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ABSTRACT 

Efficient generation of viable porcine embryos will contribute to research in 

reproductive physiology, agriculture and biotechnology, including cloning and 

transgenesis in pigs, and the establishment of pigs as laboratory animals for human 

disease models. However, polyspermy still occurs with high frequency during in vitro 

fertilization (IVF) in pigs and polyspermy is considered to be a very troublesome 

obstacle to efficient production of normal porcine embryos. The zona pellucida (ZP) is 

considered to be important for prevention of polyspermy in mammalian oocytes. After 

sperm penetratration into ooplasm, contents of the cortical granules were released to 

the perivitelline space (PVS), they act on the ZP, and cause biochemical and structural 

changes of ZP that make ZP lost sperm ability to bind ZP and penetration ability of 

sperm previously bound to the ZP (zona reaction). However, the function(s) with 

regard to sperm penetration or prevention of polyspermy is not well understood in pigs. 

In the present study, the first series of experiments was conducted to investigate 

the effects of the ZP on sperm penetration during IVF. I collected in vitro matured 

oocytes with a first polar body (ZP+ oocytes). Some of them were freed from the ZP 

 oocytes) by two treatments (pronase and mechanical pipetting), and the effects of 



these treatments on sperm penetration parameters (sperm penetration rate and numbers 

of penetrated sperm per oocyte) were evaluated. There was no significant difference in 

the parameters between the two groups. Secondly, I compared the sperm penetration 

parameters -thawed epididymal spermatozoa 

from four boars. Sperm penetration into ZP+ oocytes was found to be accelerated 

relative to I evaluated the sperm 

 (co-incubation of gametes for 3 h). The proportions of 

oocytes penetrated by sperm increased significantly with time in both groups; however, 

the number of penetrated sperm per oocyte did I 

performed IVF using  control (3 h) and prolonged gamete 

co-incubation (5 h) groups. Significantly greater numbers of sperm penetrated in the 5 

h group than in the control group. These results suggest that the ZP and oolemma are 

not competent factors for prevention of polyspermy in the porcine IVF system using in 

our laboratory. Furthermore, the presence of the ZP accelerates sperm penetration into 

the ooplasm. 

The second series of experiments was conducted to evaluate the detail functions 

of the ZP for sperm penetration. Firstly, I investigated the effects of the ZP on sperm 

binding and acrosomal status. I evaluated the numbers of sperm bound to the ZP in 



ZP+ oocytes and oolemma in  oocytes. Acrosomal statuses of these binding sperm 

were also evaluated. Furthermore, I evaluated the numbers and acrosomal statuses of 

sperm presenting in the ZP and perivitelline space (PVS) using ZP+ 

More sperm bound to the ZP than to the oolemma. The average number of sperm 

omes. I 

found that the sperm in the PVS, in other words, the sperm passing through the ZP can 

fuse with oolemma with high efficiency. It may be considered that the sperm are 

induced some kind of factors involved in sperm-oolemma fusion by passing through 

the ZP. So in the second experiment, I focused on IZUMO, a critical factor involved in 

sperm-oolemma fusion, and investigated the effects of the ZP on immunological 

detection of IZUMO. The proportion of sperm that were immunopositive for 

anti-IZUMO antibody was significantly higher after they were passing or had passed 

through the ZP. Furthermore, I performed IVF in the medium supplemented 

anti-IZUMO antibody to investigate the importance of IZUMO to sperm penetration in 

pigs. Addition of anti-IZUMO antibody to the fertilization medium significantly 

inhibited the penetration of sperm into  oocytes. Finally, I investigated whether the 

ZP induces the synthesis of IZUMO in sperm using two kinds of protein synthesis 

inhibitors, chloramphenicol (CP) and cycloheximide (CH). It has been reported that 



eukaryotic cells including spermatozoa have two kinds of ribosomes, mitochondrial 

55S and cytoplasmic 80S ribosomes. I hypothesized that CP and CH inhibits 55S and 

80S ribosomes, respectively, resulting in inhibition of mRNA translation in sperm. 

Addition of CP and CH to fertilization medium had no effect on immunological 

detection of IZUMO during IVF. These results indicate that the ZP induces the 

acrosome reaction, which is associated with the functional exposure of IZUMO, 

resulting in completion of fertilization in pigs. It is suggested that IZUMO may not be 

synthesized during IVF and undergoes some modifications resulting in exposure of 

IZUMO during passing through the ZP. 

In the present study, I elucidated the ZP, accelerates functional exposure of 

IZUMO resulting successful fertilization. The ZP supports success of normal 

fertilization not only by being barrier to extra sperm penetration, but also by preparing 

the condition of sperm for fusing with oolemma. Research of mechanisms controlling 

fertilization in pigs, such as preventing polyspermy and sperm-oolemma fusion, are 

expected to contribute improving IVP system in pigs and also to the research of 

biotechnology in other species.  



GENERAL INTRODUCTION 

Efficient generation of viable porcine embryos will contribute to research in 

reproductive physiology, agriculture, and biotechnology, including cloning and 

transgenesis in pigs. Recently, the value of pigs as laboratory animals has become 

widely recognized, and porcine embryonic stem cells would be helpful for the 

establishment of human disease models. The application of efficient production of 

normal embryos is also expected for improving studies of porcine embryonic stem 

cells. 

In vitro production (IVP) system for porcine embryos has been dramatically 

developed (Abeydeera 2002, Wheeler et al. 2004, Kikuchi 2004, Kikuchi et al. 2008). 

IVP system, including in vitro maturation (IVM) of oocytes, in vitro fertilization (IVF) 

and their subsequent in vitro culture (IVC), is fundamental procedure for the 

production of embryos in vitro. Motlik and Fluka (1974) investigated the ability of 

IVM oocytes to be fertilized and reported that IVM oocytes were able to be fertilized

in vivo. Sperm are incapable of fertilizing oocytes immediately after ejaculation 

(Austin 1951). Sperm needs to acquire capability to fertilize, which is termed 

capacitation  (Chang 1951). In in vivo, sperm are capacitated in female genital tracts 



(Hunter et al. 1968, 1972, 1973, Hancock et al. 1968). Based on this finding, Iritani et 

al. (1978) reported successful IVF using epididymal and ejaculated spermatozoa 

preincubated in isolated female genital tracts. Thereafter, Nagai et al. (1984) reported 

sperm penetration using epididymal and ejaculated spermatozoa preincubated in a 

chemically defined medium, which is the first paper successful fertilization in the 

complete in vitro condition. Recent study suggests intracellular Ca2+ and HCO3

regulate sperm capacitation (Breitbart 2002).  In earlier studies, freshly ejaculated 

semen was the main source of sperm for IVF because of the difficulty in 

cryopreserving sperm in pigs. In recent years, cryobiological studies have led to the 

improvement of cryopreservation protocols (Clarke and Johnson 1987, Nagai et al. 

1988, Kikuchi et al. 1998, Gil et al. 2008, Okazaki et al. 2012). These advances have 

allowed most IVF laboratories to use frozen-thawed spermatozoa in order to 

standardize the male factor and minimize the variability among trials in IVF 

experiments. the modification of the IVF conditions has yielded high 

penetration and blastocyst development rates (modifying the co-incubation time).

(Grupen and Nottle 2000, Funahashi and Romar 2004, Gil et al. 2004)

The developmental competence and viability of IVM-IVF oocytes after IVC have 

been confirmed (Mattioli et al. 1989, Yoshida et al. 1990) and the birth of piglets has 



been accomplished from IVM-IVF embryos after IVC to the two- to four-cell stages 

(Yoshida et al. 1993) or to the eight-cell to morula stage (Abeydeera et al. 1998). 

However, in those days, the quality of IVP blastocysts was low (Kikuchi et al. 1990). 

Many laboratories had been trying to overcome incompleteness of the IVP system by 

aiming for successful pregnancies to term after the transfer of blastocysts to recipients, 

however almost all of these challenges had resulted in failure. Kikuchi et al. (2002) 

modified IVP system and they succeeded in production of piglets after transfer of 

blastocysts produced in vitro to recipients and established procedure for the production 

of high-quality porcine blastocysts.  

Although porcine IVP has been established in the point of viable blastocyst 

production, polyspermy still occurs with high frequency (Funahashi 2003, Gil et al.

2010). Polyspermy is considered to be a very troublesome obstacle to the efficient 

production of normal porcine embryos because although polyspermic oocytes can 

develop to blastocysts, their ploidy becomes abnormal (Han et al. 1999, Somfai et al. 

2008). Up to now, some studies have focused on reducing polyspermy. It has been 

reported that exposure of gametes to oviductal epithelial cells and/or oviductal 

secretions can reduce polyspermy (Nagai and Moor et al. 1990, Kim et al. 1996, Wang 

et al. 2003, Coy et al. 2008). Kim et al. (1996) reported that addition of 1.0% oviductal 



fluid to the fertilization medium increased monospermy. Coy et al. (2008) reported that 

exposure of oocytes to undiluted oviductal fluid (1 oocyte per microliter of fluid) for 

30 min before performing IVF decreased polyspermy significantly. Furthermore, Nagai 

and Moor (1990) demonstrated that 2.5 h co-culture of sperm and oviduct cells reduces 

polyspermy. Other studies also have attempted to modify the equipment used for IVF 

to regulate the number of penetrable sperm near the oocytes, resulting in reduction of 

polyspermy, for example, the climbing over a wall (COW) method (Funahashi and 

Nagai 2000), biomimetic microchannel IVF system (microfluidic culture system) 

(Wheeler et al. 2004), straw IVF (Li et al. 2003). These methods has been proposed as 

ways to separate  and ensure that only motile sperm gain 

access to the oocytes, mimicking the physical conditions of fertilization in vivo. 

However, the mechanism responsible for polyspermy is still not well understood, and 

efforts to clarify it have been limited.  

The zona pellucida (ZP) is considered to be important for prevention of 

polyspermy in mammalian oocytes. The most accepted mechanism for prevention of 

polyspermy is modification of the ZP through release of contents from cortical 

granules (CG) (Sun 2003, Wang et al. 2003). Sperm penetration induces the release of 

intracellular Ca2+ and that induces CG exocytosis to the perivitelline space (PVS) 



(cortical reaction). After CG exocytosis, the CG contents act on the ZP directly; 

causing biochemical and structural changes that make ZP lost sperm ability to bind ZP 

and penetration ability of sperm previously bound to the ZP (zona reaction). To 

establish an efficient method(s) for producing normal porcine embryos by reduction of 

polyspermy, it has become necessary to clarify precisely the role played by the ZP in 

normal fertilization. 

Some mechanisms of sperm-egg fusion and their corresponding factors have been 

reported. Until today, some fusion-related proteins on mammalian sperm have been 

discussed. Fertilin was reported as PH-30 which is a sperm surface protein involved in 

sperm-egg fusion (Blobel et al. 1992). Fertilin consists of two subunits, fertilin-

(ADAM1b) and fertilin-

defective in migrating into the oviduct and binding to the ZP, however they are able to 

fuse with oolemma (Cho et al. 1998). Fertilin is not critical factor for sperm-egg fusion. 

Cyritestin (ADAM3) (Nishimura et al. 2007) and CRISP (cysteine-rich secretory 

protein) (Cohen et al. 2008) were also hoped for the sperm-egg fusion factors. 

However, sperm from ADAM3 knockout mouse had fusion ability with oolemma 

(Shamsadin et al. 1999, Nishimura et al. 2001). They were defective in migrating into 

the oviduct and binding to ZP, similar to sperm from ADAM2 knockout mouse 



(Yamaguchi et al. 2009). CRISP1, a member of the CRISP family, was not critical 

sperm-egg fusion factor, neither. IVF assays showed that sperm from CRISP1 

knockout mouse exhibited a significantly reduced ability to penetrate both ZP-intact 

and ZP-free oocytes, however some of them were able to fuse with oolemma. 

Furthermore, CRISP1 knockout male mice were fertile, and they presented no 

significant differences in the average litter size compared with control mice (Da Ros et 

al. 2008). Equatorin, which is the antigenic molecule of the monoclonal antibody 

mMN9, is also one of the sperm-egg fusion related factors of sperm. Addition of 

mMN9 to fertilization medium reduced sperm penetration in mice (Toshimori et al. 

1998). Equatorin is localized at the equatorial segment after acrosome reaction (AR). 

Analysis of knockout mice is being required. Recently, Izumo (described as IZUMO

in other species except for mice), one of the membrane proteins on sperm, was 

discovered as critical factor for sperm-egg fusion in mice and human (Inoue et al. 

2005). In mice, characteristics of Izumo, such as localization (Yamashita et al. 2007) 

and isoforms (Ellerman et al. 2009), are well studied. Ellerman et al. (2009) identified 

three other isoforms (Izumo2 4) whose N-terminal domains showed significant 

homology to that of the original Izumo (Izumo1), and suggested that these isoforms 

form protein complexes such as homodimers. However, until today, there is only one 



research concerning IZUMO in pigs (Kim et al. 2012). More studies of porcine 

IZUMO are needed. 

Research of mechanisms controlling fertilization in porcine species, such as 

preventing polyspermy and sperm-oolemma fusion, are expected to contribute 

improving IVP system in pigs and research of biotechnology in other species. Because 

of limitation in the ethical issues, it is difficult to use human oocytes for research in 

fertilization mechanisms in human species and human regenerative medicine. 

Researches in porcine species as an experimental model are also expected to be applied 

to research in human species, resulting in improvement of medical and pharmaceutical 

industry including human.  

I hypothesized that the ZP has important role(s) to control sperm delivery to 

oolemma. Furthermore, the research in factors involved in sperm-oolemma fusion is 

necessary for the further control of fertilization. Therefore, in ARTICLE 1, I evaluated 

the roles of the ZP and oolemma during IVF to clarify the mechanism(s) of 

polyspermy in pigs. In ARTICLE 2, I investigated the ZP function for sperm binding, 

acrosome status, and mechanism of IZUMO on sperm penetration.  



ARTICLE 1 

Evaluation of Zona Pellucida Function for Sperm Penetration  



ABSTRACT 

In porcine oocytes, the function of the zona pellucida (ZP) with regard to sperm 

penetration or prevention of polyspermy is not well understood. In the present study, I 

investigated the effects of the ZP on sperm penetration during in vitro fertilization 

(IVF). I collected in vitro matured oocytes with a first polar body (ZP+ oocytes). Some 

of them were freed from the ZP  oocytes) by one of two treatments (pronase and 

mechanical pipetting), and the effects of these treatments on sperm penetration 

parameters (sperm penetration rate and numbers of penetrated sperm per oocyte) were 

evaluated. There was no significant difference in the parameters between the two 

groups. Secondly, I compared the sperm penetration parameters 

oocytes using frozen-thawed epididymal spermatozoa from four boars. Sperm 

penetration into ZP+ oocytes was found to be accelerated relative to 

Thirdly, I evaluated the sperm 

(3 h gamete co-incubation). The proportions of oocytes penetrated by sperm increased 

significantly with time in both groups; however, the number of penetrated sperm per 

oocyte did I performed IVF using 

divided into control (3 h) and prolonged gamete co-incubation (5 h) groups. Greater 



numbers of sperm penetrated in the 5 h group than in the control group. These results 

suggest that the ZP and oolemma are not competent factors for prevention of 

polyspermy and also that the presence of the ZP accelerates sperm penetration into the 

ooplasm in the present porcine IVF system using in our laboratory. 



INTRODUCTION 

In human oocytes, malfunction of the ZP (Paz et al. 2008) and anti-zonal 

antibodies (Szczepanska et al. 2001, Ulcova-Gallova et al. 2004, Al-Daghistani and 

Fram 2009) have been reported to be a cause of infertility and failure of IVF, and 

abnormality of the ZP is also one of the causes of polyspermic penetration (Wang et al. 

2003). It is expected that spermatozoa can easily penetrate into an oocyte after removal 

of the ZP. In mice, Wolf et al. (1976) reported that the rate of oocytes penetrated by 

sperm in zona-free oocytes prepared by mechanical techniques was higher than that of 

zona-intact oocytes. Contrary to this observation, the ZP protects oocytes and embryos 

mechanically during fertilization and development. Therefore, it is suspected that 

removal of the ZP has detrimental effects on normal fertilization and development of 

embryos before implantation. However, because healthy offspring have been born to 

humans and pigs after transfer of blastocysts that have developed in vitro from ZP-free 

oocytes (Wu et al. 2004, Shu et al. 2010), it is hypothesized that removal of the ZP is 

an efficient method for overcoming infertility caused by ZP abnormality in humans and 

other mammals. On the other hand, the ZP has been shown to play an important role in 

the successful fertilization of mammalian oocytes, for example, in induction of the 



acrosome reaction (Berger et al. 1989, Wu et al. 2004), efficient effects on sperm 

binding (Fazeli et al. 1997), and prevention of polyspermy (Bleil and Wassarman 1980, 

Wang et al. 2003, Canovas et al. 2009). Removal of the ZP may have unexpected 

influences on these functions. 

In porcine oocytes, polyspermy occurs with high frequency and is considered to 

be an obstacle for efficient IVP of normal embryos (Funahashi 2003, Kikuchi et al. 

2009). In mammalian oocytes, the most accepted mechanism for prevention of 

polyspermy is modification of the ZP through release of cortical granules (zona 

reaction) (Sun 2003, Wang et al. 2003). After these biochemical and structural changes, 

the ZP loses its ability to bind and be penetrated by sperm (Miller et al. 1993, Aviles et 

al. 1997, Burkart et al. 2012). It is also known that the porcine ZP does not prevent 

polyspermy, especially in in vitro matured porcine oocytes (Funahashi 2003); however, 

the function of the ZP in this species remains insufficiently understood. 

In ARTICLE 1, I examined the roles of the porcine ZP in sperm penetration and 

polyspermy prevention. Firstly, I evaluated the effects of pronase treatment of the ZP 

on sperm penetration. Pronase is a protease purified from the extracellular fluid of 

Streptomyces griseus (Nomoto and Narahashi 1959) that has been used widely to 

dissolve/remove the ZP in mammals. Secondly, I investigated the function of the ZP in 



sperm penetration using porcine oocytes from which the ZP had been removed. Thirdly, 

to elucidate whether the ZP and/or oolemma functions to prevent polyspermy, I 

evaluated the penetration parameters of oocytes with or without the ZP. Finally, I 

focused on the function of the oolemma in prevention of polyspermy. 



MATERIALS AND METHODS 

Oocyte collection and IVM 

Collection and IVM of porcine oocytes were carried out as reported previously 

(Kikuchi et al. 2002). In brief, porcine ovaries were obtained from prepubertal 

crossbred gilts (Landrace × Large White × Duroc breeds) at a local slaughterhouse and 

transported to the laboratory at 35°C. Cumulus-oocyte complexes (COCs) were 

collected from follicles 2

Sigma-Aldrich Corp., St Louis, MO, USA) supplemented with 5% (v/v) fetal bovine 

serum (Gibco, Life Technologies Corp., Carlsbad, CA, USA), 20 mM HEPES 

(Dojindo Laboratories, Kumamoto, Japan), 100 IU/ml penicillin G potassium 

(Sigma-Aldrich), and 0.1 mg/ml streptomycin sulfate (Sigma-Aldrich). About 40 

COCs were cultured in 500 µl of maturation medium for 20 22 h in four-well dishes 

(Nunclon Multidishes; Thermo Fisher Scientific, Waltham, NA, USA). The medium 

employed was modified North Carolina State University (NCSU)-37 solution (Petters 

and Wells 1993) containing 10% (v/v) porcine follicular fluid, 0.6 mM cysteine, 50 

-mercaptoethanol, 1 mM dibutyryl cyclic adenosine monophosphate (dbcAMP; 

Sigma-Aldrich), 10 IU/ml eCG (Serotropin; ASKA Pharmaceutical Co., Ltd., Tokyo, 



Japan), and 10 IU/ml hCG (Puberogen 1500 U; Novartis Animal Health, Tokyo, Japan). 

The COCs were subsequently cultured for 24 h in maturation medium without 

dbcAMP and hormones. Maturation culture was carried out at 39°C under conditions 

in which CO2, O2, and N2 were adjusted to 5%, 5% , and 90% respectively (5% CO2

and 5% O2). After culture, cumulus cells were removed from the oocytes by treatment 

with 150 IU/ml hyaluronidase (Sigma-Aldrich) in M199 and gentle pipetting. Denuded 

oocytes with the first polar body were harvested under a stereomicroscope and used as 

in vitro matured and ZP-intact oocytes (ZP+ oocytes). 

Preparation of the ZP-free oocytes 

I obtained ZP-free oocytes by the following two methods. 1) Matured oocytes 

were exposed to 0.5% (w/v) pronase (Sigma-Aldrich, P-8811) in 

phosphate-buffered saline (PBS) (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) for 

(Peura and Vajta 2003). Oocytes with an expanded and deformed ZP were 

then transferred to M199 without pronase and freed completely from the ZP by gentle 

pipetting. After 1 h of incubation in IVM medium at 39°C under 5% CO2 and 5% O2, 

these ZP-

2) The ZP was removed mechanically using a micromanipulator (MMO-204, Narishige, 



Tokyo, Japan) without pronase treatment, employing a modification of a method 

designed for mouse oocytes (Yamagata et al. 2002). First, I stabbed the ZP with a glass 

needle and formed a slit in it. Next, I aspirated the cytoplasm into a holding pipette. 

These ZP-

IVF and evaluation of fertilization 

The oocytes in all groups were subjected to IVF, as described previously (Kikuchi 

2002). In brief, epididymides were isolated from Landrace boars, and epididymal 

spermatozoa were collected from them and frozen (Kikuchi et al. 1998). Spermatozoa 

were t

adjusted to pH 7.8 (Nagai et al. 1988). Oocytes were transferred to fertilization 

medium for porcine oocytes (Pig-FM) (Suzuki et al. 2002), in which the caffeine 

concentration was modified to 5 mM (Wang et al. 1991). A portion (10 µl) of the 

preincubated spermatozoa was introduced into 90 µl of fertilization medium containing 

about 10 oocytes. The final sperm concentration was adjusted to 1 × 104/ml. 

Co-incubation of gametes was carried out for 3 or 5 h (standard or prolonged duration) 

at 39°C under 5% CO2 and 5% O2. After co-incubation, spermatozoa attached to the 

ZP or oolemma were freed from oocytes by gentle pipetting, and the oocytes were 



transferred to in vitro culture (IVC) medium (IVC-PyrLac) (Kikuchi et al. 2002). For 

examination of the IVF results, inseminated oocytes were cultured subsequently for an 

additional time at 38.5°C under 5% CO2 and 5% O2. They were then fixed with acetic 

alcohol (1:3), stained with 1% aceto-orcein (Sigma-Aldrich) and examined for sperm 

penetration parameters using a phase-contrast microscope. 

Experimental design 

Experiment 1: Effects of pronase treatment of oocytes on sperm penetration 

I evaluated the effects of pronase treatment of oocytes on sperm penetration. I 

prepared ZP-

for 1 h in IVM medium. In the second group, I 

the third group, I itional 2 h in 

IVM medium, and these were supplied as The oocytes in the three 

groups were separately subjected to IVF using a single lot of frozen-thawed 

epididymal spermatozoa. At 10 h after the initiation of co-incubation of gametes, 

oocytes in all the groups were fixed, and their sperm penetration parameters were 

evaluated. 



Experiment 2: Effects of ZP on sperm penetration 

I evaluated the function of the ZP for in vitro sperm penetration during IVF. The 

1 h in Experiment 1) oocytes were subjected to IVF 

using frozen-thawed epididymal spermatozoa from four different boars. At 10 h after 

the initiation of co-incubation of gametes, oocytes in all groups were fixed and 

evaluated. The main objective in this experiment was to compare the boar effects on 

sperm penetration, and to select an appropriate lot for the following experiments to 

Experiment 3: Evaluation of sperm penetration parameters by time-course monitoring 

To clarify whether the ZP and/or oolemma prevents polyspermy, the sperm 

dition of a 

single sperm lot. I evaluated sperm penetration at 1, 2, 3, 4, 5, and 10 h after the 

initiation of co-incubation of gametes. In the 4, 5, and 10 h groups, after co-culture of 

the gametes for 3 h, the oocytes were washed gently three times and then incubated in 

culture medium until fixation. After fixation, I evaluated these oocytes for sperm 

penetration parameters. 



Experiment 4: Evaluation of the possible prevention of sperm penetration by the 

oolemma 

To examine whether or not the oolemma prevented polyspermy, I evaluated the 

effects of prolongation of the sperm and oocyte co-incubation period from 3 to 5 h on 

depending on the duration of co-incubation: a control group (co-incubation for 3 h) and 

a prolonged group (co-incubation for 5 h). The oocytes co-incubated with sperm were 

further incubated without sperm in culture medium before fixation and staining. I fixed 

the oocytes at 3, 5, and 10 h after the initiation of co-incubation of gametes and then 

stained and examined them for sperm penetration parameters. 

Statistical analysis 

The proportions of oocytes penetrated by sperm and the average numbers of 

penetrated sperm per oocyte were subjected to one-way (Experiment 1) and two-way 

Statistical Analysis System (Ver. 9.2, SAS Institute Inc., Cary, NC, USA). Percentage 

data were arcsine-transformed before the analysis. 



RESULTS 

Experiment 1 

The proportions of sperm 

and the average numbers of penetrated sperm per oocyte are summarized in Fig. 1 1A 

and 1 1B, respectively. Only oocytes penetrated by sperm were used for calculation of 

the average number of penetrated sperm per oocyte. After ANOVA, I found no 

ps treated with pronase 

I 

zona-

Experiment 2 

The combined effects of the ZP present during IVF and utilization of 

frozen-thawed epididymal spermatozoa from different boars from which sperm were 

obtained are shown in Fig. 1 2A and 1 2B. The results of ANOVA are shown in Table 

1 1. Significant differences in sperm penetration parameters (sperm penetration rates 

and the average number of penetrated sperm) were detected between ZP+/  groups and 

also among boars. The proportion of oocytes penetrated by sperm and the average 



number of penetrated sperm per oocytes were better in ZP+ oocytes compared with 

 Boar #3 showed a clear difference in both 

sperm penetration parameters. In the next experiments (Experiment 3 and 4), as well as 

in Experiment 1, I therefore used these sperm with the expectation of obtaining clearer 

results. 

Experiment 3 

The combined effects of the ZP present during IVF and the period from the 

initiation of co-incubation of gametes to fixation are shown in Fig. 1 3A and 1 3B. 

The results of ANOVA are shown in Table 1 2. Significant differences were evident 

the initiation of co-incubation of gametes. The proportion of oocytes penetrated by 

sperm and the average number of penetrated sperm per oocyte were better in ZP+ 

the period from the initiation of co-incubation of gametes to fixation. 

Experiment 4 

The combined effects of the duration of gamete co-incubation (3 and 5 h) and 



period from the initiation of co-incubation of gametes to fixation (3, 5, and 10 h) are 

shown in Fig. 1 4. The results of ANOVA are shown in Table 1 3. Significant 

differences were detected in both the duration of gamete co-incubation and period from 

the initiation of co-incubation of gametes. Longer gamete co-incubation (5 h) made the 

sperm penetration parameters (the proportion of oocytes penetrated by sperm and the 

average number of penetrated sperm per oocyte) better compared with the standard 

period (3 h) when the period from the initiation of co-incubation of gametes to fixation 

was prolonged to 10 h. 



DISCUSSION 

To understand the function of the ZP in sperm penetration and blocking of 

multiple sperm entry, I 

in porcine (Hatanaka et al. 1992, Wu et al. 2004, Kolbe and Holts 2005), bovine (Fulka 

et al. 1982, Soloy et al. 1997), and mouse (Wolf 1976, Zuccotti et al. 1991) oocytes). 

However, I hypothesized that this enzyme treatment might exert some negative effects 

on sperm penetration, in other words, prevention of polyspermy, in porcine oocytes. 

Initially, therefore, I evaluated the effects of pronase treatment of oocytes on sperm 

penetration in Experiment 1. Using mouse oocytes, Yamagata et al. (2002) succeeded 

in removing the ZP using a micromanipulator without treatment with pronase. Thus, in 

the present study, I also removed the ZP mechanically using a micromanipulator and 

compared the sperm penetration parameters with those of ZP-denuded oocytes treated 

with pronase. The results revealed no significant difference in sperm penetration 

parameters between the pronase-treated group 

I checked the possibility of recovery of oocytes or 

disruption of their integrity after additional culture (1 h vs. 3 h), but no effect was 



observed in terms of sperm penetration parameters. Wolf et al. (1976) reported that the 

proportion of sperm penetration of zona-free mouse oocytes prepared by enzymatic 

treatment (using chymotrypsin and pronase) was less than that of zona-free oocytes 

prepared mechanically and indicated that this harmful effect was caused by proteolytic 

min). Using mouse oocytes, Zuccotti et al. (1991) found that short-term exposure to 

chymotrypsin for 10 min had little effect on sperm penetration, whereas additional 

exposure for 15 min reduced sperm penetration significantly. The time required for 

dissolution of the ZP using pronase is usually much shorter than this. Taken together, it 

can be suggested that pronase treatment for a shorter p

effect on penetration of sperm into porcine oocytes. 

In Experiment 2, the proportion of oocytes penetrated by sperm and the average 

number of sperm per oocyte (sperm penetration parameters) were significantly lower 

tes than for ZP+ oocytes. In the present study, the sperm penetration 

parameters differed significantly depending upon the boar from which sperm had been 

obtained. This difference is one of the characteristics of porcine species and has 

already been reported for frozen-thawed ejaculated and epididymal spermatozoa 

(Kikuchi et al. 1998, Ikeda et al. 2002). Furthermore, from these results, I suggest that 



when the ZP is not present, sperm penetration into oocytes cannot be accelerated. The 

AR plays very important roles in sperm penetration. Acrosome-intact or partially 

acrosome-reacted sperm can bind to the ZP (Funahashi 2003), and thereafter the AR is 

induced by the ZP (Berger et al. 1989, Wu et al. 2004). It is now clear that only 

acrosome-reacted sperm can pass through the ZP and that after ZP passage they can 

fuse with the oolemma (Imai et al. 1980). On the other hand, in the present study, a 

et al. (2004) reported that 

84% of the sperm adherent to ZP-free oocytes lost their acrosome within 1 h after 

initiation of IVF. Frozen-thawed spermatozo

cryo-effects on the sperm membrane, , (Watson 1995, 

Ikeda et al. 2002) and are considered to lose their acrosome spontaneously during 

incubation in fertilization medium. Therefore, in my experiments, they were able to 

ZP+ oocytes. This also suggests the importance of the ZP for sperm penetration. 

The result of Experiment 2 suggests that the presence of the ZP accelerates sperm 

penetration, but the result was not enough to discuss the detailed function of the ZP 

and oolemma for prevention of extra sperm penetration. It seems likely that the 



proportion and number of penetrated sperm reach a plateau at a certain time point after 

the initiation of co-incubation of gametes. In Experiment 3, therefore, to clarify 

whether polyspermy was prevented by the ZP and/or oolemma, I evaluated sperm 

penetration parameters with time after the initiation of co-incubation of gametes. The 

results clearly demonstrated that sperm penetration increased significantly with time 

after the initiation of co-incubation of gametes. In mammalian oocytes, the zona 

reaction (zona hardening) is established through a change in the form of the ZP caused 

by release of cortical granules (Abbott and Ducibella 2001, Sun 2003). In porcine in 

vivo matured oocytes, the zona reaction is induced during fertilization (Kolbe and 

Holtz. 2005). On the other hand, in in vitro matured porcine oocytes, some researchers 

have reported that the zona reaction is incomplete or delayed (Funahashi et al. 2001, 

Coy et al. 2002, Coy and Aviles 2010). Hatanaka et al. (1992) reported that zona 

hardening occurred 12 h after insemination. Therefore, a longer time for complete zona 

hardening may be required in vitro than in vivo. It has been reported that the thickness 

of the ZP and its structure after IVF (especially after release of CG contents) differ 

between in vivo and in vitro matured porcine oocytes (Funahashi et al. 2001). 

Furthermore, the resistance of ZP against pronase digestion may similarly differ 

between in vivo and in vitro (Funahashi et al. 2001, Kolbe and Holtz 2005). It is 



possible that these factors are related to failure or delay of zona hardening. In the 

present study, the results of Experiments 2 and 3 using ZP+ oocytes support these 

hypotheses. I speculate that the presence or modification of the ZP is not effective for 

prevention of polyspermy during IVF of in vitro matured porcine oocytes. 

The results of Experiment 3 indicated that the number of penetrated sperm 

IVF. There is a possibility that extra sperm penetration may have been blocked by the 

oolemma, so called membrane block, after the first sperm penetration. Therefore, in 

Experiment 4, I prolonged gamete co-incubation from 3 h (standard duration in my 

laboratory) to 5 h to increase the chance for encounter between the two gametes and 

examined in detail whether membrane block also occurs during IVF of in vitro matured 

porcine oocytes. Membrane block is the main mechanism for prevention of 

polyspermy in nonmammalian species (i.e., frogs and several marine invertebrates) 

(Gould and Stephano 2003). However, in mammalian oocytes, it is considered to be 

one of the supportive mechanisms of the zona reaction for prevention of polyspermy, 

but the role of the oolemma has remained unclear (Gardner and Evans 2006). Among 

mammalian species, the mechanism of membrane block has been examined only in 

mice (Gardner and Evans 2006, Gardner et al. 2007); however, in porcine oocytes, no 



studies have investigated this issue. In this study, the proportion of oocytes that were 

penetrated by sperm and the average number of penetrated sperm per oocyte were 

significantly higher in the prolonged IVF group than those in the control group. This 

suggests that sperm penetration may increase if the opportunity for oocytes to 

encounter sperm is prolonged. On the other hand, membrane block in mouse oocytes is 

reported to be functional (Gardner and Evans 2006). McAvey et al. (2002) reported 

that when ZP-free mouse oocytes were subjected to IVF, the number of sperm that 

fused with oocytes reached a plateau at 2 h after the initiation of co-incubation of 

gametes. Other studies using ZP-free oocytes of the mouse, hamster, and human have 

also shown reduction of the binding and fusion abilities of the oolemma after 

insemination (Zuccotti et al. 1991, Horvath et al. 1993, Sengoku et al. 1995). 

Elevation of intracellular calcium levels (corresponding to oocyte activation) is 

important for the establishment of membrane block in mouse oocytes (McAvey et al.

2002). It has not been sure if there is a similar mechanism for membrane block in 

porcine oocytes because there has been no report about this phenomenon. My results, 

however, suggest that the oolemma is not effective for preventing polyspermic 

rane block is not involved in the 

porcine IVF system. 



In conclusion, the ZP and oolemma are not competent factors for prevention of 

polyspermy, at least in the present porcine IVF system using in our laboratory. 

However, the presence of the ZP accelerates sperm penetration into the ooplasm in 

pigs. 



FIGURE AND TABLES 



Fig. 1 1 The proportion of penetrated oocytes (A) and the average number of 
penetrated sperm per oocyte (B) in each of the treatment groups fixed at 10 h after the 
initiation of co-incubation of gametes
pellucida without pr
oocytes, were treated with pronase to remove the ZP and then cultured for 1 h and 3 h, 
respectively. ANOVA demonstrated no differences among the three groups. Replicated 
trials were performed seven times. Numbers above the bars indicate total numbers of 
oocytes used in the experimental groups. Means ± SEM are presented.
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Fig. 1 2 The proportion of penetrated oocytes (A) and the average number of 
penetrated sperm per oocyte ( the 
initiation of co-incubation of gametes. Frozen-thawed epididymal spermatozoa from 4 
different boars were used (Boars # 1. 
When the ZP was present, sperm penetration was significantly accelerated. Replicated 
trials were repeated three times for each group. Numbers above the bars indicate total 
numbers of oocytes used in the experimental groups. Means ± SEM are presented.
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Fig. 1 3 The proportion of penetrated oocytes (A) and the average number of 
, and 10 h 

after the initiation of co-incubation of gametes. I used frozen-thawed epididymal 
spermatozoa from one lot (Boar #3 in Fig. 1 2), for which a marked difference in 

2. The results of ANOVA are shown in Table 1 2. Numbers above or under the plots 
indicate total numbers of oocytes used in the experimental groups. Replicated trials 
were performed five times. Means ± SEM are presented.
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Fig. 1 4
number of penetrated sperm per oocyte (B) in the control (co-incubation for 3 h) and 
prolonged co-incubation groups (co-incubation for 5 h) at 3, 5, and 10 h after the 
initiation of co-incubation of gametes. I used the same frozen-thawed epididymal 
spermatozoa (Boar #3 in Fig. 1 2). The results of ANOVA are shown in Table 1 3. 
Numbers above or under the plots indicate total oocyte numbers used for experimental 
groups. Experiments were repeated five times. Means ± SEM are presented.
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Table 1 1. ANOVA of sperm penetration parameters according to presence of the zona pellucida (ZP) and sperm 
origin from different boars.  

Source 
% of penetrated oocytes  No. of penetrated sperm 

df Mean square F value  df Mean square F value 

Presence of ZP 1 0.925 17.43a  1 458.330 124.42a

Boar 3 1.050 19.79a  3 31.428 8.53a

Interaction between ZP and Boar 3 0.119 2.24  3 27.830 7.55 a

ZP: intact (ZP+) or removed (ZP ). Boar: 4 boars. Df: degree of freedom 
a P < 0.01



Table 1 2. ANOVA of sperm penetration parameters according to presence of the zona pellucida (ZP) and period 
from the initiation of co-incubation of gametes to fixation. 

Source 
% of penetrated oocytes  No. of penetrated sperm 

df Mean square F value  df Mean square F value 

Presence of ZP 1 6.996 137.12a  1 469.009 86.62a

Period from the initiation of 
co-incubation of gametes 

5 1.741 34.12a  5 64.144 11.85a

Interaction between ZP and the initiation 
of co-incubation of gametes 

5 0.745 14.60a  5 26.452 4.89a

ZP: int Period from the initiation of co-incubation of gametes to fixation: 1, 2, 3, 4, 
5, and 10 h. df: degree of freedom  
a P < 0.01 



Table 1 3. ANOVA of sperm penetration parameters into ZP-free oocytes according to duration of gamete 
co-incubation and period from the initiation of co-incubation of gametes to fixation. 

Source 
% of penetrated oocytes  No. of penetrated sperm 

df Mean square F value  df Mean square F value 

Duration of gamete co-incubation 1 0.114 5.96a  1 4.511 6.50a

Period from the initiation of 
co-incubation of gametes 

2 0.549 28.68b  2 10.869 15.67b

Interaction between co-incubation and 
the initiation of co-incubation of gametes 

2 0.060 3.14  2 1.336 1.93 

Duration of gamete co-incubation: 3 and 5 h. Period from the initiation of co-incubation of gametes to fixation: 3, 5, 
and 10 h. df: degree of freedom
a P < 0.05; b P < 0.01 



ARTICLE 2 

Roles of the Zona Pellucida and 

 Functional Exposure of the Sperm-egg Fusion F



ABSTRACT 

The zona pellucida (ZP) is considered to play important roles in the prevention of 

polyspermy in mammalian oocytes. In pigs, however, I have shown that the presence 

of the ZP accelerates sperm penetration into the ooplasm during in vitro fertilization 

(IVF) (ARTICLE 1). The functions of the ZP that are responsible for this result have 

remained unclear. The sperm possess ZP adhesion molecules. Furthermore, the 

acrosome reaction, being considered to be induced by the ZP, is necessary for sperm to 

fuse with oolemma. It is considered that these factors may accelerate sperm penetration 

in ZP+ oocytes. In the present study, firstly, I investigated the effects of the ZP on 

sperm binding and its acrosomal status. I evaluated the numbers of sperm bound to the 

ZP in ZP+ oocytes and oolemma in  oocytes. Acrosomal statuses of these binding 

sperm were also evaluated. Furthermore, I evaluated the numbers and acrosomal 

statuses of sperm presenting in the ZP and perivitelline space (PVS) using ZP+ and 

 oocytes. The average number of sperm bound to ZP+ oocytes was significantly 

higher than that bound to  oocytes. The average number of sperm bound to 

oolemma and lost their acrosome was 6.15 11.28 per oocyte in  oocytes. More 

sperm bound to the ZP than to the oolemma. The average number of sperm present in 



the PVS was 0.44 0.51 per oocyte, and all sperm had lost their acrosomes. I found that 

the sperm in the PVS, in other words, the sperm passing through the ZP fuse with 

oolemma with high efficiency. It may be considered that the sperm are induced some 

kind of factors involved in sperm-oolemma fusion by passing through the ZP. Recently, 

IZUMO, one of the membrane proteins on sperm, was discovered as critical factor for 

sperm-oolemma fusion in mice and human. So in the second experiment, I 

hypothesized that IZUMO on the sperm membrane gives grate effect on membrane 

fusion. When sperm in the ZP+ oocytes were applied to immunological detection of 

IZUMO during IVF, the proportion of sperm that were immunopositive for 

anti-IZUMO antibody was significantly higher after they were passing or had passed 

through the ZP. Next, I performed addition of anti-IZUMO antibody to the fertilization 

medium, it reveals the significant inhibition on the penetration of sperm into 

oocytes. Finally, I investigated whether synthesis of IZUMO depends on the 

association of ZP during IVF using two kinds of protein synthesis inhibitors, 

chloramphenicol (CP) and cycloheximide (CH), which inhibit mRNA translation 

(protein synthesis) completely in eukaryotic cells including sperm I collected matured 

oocytes and performed IVF using fertilization medium with CP and CH and compared 

proportion of sperm that were immunopositive for anti-IZUMO antibody. There was 



no significant difference among experimental groups. These results suggest that, in 

pigs, the ZP induces the acrosome reaction, which is associated with the functional 

exposure of IZUMO, resulting in completion of fertilization. IZUMO may not be 

synthesized during IVF and it may be considered that IZUMO undergoes 

post-translational modification, changing their location, or some other modifications 

resulting in exposure of IZUMO during passing through the ZP. 



INTRODUCTION 

In porcine oocytes, polyspermy occurs at high frequency and is considered to be 

an obstacle to efficient in vitro production of normal embryos (Funahashi 2003, Nagai 

et al. 2006, Kikuchi et al. 2009). I have been focusing on the roles of the ZP in sperm 

penetration into the ooplasm during IVF using in vitro matured porcine ZP-intact and 

ZP-free oocytes, and have shown that the presence of the ZP accelerates sperm 

penetration (ARTICLE 1). In mammalian oocytes, the zona reaction (zona hardening) 

occurs through a change in the form of the ZP caused by release of cortical granules, 

and this prevents the penetration of extra sperm (Abbott and Ducibella 2001, Sun 

2003). However, in in vitro matured porcine oocytes, some researchers have shown 

that the zona reaction for prevention of polyspermy is incomplete or delayed (Hatanaka 

et al. 1992, Funahashi et al. 2001, Coy et al. 2002, Coy and Aviles 2010). My previous 

results (ARTICLE 1) have supported these reports, but the reasons why the ZP 

accelerates sperm penetration, and the functions of the ZP that are responsible for these 

phenomena, have remained unclear. 

The AR plays very important roles in sperm penetration. Sperm in which the 

acrosome is intact or partially reacted can bind to the ZP (Funahashi 2003), and 



thereafter the complete AR is induced by the ZP (Berger et al. 1989). It has been 

considered that only acrosome-reacted sperm can fuse with the oolemma (Imai et al.

1980). It has also been suggested that, during the AR induced by the ZP, one or several 

important factors may participate in successful sperm penetration into the ooplasm. 

Sperm possess ZP adhesion molecules such as zonadhesin (Hardy and Garbers 1994, 

Hardy and Garbers 1995, Hickox et al. 2001, Bi et al. 2003), 

-1,4-galactosyltransferase (Rebeiz & Miller 1999), and proacrosin/acrosin (Yonezawa 

et al. 1995a). It is possible that these factors accelerate the binding of sperm to oocytes, 

thus accelerating sperm penetration into the ooplasm. On the other hand, in ZP-intact 

oocytes, only sperm that have passed through the ZP and are present in the PVS can 

fuse with the oolemma. The presence of sperm in the PVS is necessary for successful 

fertilization. In the ARTICLE 2, I evaluated the numbers and acrosome statuses of 

sperm binding to the ZP in ZP-intact oocytes, to the oolemma in ZP-free oocytes, and 

being present in the PVS in ZP-intact oocytes. 

It is possible that the ZP may accelerate functions of some factors involved in 

sperm-oolemma fusion. One such factor is Izumo, which was initially reported as a 

sperm-egg fusion factor in mice and humans, belonging to the mammalian 

immunoglobulin protein family (Inoue et al. 2005). As described before, this type of 



Izumo, Izumo1 , was a member of the Izumo multiprotein family in mice (Ellerman 

et al. 2009). Other members are Izumo2 4, whose N-terminal domains showed 

significant homology to that of the Izumo1. Sperm from Izumo-knockout mice are able 

to pass through the ZP, but cannot fuse with the oolemma (Inoue et al. 2005). The 

expression of IZUMO has also been analyzed in porcine species, and shown to be 

specific to boar sperm (Kim et al. 2012). In humans, the relationship between IZUMO 

and infertility has been studied, and anti-IZUMO antibodies have been found in serum 

samples from immunoinfertile women (Clark and Naz 2013). I hypothesize that the 

presence of IZUMO may be correlated with successful membrane fusion and 

completion of sperm penetration into the ooplasm, resulting in differences in the 

manner of sperm penetration between ZP-intact and ZP-free oocytes.  

It is widely accepted that mature spermatozoa are translationally silent. However, 

Gur and Breitbart (2006) reported that nuclear genes are expressed to produce some 

proteins in human, bovine, mouse, and rat spermatozoa during capacitation (for 

example, human; protein kinase C, epidermal growth factor receptor protein, bovine; 

protein kinase C, AKAP110, mouse; CatSper, catalytic subunit of protein kinase A, rat; 

Na-K-ATPase). In bovine spermatozoa, these proteins are synthesized within 60 min 

under the conditions to induced capacitation. They investigated the synthesis of protein 



using two kinds of protein synthesis inhibitor, chloramphenicol (CP) and 

cycloheximide (CH). Isolated mitochondria are known to be capable of protein 

synthesis independently of the cytoplasmic ribosomes (Mclean et al. 1958). CP and 

CH inhibits 55S mitochondrial ribosomes and 80S cytoplasmic ribosomes, respectively, 

resulting in complete inhibition of mRNA translation (Ashwell and Work 1970). In 

spermatozoa, Gur and Breitbart (2006) showed that the synthesis of some proteins 

involved in capacitation proved sensitive to the CP, but insensitive to the CH in 

humans, mice, cows, and rats. It indicates that matured sperm can undergo protein 

synthesis. In the present study, I used CP and CH to evaluate if synthesis of IZUMO 

may occur or not during IVF. 

In ARTICLE 2, I evaluated the roles of IZUMO in penetration of sperm into the 

ooplasm during IVF in pigs by analyzing the presence of IZUMO on the sperm using 

anti-IZUMO antibody. Furthermore, I investigate if synthesis of IZUMO may occur 

during IVF using two kinds of protein synthesis inhibitors, CP and CH. 



MATERIALS AND METHODS 

Preparation of ZP-intact and ZP-free oocytes 

After in vitro maturation of COCs, cumulus cells were removed from the COCs. 

Denuded oocytes with the first polar body were harvested under a stereomicroscope 

and used as in vitro matured and ZP-intact oocytes (ZP+ oocytes). These matured 

oocytes were exposed to 0.5% (w/v) pronase 

Oocytes with an expanded and deformed ZP were then transferred to M199 without 

pronase and freed completely from the ZP by gentle pipetting. After 1 h of incubation 

in maturation medium at 39°C under 5% CO2 and 5% O2, these ZP-free oocytes, 

Sperm-oocyte binding assay and observation of sperm in the PVS 

The sperm-oocyte binding assay of ZP+ oocytes was performed at 1, 3, and 5 h 

after the initiation of gamete co-incubation (termed as 1, 3, and 5 h groups, 

respectively) essentially as described previously (Noguchi et al. 1992, Yonezawa et al.

1995b). The sperm binding assay for ZP  oocytes was conducted on the basis of this 

method. First, I performed IVF by adjusting the final sperm concentration to 1 × 



104/ml, and co-incubation of gametes was carried out for 1 h (1 h group) or 3 h (3 h 

group and 5 h group). At 1, 3, and 5 h after the initiation of gamete co-incubation, 

oocytes were washed by transfer to 30 µl drops of PBS containing 0.5% BSA in order 

to remove loosely bound and unbound sperm, employing a pipette with a 

bore size, which just slightly exceeds the diameter of a porcine oocyte. In 1 h and 3 h 

groups, oocytes were washed ten times. At 3 h after the initiation of co-incubation of 

gametes, 5 h group-oocytes were washed three times in IVC-PyrLac and transferred to 

fresh IVC-PyrLac in order to be cultured for additional 2 h. After 2 h, these oocytes 

were washed six times (the washing was performed also ten times in total in 5 h group). 

Some ZP+ oocytes were fixed with 3% glutaraldehyde for 30 min at room temperature. 

The sperm heads bound to the oocytes were stained with 50 µg/ml bisBenzimide H 

33342 (Hoechst 33342; Calbiochem Corp., La Jolla, CA, USA) in PBS and the 

numbers of sperm bound to each oocyte were counted using a fluorescence microscope 

(BX-51, Olympus, Tokyo, Japan) with a WU filter (Olympus). The other ZP+ oocytes 

were incubated in 1 mg/ml pronase in PBS for approximately 2 min. After slight 

expansion of the PVS, they were stained with 100 µg/ml fluorescein 

isothiocyanate-conjugated peanut lectin (FITC-PNA; L7381, Sigma-Aldrich) in PBS 

and observed with a WIB filter (Olympus). This procedure allows evaluation of the 



acrosomal status of sperm present in the PVS within an expanded ZP. On the other 

hand, the inseminated and washed subjected to the binding assay 

after staining with Hoechst 33342 and also with FITC-PNA, and then the acrosomal 

status of sperm binding to the oolemma was evaluated. 

Immunostaining for IZUMO 

I performed IVF using both ZP+ and , adjusting the final sperm 

concentration to 1 × 105 /ml. For ZP+ oocytes at 3 h after the initiation of 

co-incubation of gametes, I removed sperm binding to the surface of the ZP by 

pipetting. I then treated the oocytes with hypertonic PBS solution (400 mOsmol/kg) for 

10 min to shrink the ooplasm and to , on the other hand, 

were washed ten times in 30-µl drops of PBS containing 0.5% BSA for removing extra 

sperm bound to the oolemma. The oocytes with sperm in both groups were fixed with 

3.7% paraformaldehyde in PBS for 30 min at 4°C. They were then blocked in 1% skim 

milk (Snow Brand Milk Products Co. Ltd., Sapporo, Japan) in PBS for 3 h at 37°C, 

and incubated overnight at 4°C with 0.25 µg/ml (1:800) anti-IZUMO antibody 

(anti-human IZUMO1 antibody raised in goat, sc-79543; Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA, USA) in PBS supplemented with 0.1% Tween 20 



(Sigma-Aldrich) (T-PBS). Washes were performed three times in T-PBS, followed by 1 

h incubation at room temperature with 1:800 rhodamine-conjugated donkey anti-goat 

antibody (AP180R; Merck Millipore, Inc., Billerica, MA, USA) as the secondary 

antibody. After several washings in T-PBS, oocytes were stained with FITC-PNA (100 

µg/ml in PBS) for 15 min at 37°C, then counterstained with Hoechst 33342 and 

mounted in 2.5% 1,4-diazabicyclo[2.2.2]octane (DABCO; Sigma-Aldrich) in a mixture 

of 90% glycerol and 10% PBS. Then, were crushed under a cover glass to 

allow them to be seen without any interfering bright fluorescence from oocytes. All 

fluorescence images were obtained using a CCD camera (Cool SNAP cf; Photometrics, 

Tucson, AZ, USA) equipped with WU, WIB, and WIG filters (Olympus). In the 

present study I used the term  for sperm that had lost their acrosomes 

and were immunopositive for IZUMO. 

IVF with anti-IZUMO antibody 

I -FM supplemented with the 

anti-IZUMO antibody. The procedure used for IVF was the same as that described 

above. In brief, frozen-thawed epididymal spermatozoa were preincubated for 15 min 



Pig-FM that had been supplemented with the anti-IZUMO antibody. A portion (10 µl) 

of the preincubated spermatozoa was added to 90 µl of fertilization medium containing 

about 10 oocytes. The final concentration of the antibody in the fertilization medium 

was set as 0 (control), 0.25 or 0.5 µg/ml, and the final sperm concentration was 

adjusted to 1 × 104/ml. After co-incubation of gametes for 3 h, the oocytes were 

transferred to IVC-PyrLac. For examination of the IVF results, the inseminated 

oocytes were subsequently cultured for 7 h at 38.5°C under 5% CO2 and 5% O2. They 

were then fixed, stained and examined for sperm penetration parameters using a 

phase-contrast microscope. 

IVF with protein synthesis inhibitors 

I prepared ZP+ oocytes and performed IVF using Pig-FM supplemented with CP 

(0.1 mg/ml) and CH (1 mg/ml) (Gur and Breitbart 2006). The procedure used for IVF 

was the same as that described above. In brief, frozen-thawed epididymal spermatozoa 

 pH 7.8. 

Oocytes were transferred to Pig-FM that had been supplemented with CP 

(Sigma-Aldrich,) and CH (Sigma-Aldrich). A portion (10 µl) of the preincubated 

spermatozoa was added to 90 µl of fertilization medium containing about 10 oocytes



and gametes were co-incubated for 3 h. The final sperm concentration was adjusted to 

1 × 105 /ml. 

Experimental design 

Experiment 1: Observation of sperm binding to oocytes and passage through the ZP 

I evaluated ZP+ and ZP  oocytes for the numbers of sperm binding to the ZP and 

oolemma, respectively. In the I also evaluated the acrosomal status of the 

binding sperm. I performed a binding assay and double staining with Hoechst 33342 

and FITC-PNA for observation of the number and acrosomal status of sperm binding 

 the initiation of co-incubation of 

gametes. In the  were defined as sperm both binding to 

the surface of the ZP and passing through it (i.e. part or all of the sperm head was 

located in the area of the ZP) bound to the oolemma without 

fusion to the membrane (i.e. the sperm head retained its original shape and size). 

Furthermore, I also checked for the presence of sperm in the PVS in ZP+ oocytes, and 

evaluated their number and acrosome status. 

Experiment 2: Evaluation of anti-IZUMO antibody specificity and presence of IZUMO 



in sperm 

Prior to immunostaining of IVF oocytes, I checked the specificity of the first 

antibody in sperm smear preparations. The spermatozoa were incubated for 2 h in 

fertilization medium, then washed in PBS and fixed with 3.7% paraformaldehyde in 

PBS. After washing in PBS and air drying on glass slides, they were blocked with 1% 

skim milk in PBS and incubated overnight at 4°C with the first antibody. Washes were 

performed in T-PBS, followed by a 1 h-incubation at room temperature with the 

secondary antibody. After several washings in T-PBS, oocytes were stained with 

FITC-PNA. I then evaluated the acrosome status and detected the localization of 

IZUMO by FITC-PNA staining and immunostaining using anti-IZUMO antibody, 

respectively. In some preparations, I did not apply the first antibody in order to check 

for any non-specific reaction. Finally, I detected the nucleus, acrosomal status and 

localization of IZUMO in sperm associated with both 

the initiation of co-incubation of gametes by staining with Hoechst 33342, FITC-PNA 

and immunostaining, respectively. 

Experiment 3: Effects of addition of anti-IZUMO antibody to fertilization medium on 

sperm penetration 



To evaluate the role(s) of IZUMO in sperm penetration, I performed IVF of 

oocytes using Pig-FM containing the anti-IZUMO antibody (0 µg/ml as a control, 0.25, 

or 5 µg/ml). Some oocytes were fixed at 1, 3, and 5 h after the initiation of 

co-incubation of gametes and subjected to the binding assay in each experimental 

group. The other oocytes were inseminated for 3 h and then further cultured for up to 

10 h and fixed. They were then evaluated for sperm penetration parameters. 

Experiment 4: IVF with protein synthesis inhibitors and immnostaining for IZUMO 

To evaluate whether IZUMO is synthesized in spermatozoa during IVF, I 

performed IVF using Pig-FM containing CP and CH, the mitochondrial and 

cytoplasmic protein synthesis inhibitor, respectively. After co-incubation of gametes 

for 3 h, I performed immunostaining for IZUMO and evaluated the proportion of 

IZUMO+ sperm.  

Statistical analysis 

Differences in the average number of sperm binding to oocytes were subjected to 

two-way ANOVA (Experiments 1 and 2). The proportions of oocytes penetrated by 

sperm, the average numbers of sperm that had penetrated per oocyte (Experiment 2), 



and the proportions of sperm that lacked an acrosome and were immunopositive for 

IZUMO (Experiment 3 and 4) were subjected to one-way ANOVA. These statistical 

analyses were performed using the General Linear Models procedures of the Statistical 

Analysis System. Percentage data were arcsine-transformed before the analysis. 



RESULTS 

Experiment 1 

The results of the binding assay for evaluating the number of sperm that had 

bound to the ZP in ZP+ oocytes and to the 

2 1A. The results of ANOVA are shown in Table 2 1. There were significant 

differences in the number of binding sperm according to the presence of the ZP; more 

sperm bound to ZP+ oocytes than to ZP  oocytes. However, the period from the 

initiation of co-incubation of gametes to the end of culture (1, 3, and 5 h) did not affect 

sperm binding to the ZP or oolemma. The average numbers of sperm present in the 

PVS of ZP+ oocytes were constant (0.44 0.51 sperm/oocyte) during the period (Fig. 

2 1B), and all of them lost their acrosome. The numbers of sperm that had lost their 

acrosome and become bound are shown in Fig. 2 1C. The number of 

sperm significantly increased at 3 h after the initiation of co-incubation of gametes, and 

reached a plateau towards the end of in vitro culture (5 h). The average number of 

binding sperm was 6.15 11.28 per oocyte. 

Experiment 2 



Sperm smear preparations were stained with FITC-PNA (Fig. 2 2A) and 

anti-IZUMO antibody (Fig. 2 2B). Some sperm appeared to have lost their acrosomes 

spontaneously, and were FITC-PNA-negative. Such sperm were divisible into two 

groups: -intact 

(FITC-PNA- nostaining was 

performed without the first antibody, no signals were detected in any (either 

acrosome-lost or -intact) sperm (Fig. 2 2C). 

ZP+ oocytes were stained with Hoechst-33342 (Fig. 2 3A), FITC-PNA (Fig. 

2 3B), and anti-IZUMO antibody (Fig. 2 3C). These results clearly indicated that 

sperm in the PVS, whose heads were stained with Hoechst-33342, lacked the acrosome 

(FITC-PNA-negative). Both IZUMO+ and IZUMO  sperm prepared from 

oocytes were detectable by the same staining procedures (data not shown). The 

acrosome statuses of sperm that were passing through the ZP (sperm in the ZP) and 

sperm that had passed through the ZP (sperm in the PVS) of ZP+ oocytes, and also 

those bound to ZP  oocytes, are summarized in Fig. 2 4A. All sperm in the ZP and 

PVS of ZP+ oocytes had lost their acrosome, compared with only about 70% of the 

sperm on ZP  oocytes. Among these sperm that had lost their acrosome, the 

proportions of IZUMO+ sperm in the ZP and PVS were significantly higher in ZP+ 



oocytes than that cytes (Fig. 2 4B). 

Experiment 3 

The results of binding assay during IVF using fertilization medium supplemented 

with anti-IZUMO antibody are shown in Fig. 2 5A. The data were subjected to 

ANOVA and the results are shown in Table 2 2. No significant differences were 

evident among the concentrations of anti-IZUMO antibody employed. However, the 

number of binding sperm increased as the period of co-incubation of gametes was 

prolonged. When fertilization parameters were evaluated, the percentage of oocytes 

that had been penetrated by sperm significantly decreased in medium that had been 

supplemented with the antibody (Fig. 2 5B), and the average number of penetrated 

sperm per oocyte decreased significantly as the concentration of the antibody was 

increased from 0 to 0.5 µg/ml (Fig. 2 5C). 

Experiment 4 

All sperm that were passing through the ZP (sperm in the ZP) and had passed 

through the ZP (sperm in the PVS) of ZP+ oocytes had lost their acrosome in control, 

CP treated, and CH treated group (data not shown). In the sperm that had lost their 



acrosome, the proportions of IZUMO+ sperm in the ZP and PVS are not different 

among three experimental groups (Fig. 2 6). 



DISCUSSION 

In ARTICLE 1, I had shown that the proportion of oocytes penetrated by sperm 

and the average number of sperm per oocyte for 

than those for ZP+ oocytes, suggesting that the presence of the ZP accelerated the 

penetration of sperm into the ooplasm. I considered that one possible explanation for 

this may have been due to a difference in the ability of sperm to bind 

oocytes. Braundmeier et al. (2004) reported that artificial insemination with sperm 

showing high zona-binding ability produced larger litters. The results of my present 

binding assay suggested that higher numbers of sperm became bound to ZP+ oocytes 

than to I consider that this was due to the presence of adhesion molecules 

against the ZP in sperm, such as zonadhesin (Hardy and Garbers 1994, 1995, Hickox et 

al. 2001, Bi et al. -1,4-galactosyltransferase (Rebeiz and Miller 1999), and 

proacrosin/acrosin (Yonezawa et al. 1995a). The removal of the ZP may reduce sperm 

binding to present results suggest that the ZP increases the 

opportunity of oocyte penetration by sperm, thus accelerating sperm penetration into 

the ooplasm. However, before completion of penetration into the ooplasm sperm must 

bind to the oolemma. It has been considered that sperm present in the PVS of ZP+ 



oocytes are able to bind to the oolemma. Therefore, in the present study, it was 

necessary to investigate if sperm present in the PVS during and after insemination can 

bind to the oolemma. On the other hand, in , as the ZP had been removed 

completely, all sperm observed on the surface were considered to have bound to the 

oolemma, and then some of them should subsequently participate in sperm-oolemma 

fusion. 

One of the important factors determining sperm-oolemma fusion is whether sperm 

binding to the oolemma have lost their acrosome. A specific fluorescent stain, 

FITC-PNA, is known to detect the sperm acrosome and has been used in studies of 

porcine species (Fazeli et al. 1997). Therefore, I performed staining with both 

FITC-PNA and Hoechst 33342 in order to evaluate the acrosomal status and nucleus, 

respectively, of sperm present in the PVS of ZP+ oocytes, and also those binding to 

surface (oolemma) of that had lost their 

acrosome and bound to the surface of the 6.15 11.28 per 

oocyte) (Fig. 2 1C) was apparently higher than that of sperm present in the PVS of 

ZP+ oocytes (0.44 0.51 sperm/oocyte) (Fig. 2 1B). However, the average number of 

sperm that successfully penetrated the 

oocytes (ARTICLE 1). These results suggest that sperm passing through the ZP are 



able to penetrate the oolemma with high efficiency. 

It is considered that, i that penetrated the ooplasm had lost 

their acrosome, even though they did not pass through the ZP. The proportion of sperm 

lacking an acrosome varies according to preservation or incubation conditions. Some 

fresh or frozen-thawed boar spermatozoa lose their acrosome spontaneously during 

incubation (Coy et al. 2002, Han et al. 2006, Miah et al. 2006). However, as 

mentioned above, penetration efficiency is lower for sperm that have lost their 

acrosome spontaneous that for those lacking an acrosome that 

are passing or have passed through the ZP (in ZP+ oocytes). I assume that certain 

mechanism(s) may be important for induction of sperm penetration by passage through 

the ZP. 

Inoue et al. (2005) were the first to report Izumo as a critical factor for 

sperm-oolemma fusion in mice, Izumo having been originally characterized as the 

antigen recognized by a monoclonal antibody, OBF13, raised against mouse sperm 

(Okabe et al. 1987). Kim et al. (2012) subsequently cloned and characterized the 

porcine IZUMO1 gene, raised an anti-porcine IZUMO1 antibody, and analyzed the 

expression of IZUMO1 in porcine species. Furthermore, they found that IZUMO1 is 

well conserved across species (pig, crab-eating macaque, mouse, and bull). In the 



present study, I used a commercially available anti-IZUMO1 antibody raised against 

the human IZUMO1 sequence; however, its specificity for boar spermatozoa was 

confirmed in Experiment 2 (Fig. 2 2A C) and I observed IZUMO+ sperm present in 

the PVS of ZP+ oocytes (Fig. 2 3A C). It is considered that sperm lacking an 

acrosome that had bound had lost their acrosome 

spontaneously. It was also notable that sperm in the ZP and PVS of ZP+ oocytes had 

all lost their acrosome, and that the proportion of IZUMO+ sperm in ZP+ oocytes was 

 (Fig. 2 4A, B). In mice, it has been 

reported that Izumo1 became detectable on a large proportion of sperm that had 

suffered spontaneous loss of the acrosome (Yamashita et al. 2007). In the present study, 

however, the percentage of sperm that had lost their acrosome spontaneously and were 

immunoreactive for IZUMO was very low. On the other hand, IZUMO became 

detectable on sperm that were passing and had passed through the ZP with high 

efficiency, suggesting that the ZP promotes the immunological detection of IZUMO in 

pigs. Further investigation of the effects of IZUMO on fertilization in mammalian 

species, including pigs, will be necessary. 

In Experiment 3, I evaluated the roles of IZUMO in sperm penetration during 

porcine IVF. When I performed IVF using fertilization medium that had been 



supplemented with anti-IZUMO antibody, sperm penetration into the ooplasm was 

significantly inhibited (Fig. 2 5B, C), suggesting that IZUMO is important for 

completion of sperm penetration. Furthermore, my binding assay showed that 

supplementation with anti-IZUMO antibody was unable to inhibit sperm-oolemma 

binding (Fig. 2 5A). Inoue et al. (2005) suggested that although sperm collected from 

Izumo-knockout male mice were able to bind to the ZP and oolemma of ZP-free mouse 

oocytes, fertilization failed. My present findings also suggest that IZUMO may not 

participate in sperm-oolemma binding in porcine species, but rather plays a role in 

sperm membrane-oolemma fusion for completion of fertilization. 

In Experiment 3, I had shown that, after the sperm were passing or had passed 

through the ZP, IZUMO was exposed efficiency. It is also indicated that the sperm 

became immunopositive for IZUMO in a short time during the sperm contact to and 

passing through the ZP (0 h to 3 h). Gur and Breitbart (2006) used protein synthesis 

inhibitors, CP and CH, and suggest the possibility that the mature spermatozoa are able 

to synthesize some proteins during incubation in capacitation media in vitro. IZUMO is 

also one of the proteins in spermatozoa, so there may be a possibility that the synthesis 

of IZUMO occurs during IVF and also inhibited by CP or CH. In Experiment 4, I 

investigated whether IZUMO is synthesized in sperm during passing through the ZP. 



Observation of IZUMO+ sperm after IVF with CP and CH indicates that IZUMO may 

not be synthesized during IVF. Miranda et al. (2009) investigated the localization of 

the proteins in the sperm and their behavior during capacitation and AR in mice. They 

reported that some of these proteins modify their immunofluorescence pattern, and 

IZUMO changes its location after the AR. In intact sperm, IZUMO was restricted to 

the dorsal portion of the sperm head (observed after permeabilization). After the AR, it 

districted to a new region, adjacent regions to equatorial segment. In pigs, IZUMO 

may be also redistributed and result in immunopositive after normal AR. Another 

possibility is that IZUMO becomes immunopositive after post-translational 

modification. Baker et al. (2012) suggest that rat IZUMO1 undergoes 

post-translational modification during epididymal maturation. The ZP may possibly 

induce post-translational modification of IZUMO. The result in my study and these 

reports may indicate that IZUMO have already been synthesized in mature 

spermatozoa, and become detectable after some kind of modification. Therefore, in my 

study, I describe immunological detection of IZUMO as exposure  in order to 

distinguish it from expression , generally meaning nuclear gene translation as protein. 

Moreover, further studies are needed to clarify the mechanisms. 

In conclusion, the ZP induces the AR and functional exposure of IZUMO, thus 



facilitating successful fertilization in pigs. Porcine IZUMO may not be synthesized 

during IVF and it may be considered that IZUMO undergoes post-translational 

modification, changing their location, or some other modifications resulting in 

exposure of IZUMO during passing through the ZP. 



FIGURE AND TABLES 



Fig. 2 1 Average numbers of sperm binding to the ZP in ZP+ oocytes and the 
. Average numbers of sperm present in the PVS of ZP+ 

oocytes (B). Average numbers of sperm lacking an acrosome that became bound to 
d 5 h after the initiation of co-incubation of gametes (C). 

ANOVA demonstrated significant differences in the numbers of binding sperm 
See Table 2 1). The number of sperm lacking an 

acrosome but binding  significantly as the period from the 
initiation of co-incubation of gametes to fixation was prolonged (C). Different letters (a, 
b) indicate significant differences among periods (P<0.05). Replicated trials were 
performed more than three times. Numbers above the bars indicate total numbers of 
oocytes used in the experimental groups. Means ± SEM are presented.

A

a
22

b
25 ab

28

0

2

4

6

8

10

12

14

1 3 5
Time course (h)

47
37 36

0

0.2

0.4

0.6

0.8

1

1 3 5
Time course (h)

B

C

36 28 38

33

32
33

0

5

10

15

20

25

30

1 3 5
Time course (h)

ZP oocytes

ZP oocytes



Fig. 2 2 Sperm smear preparations stained with FITC-PNA (A) and with 
anti-IZUMO antibody (B). Some sperm, which were detected as FITC-PNA-negative, 
showed spontaneous loss of their acrosomes (a, c). Other sperm, which were detected 
as FITC-PNA-positive, had intact acrosomes (b). Some of the FITC-PNA-negative 
sperm were immunopositive for IZUMO (d). When immunostaining was performed 
without the first antibody, no signals were detected in any (either acrosome-lost or 
-intact) sperm (C). 
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Figure 2 3  Sperm (arrowhead) present in the PVS (small arrow) of a ZP+ 
oocyte. The large arrow indicates the ZP. The oocytes were stained with 
Hoechst-33342 (A), FITC-PNA (B), and anti-IZUMO antibody (C). The sperm in the 
PVS whose heads were stained with Hoechst-33342 lacked an acrosome 
(FITC-PNA-negative) and were immunopositive for IZUMO. 

50 µm

A B 

C 



Fig. 2 4  The proportions of sperm lacking an acrosome (A) and IZUMO+ 
the initiation of co-incubation of 

gametes. ANOVA demonstrated that a significantly higher proportion of sperm that 
were passing (in the ZP), or had passed through the ZP (in the PVS) were IZUMO+, in 
comparison with sperm that had bound A: A total of 287 
and 433 sperm were analyzed in a total of 60 ZP+ and 62 ZP  oocytes, respectively. B: 
A total of 287 and 305 sperm were analyzed in the same samples for 60 ZP+ and 62 

 Different letters (a, b) indicate significant differences 
between the two categories of oocytes (P<0.01). Experiments were repeated five times. 
Means ± SEM are presented.
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Fig. 2 5  Average numbers of sperm that became bound to the oolemma in 
the initiation of co-incubation of gametes (A). 

The proportion of penetrated oocytes (B) and the average number of penetrated sperm 
per oocyte fixed at 10 h after the initiation of co-incubation of gametes (C). 
Anti-IZUMO antibody was added to the fertilization medium (0 µg/ml as a control, 
0.25, or 0.5 µg/ml). The results of ANOVA are shown in Table 2 2. ANOVA 
demonstrated no differences in the number of binding sperm among the experimental 
groups (A). Replicated trials were performed three times. On the other hand, when 
anti-IZUMO antibody was added to the medium, sperm penetration was significantly 
inhibited (B, C). Different letters (a, b) indicate significant differences among the 
experimental groups (P<0.01). Replicated trials were repeated six times for each group. 
Numbers above the bars indicate the total numbers of oocytes used in the experimental 
groups. Means ± SEM are presented.
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Fig. 2 6 The proportions of IZUMO+ sperm in ZP+ oocytes treated by CP 
(0.1mg/ml) and CH (1mg/ml) fixed at 3 h after the initiation of co-incubation of 
gametes. ANOVA demonstrated that there is no significant difference in the sperm that 
were passing (in the ZP), or had passed through the ZP (in the PVS) among 
experimental groups. A total of 92, 80, and 62 sperm were analyzed in a total of 36 
ZP+ oocytes, 40 ZP+ oocytes treated by CH, and 30 ZP+ oocytes treated by CH, 
respectively. Experiments were repeated three times for each group. Means ± SEM are 
presented. 
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Table 2-1. ANOVA comparing the numbers of sperm bound to oocytes according to presence of the 
zona pellucida (ZP) and period from the initiation of co-incubation of gametes to fixation. 

Source 
Number of sperm binding to oocytes 

df Mean square F value 

Presence of ZP 1 2724.248 33.30*

Period from the initiation of 
co-incubation of gametes 

2 71.588 0.88 

-incubation of gametes to fixation: 
1, 3, and 5 h. df: degree of freedom  
* P <0.01



Table 2-2. ANOVA comparing the numbers of sperm bound to oocytes according to the concentration 
of anti-IZUMO antibody added to Pig-FM and the period from the initiation of 
co-incubation of gametes to fixation. 

Source 
Number of sperm binding to oocytes 

df Mean square F value 

Concentration of antibody  2 37.583 1.65 
Period from the initiation of 
co-incubation of gametes 

2 464.178 20.40*

Concentration: 0, 0.25, or 0.5 µg/ml. Period from the initiation of co-incubation of gametes to fixation: 
1, 3, and 5 h. df: degree of freedom  
* P <0.01



OVERALL DISCUSSION AND FUTURE DIRECTIONS 

In ARTICLE 1, I investigated the functions of the ZP and oolemma to prevent 

polyspermy. The ZP is expected to have effective roles to prevent polyspermy in vitro. 

However, these results suggest that the ZP and oolemma of in vitro matured oocyte are 

not able to prevent extra sperm penetration into ooplasm during IVF. Coy et al. (2010) 

investigated the resistance of the ZP to proteolytic digestion before and after 

fertilization in mammalian, human, cow, and pigs. While in mice and rats, ZP resistance 

was significantly higher after fertilization or artificial activation, there was no clear 

pattern in humans and this increase of resistance did not take place in cow or pigs. The 

ZP resistance to proteolysis after fertilization varies widely among species. However, 

after treatment of oviductal fluid, the ZP resistance to proteolytic digestion became high 

in these animals. The function of oviduct may relate to the ZP function, resulting in 

preventing polyspermy. On the other hand, in human oocytes, Mio et al. (2012) 

observed effective mechanism of polyspermy block which is different from previous 

mechanisms; polyspermy block as the zona reaction and the oocyte membrane block to 

sperm penetration during IVF in mice. This mechanism takes place in the ZP. The ZP 

has further unknown functions involved in sperm penetration. The results in ARTICLE1 



suggest that the existence of ZP accelerates sperm penetration in pigs. This result is 

considered to indicate one of the unknown functions of ZP excepting for zona reaction, 

therefore, I investigated the details of ZP function for sperm in ARTICLE 2. 

It is known that the ZP is important to induce AR. In ARTICLE 2, I showed that all 

of the sperm which were passing or had passed through the ZP lost their acrosome, and 

they fused to oolemma with high efficiency. Inducing AR is thought to be one of the 

important functions of ZP to accelerate successful sperm penetration. However, sperm 

penetration was significantly less in  than that in ZP+ oocytes although 

many sperm without acrosome spontaneously bound to oolemma in . The 

sperm that were induced AR (lost their acrosome) after passing through the ZP have 

obviously higher ability to fuse with oolemma than that of sperm without acrosome 

spontaneously. The ZP was possible to have function(s) to accelerate sperm-oolemma 

fusion.  

In recent years, sperm-oolemma fusion factors have been well studied. IZUMO is 

critical factor for sperm-egg fusion on sperm, and the results in my study suggest that 

IZUMO is also important factor for sperm penetration in porcine species and the 

functional exposure of IZUMO is induced by the ZP. Passage of the ZP induces AR and 

functional exposure of IZUMO resulting in acceleration of sperm penetration into the 



ooplasm in frozen-thawed boar epididymal spermatozoa. This mechanism may lead the 

result that sperm penetration was higher in ZP+ oocytes than that in 

(results of ARTICLE 1). The results also suggest that sperm suffering spontaneous loss 

of the acrosome often fail to expose IZUMO. Furthermore, in ARTICLE 2, I suggest 

that IZUMO may not be synthesized after contact to the ZP. IZUMO may be considered 

to be exposed after some kind of modifications, such as redistribution or 

post-translational modification during IVF. I expect that to identify the factor(s) 

inducing the functional exposure of IZUMO in the ZP is possible to apply the 

improvement of efficiency of sperm penetration and generating embryos originated in 

precious individuals, whose sperm has low fertilization ability. In human, Clark et al. 

(2013) suggests relationship between infertility and anti-IZUMO antibody in sera of 

infertile women and men. I also expect that the factor(s) is able to be contributed to 

overcome infertility in human.  

Subzonal injection of spermatozoa (SUZI) was one of the micromanipulation 

techniques to overcome infertility by injecting sperm in the PVS. It is efficient in 

overcoming a certain male factor infertility and unexplained in vitro fertilization failures. 

Today, SUZI has been progressively replaced by intracytoplasmic sperm injection 

(ICSI) (Patrat et al. 1999). ICSI is an assisted-fertilization technique which involved 



injection of a single sperm through the ZP directly into the ooplasm (Palermo et al. 

1992). When the results of SUZI and ICSI were compared, fertilization rate was 

significantly higher in patients performing ICSI than that in patients performing SUZI 

(Abdalla et al. 1995, Imthurn et al. 1995). However, in case of performing ICSI, it is 

possible that braking of ooplasm or leaking out of ooplasm may occur after injection. 

This is considered to be under unphysiological situation during fertilization. 

Establishment of method to induce functional exposure of IZUMO efficiently may 

enable the acceleration of sperm penetration in case of performing SUZI or other 

assisted-fertilization techniques bypassing the ZP as one of the choices achieving a 

successful fertilization safely. 

Berger et al. (1989) reported that some components isolated from the ZP induced 

the AR. Furthermore, CD81, one of the tetraspanin localizing in the ZP, involves in the 

sperm-oolemma fusion event and inducing the AR in mice (discussed later) (Tanigawa 

et al. 2008). On the other hand, the porcine ZP is composed of three glycoproteins: 

ZPA/ZP2, ZPB/ZP4, and ZPC/ZP3 (Goudet et al. 2008), and it has been reported that 

ZPB/ZP4-ZPC/ZP3 complexes show specificity for porcine spermatozoa (Yurewicz et 

al. 1998). These components and/or structure of the ZP may induce not only the AR but 

also functional exposure of IZUMO. Further studies to evaluate the factor(s) in the ZP 



that affect the functional exposure of IZUMO are needed.  

I have shown that removal of the ZP inhibits sperm penetration (ARTICLE 1) and 

the ZP accelerates AR and functional exposure of IZUMO, important factor for 

sperm-oolemma fusion (ARTICLE 2). However, removal of the ZP may have other 

demerit(s) in sperm penetration excepting failure of AR and functional exposure of 

IZUMO. After removal of ZP, the PVS exposed to the fertilization medium. There may 

be some important factor(s) or mechanism(s) on the oolemma and/or in the PVS, which 

also participate in sperm penetration for completion of fertilization. When the ZP is 

removed, these factors or mechanisms may be lost upon direct exposure of the PVS 

and/or oolemma to the IVF medium. In bovine oocytes, it has been reported that 

fibronectin is present in the PVS, which is one of the factors related to sperm-oolemma 

binding. However, when the ZP is treated with protease, this factor may be removed 

from the periphery of the oocyte (Thys et al. 2009).  

Fibronectin is also considered to have important roles for sperm penetration in pigs, 

as one of the factors presenting in oocytes and involving in sperm penetration. Mattioli 

et al. (1998) suggest that fibronectin, component of extracellular matrix in the cumulus 

mass that surrounds oocyte, stimulated AR in pigs. Fibronectin is also well studied in 

human. Henkel et al. (1996) suggested that fibronectin, as an adhesion molecule, is 



intimately involved in the sperm-oolemma interaction. Fusi et al. (1992) also reported 

that sperm surface fibronectin is expressed following capacitation, and anti-fibronectin 

antibody reduces sperm penetration with hamster oocytes in human. Bronson et al.

(1995) suggest that addition of echistatin, a disintegrin known to block the binding of 

fibronectin, reduce sperm adherence to the oolemma significantly at micromolar 

concentrations of echistatin in human. Fibronectin is one of the important factors 

involved in sperm-oolemma interactions; however it contains unknown function(s). 

Further investigation will be necessary. 

In addition, CD9 has also been reported to be an important factor for 

sperm-oolemma fusion in mouse, bovine, and porcine oocytes (Li et al. 2004, Miyado et 

al. 2008, Zhou et al. 2009). Another research has indicated that mouse oocytes 

incubated with pronase to remove the ZP lose all their CD9 from the oolemma 

(Komorowski et al. 2003). Ohnami et al. (2012) suggested that CD9 localized not only 

at the oolemma, but also at the PVS in mice. Removal of the ZP, resulting in the lost of 

PVS, may indicate lost of their CD9. They also reported that CD81 was observed in ZP. 

Tetraspanin CD81 is closely homologous in amino acid sequence with CD9 and CD81 

and has also been reported to be involved in sperm-oolemma fusion event. In mice, 

when CD81-deficient oocytes are subjected to IVF with normal sperm, the 



sperm-oolemma fusion rate is reduced, and some of the sperm penetrating into the PVS 

fail to undergo AR (Tanigawa et al. 2008). Removal of the ZP also indicates the lost of 

CD81. Further studies focusing on the oocytes factor(s) relating to fertilization will be 

needed. 

In the present study, I elucidated one of the functions of ZP during IVF, 

accelerating functional exposure of IZUMO resulting in successful sperm penetration. 

The ZP supports success of normal fertilization not only by being barrier to extra sperm 

penetration, but also by getting condition of sperm for fusing with oolemma ready. 

Researches in pigs as an experimental model are expected to be applied to research in 

human. I expect that this investigation in pigs presents some possibilities for 

contributing the improvement of porcine reproduction system, resulting in the 

improvement of reproductive biology, and medical and pharmaceutical industry 

including human. 
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