10) T,(K)=K.

Thus, by (10) and the fact (b),
(1) T, K)=K=L=T,L).

Thirdly, we consider Case 3. In this case, T,(K)=T(S,T)(K) and
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T,L)=T(S,T)L),that is,

K, for ae(J1X J;—sUt) U(sNt)
(12) T, (K),= {K.NK,_; for aes—sNt

K.NK,_, for act—sNt

L, for ae(J X J,—sUt) U(sNt)
(13) T,(L),={L.,NL,_; for acss—sNt

L,.NnL,_, for ast—sNt

Takeany ae(J; X J,—sUf)U(snt). By (6),(11) and (12)
(14) T(L)o=L,CKo=T,(L),
Takeany ass—snt. By (6) we have that
(15) L,_,CK,_..
By (6),(12),(13) and (15) we have that
(16) T,(L),=L.,NL,_,cK,NK, ,=T,K),.
Takeany ast—snt. By (6) wehavethat
17 L,_,cK,_,.
By (6),(12),(13) and (17) we have that
(18 T, L),=L,NL,_,cK,NnK, ,=T,K),.
By (14),(16) and (18) we have that
(19) T(L)=T(S,TNL)=T(S,T)K)=T,K).
Thus, in any case we show that T(L)<T,(K) and hence we have(c).
We show (d) by Proposition 6 and Proposition 16. Similarly we show (e) and (f)
by (b) and (c). We complete the proof of Proposition 18.
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