1	Cytadherence of Mycoplasma pneumoniae Induces Inflammatory Responses
2	through Autophagy and Toll-like Receptor 4
3	
4	Takashi Shimizu, ^{a#} Yui Kimura, ^a Yutaka Kida, ^b Koichi Kuwano, ^b Masato Tachibana, ^c
5	Masanori Hashino, [°] Masahisa Watarai ^{a,°}
6	
7	Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi
8	University, Yamaguchi, Yamaguchi, Japan ^a ; Division of Microbiology, Department of
9	Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan ^b ;
10	The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi,
11	Yamaguchi, Japan ^c
12	
13	Running title: Cytadherence dependent inflammation by M. pneumoniae
14	
15	#Corresponding author: Takashi Shimizu
16	1677-1 Yoshida, Yamaguchi 753-8515, Japan
17	Phone: +81-83-933-5895, Fax: +81-83-933-5895,
18	E-mail: shimizut@yamaguchi-u.ac.jp

19 ABSTRACT

Mycoplasma pneumoniae causes pneumonia, tracheobronchitis, pharyngitis, and 20asthma in humans. The pathogenesis of M. pneumoniae infection is attributed to 21excessive immune responses. We previously demonstrated that M. pneumoniae 22lipoproteins induced inflammatory responses through Toll-like receptor (TLR) 2. In the 23present study, we demonstrated that *M. pneumoniae* induced strong inflammatory 2425responses in macrophages derived from TLR2 knockout (KO) mice. Cytokine production 26in TLR2 KO macrophages was increased compared with that in the macrophages of wild-type (WT) mice. Heat-killed, antibiotic-treated, and overgrown M. pneumoniae 2728failed to induce inflammatory responses in TLR2 KO macrophages. 3-Methyladenine and chloroquine, inhibitors of autophagy, decreased the induction of inflammatory 29responses in TLR2 KO macrophages. These inflammatory responses were also inhibited 30 31in macrophages treated with the TLR4 inhibitor VIPER and those obtained from TLR2/4 double KO mice. Two mutants that lacked the ability to induce inflammatory responses in 3233 TLR2 KO macrophages were obtained by transposon mutagenesis. The transposons were inserted in atpC, an ATP synthase F0F1 subunit ε and hypothetical protein MPN333, 3435respectively. These mutants showed deficiencies in cytadherence. These results suggest that cytadherence of M. pneumoniae induces inflammatory responses through TLR4 and 36

37 autophagy.

38 INTRODUCTION

39	Mycoplasmas are wall-less parasitic bacteria and the smallest organisms capable of
40	self-replication (1). Mycoplasma pneumoniae causes pneumonia, tracheobronchitis,
41	pharyngitis, and asthma in humans (2-4). From 2010 to 2012, epidemic of M.
42	pneumoniae infection were reported worldwide (e.g., in France, Israel, and Japan) (5).
43	However, pathogenic agents such as endotoxins and exotoxins that cause such diseases
44	have not been identified in <i>M. pneumoniae</i> . Cytadherence of invading mycoplasmas to
45	the respiratory epithelium, localized host cell injury, and overaggressive inappropriate
46	immune responses appear to contribute to the pathogenesis of <i>M. pneumoniae</i> infection (2
47	6).

We previously identified 3 lipoproteins responsible for nuclear factor-kappa B 48(NF-κB) activation (7). One was MPN602, a subunit b of the F0F1-type ATPase (8). The 49activation of NF-kB by the subunit b of the F0F1-type ATPase was dependent on TLR1, 50TLR2, and TLR6, indicating that the subunit b of the F0F1-type ATPase is a diacylated 5152lipoprotein. The others were predicted to be lipoproteins MPN611 and MPN162 and designated as NF-kB-activating lipoprotein (N-ALP) 1 and N-ALP2, respectively. 53N-ALP1 and N-ALP2 activated TLR signaling through TLR1 and TLR2, indicating that 54both are triacylated lipoproteins (9). Because mycoplasmas lack cell walls, they do not 55

56	contain known pathogen-associated molecular patterns (PAMPS) such as
57	lipopolysaccharide (LPS), peptidoglycan (PGN), or lipoteichoic acid. These findings
58	suggested that lipoproteins are key factors of M. pneumoniae-induced inflammatory
59	responses and facilitate the development of pneumonia in humans. However, the
60	existence of lipoproteins in non-pathogenic mycoplasmas suggests the presence of an
61	alternative mechanism by which <i>M. pneumoniae</i> induce inflammatory responses.
62	TLRs are a type of pattern-recognition receptor that play critical roles in early innate
63	recognition and inflammatory responses of the host against invading microbes (10, 11).
64	Among the 10 reported TLR family members, TLR2, TLR4, TLR5, and TLR9 have been
65	implicated in the recognition of different bacterial components. For example, PGN,
66	lipoarabinomannan, zymosan, and lipoproteins from various microorganisms are
67	recognized by TLR2 (12-18), whereas LPS, bacterial flagellin, and bacterial DNA are
68	recognized by TLR4, TLR5, and TLR9, respectively (19-22). These TLR family
69	members have been shown to activate NF- κ B via IL-1R-associated signal molecules,
70	including myeloid differentiation protein (MyD88), interleukin-1 receptor-activated
71	kinase (IRAK), tumor necrosis factor receptor-associated factor 6 (TRAF6), and
72	NF-κB-inducing kinase (NIK) (23).
73	Autophagy is a cellular response that involves sequestration of regions within the

 $\mathbf{5}$

74	cytosol with double membrane compartments. Autophagy has shown to play important
75	roles in response to starvation, cell death, remove of damaged organelles,
76	neurodegenerative diseases (24). Recently, it has been recognized that autophagy is
77	involved in both innate and adaptive immunity against various microorganisms (25).
78	However, the relationship between autophagy and mycoplasma species remains to be
79	elucidated.
80	Cytadherence of <i>M. pneumoniae</i> in the respiratory tract is the initial event in infection
81	and is mediated by P1 adhesin and other proteins such as P30 and high-molecular-weight
82	(HMW) proteins (26-29). Although the cytadherence of <i>M. pneumoniae</i> is believed to be
83	responsible for its pathogenesis (30, 31), the precise mechanisms by which cytadherence
84	is involved in inflammatory responses remain unknown.
85	In this study, we demonstrated that live M. pneumoniae induced pro-inflammatory
86	cytokines through TLR2 independent pathway and investigated the mechanisms of the
87	pathway. The TLR2 independent pathway was inhibited by the autophagy inhibitors and
88	was also decreased in macrophages derived from TLR4 or Myd88 KO mice. Moreover,
89	mutant strains that failed to induce pro-inflammatory cytokines in TLR2 KO
90	macrophages were isolated by transposon mutagenesis. These mutants showed

92 property of *M. pneumoniae* induces inflammatory responses through TLR4 and

93 autophagy.

94 MATERIALS AND METHODS

95	M. pneumoniae strains. The M. pneumoniae wild-type (WT) strain M129 was
96	cultured in PPLO broth (DIFCO, Franklin Lakes, NJ) containing 10% horse serum,
97	0.25% glucose, $0.25%$ yeast extract, and $0.002%$ phenol red at pH 7.6 till the beginning of
98	a stationary phase (the medium color turned slightly orange). The bacterial concentration
99	was adjusted by optical density (OD ₅₉₅) in PBS. Heat-killed <i>M. pneumoniae</i> was obtained
100	by heating at 60°C for 30 min. Sonication of <i>M. pneumoniae</i> was carried out for 30 sec at
101	an output 5 using Sonifier cell disruptor 200 (Branson, Danbury, CT). To obtain
102	overgrown M. pneumoniae, bacteria in the stationary phase (orange color) were cultured
103	for an additional 48 h. Antibiotic-killed M. pneumoniae was prepared by treatment of
104	bacterial cultures with 50 $\mu\text{g/ml}$ of gentamicin for 24 h. In these conditions, heat-killed,
105	sonicated, antibiotics-killed, and overgrown <i>M. pneumoniae</i> failed to grow on PPLO agar
106	(DIFCO) containing 10% horse serum, 0.25% glucose, 0.25% yeast extract, and colonies
107	were not observed. To ensure the same amount of <i>M. pneumoniae</i> at the same optical
108	density, the DNA amount of <i>M. pneumoniae</i> were checked as previously described (32).
109	Briefly, <i>M. pneumoniae</i> DNA was purified using the FastPure DNA Kit (Takara, Tokyo,
110	Japan) and quantified using a spectrophotometer at OD ₂₈₀ .

112	Mice and TLR KO mice. C57BL mice were purchased from Kyudo (Saga, Japan).
113	TLR2 and TLR4 KO mice originally established by Dr. Akira (Osaka University) (10)
114	were purchased from Oriental Bio Service (Kyoto, Japan). The TLR2 and TLR4
115	(TLR2/4) double KO mouse strain was generated by cross-breeding TLR2 KO mice with
116	TLR4 KO mice. Genotyping was performed with the following primers:
117	5'-GTTTAGTGCCTGTATCCAGTCAGTGCG-3', specific for the targeted TLR2 gene;
118	5'-TTGGATAAGTCTGATAGCCTTGCCTCC-3', specific for the TLR2 gene
119	downstream of the targeting construct; 5'-ATCGCCTTCTATCGCCTTCTTGACGAG-3',
120	specific for the neo resistance gene inserted in TLR2;
121	5'-CGTGTAAACCAGCCAGGTTTTGAAGGC-3', specific for the targeted TLR4 gene;
122	5'-TGTTGCCCTTCAGTCACAGAGACTCTG-3', specific for the TLR4 gene upstream
123	of the targeting construct; and 5'-TGTTGGGTCGTTTGTTCGGATCCGTCG-3',
124	specific for the neo resistance gene inserted in TLR4. All experiments were conducted in
125	compliance with the institutional guidelines and were approved by Yamaguchi University
126	and Kurume University.
127	
128	Isolation of mouse peritoneal macrophages. Thioglycollate broth (2 ml)
129	(Sigma-Aldrich, St. Louis, MO) was injected into the peritoneal cavities of C57BL,

130	TLR2 KO, TLR4 KO, and TLR2/4 double KO mice. After 72 h later, peritoneal exudate
131	macrophages were harvested by centrifugation. The cell pellets were suspended in RPMI
132	1640 medium (Sigma-Aldrich) containing 10% of FCS (Biowest, Nuaillé, France). The
133	cells were allowed to adhere to 48-well culture plates for 2 h at 37°C in an atmosphere of
134	5% CO2. Non-adherent cells were removed by washing with PBS and the remaining
135	adherent cells were infected with M. pneumoniae.

Cell treatment and infection. Peritoneal macrophages (5 \times 10⁵ cells/250 µl) were 137cultured for 2 h before infection in a 48-well plate and then treated with 100 µM 138139chloroquine (Sigma-Aldrich), 2 µM cytochalasin D, 5 mM 3-Methyladenine (3MA, Sigma-Aldrich), 50 µM VIPER (Imgenex, San Diego, CA), 10 µM OD2088 (Invivogen, 140San Diego, CA), 10 µM SB203580 (Wako, Osaka, Japan), 10 µM U0126 (Wako), or 50 141142µM SP600123 (Wako) for 30 min. Next, the cells were infected with 25 µl of M. pneumoniae ($OD_{595} = 0.1$) for 1, 3, or 6 h and the culture supernatants were collected, and 143144 concentrations of pro-inflammatory cytokines in the supernatants were measured using 145ELISA. To ensure the same amount of M. pneumoniae at the same optical density, the 146DNA amount of *M. pneumoniae* were checked as previously described (32).

148	Mouse infection model. C57BL WT, TLR2 KO and TLR2/4 double KO mice were
149	intranasally infected with 25 μ l of <i>M. pneumoniae</i> (OD ₅₉₅ = 0.1). After 24 h, the mice
150	were again infected with 25 μ l of <i>M. pneumoniae</i> (OD ₅₉₅ = 0.1) and 24 h later,
151	bronchoalveolar lavage fluid (BALF) was obtained by instilling 1 ml of PBS into the
152	lungs and then aspirating the fluid from the trachea of the mice using a tracheal cannula.
153	The cells that infiltrated in BALF were collected by centrifugation (3,000 rpm for 10 min)
154	and the supernatants were stored at -80°C until determination of cytokine concentrations.
155	
156	ELISA. Concentrations of TNF- α and IL-6 in the supernatants of peritoneal
157	macrophage were measured using Standard ELISA Development Kits (Pepro Tech,
158	Rocky Hill, NJ) according to the manufacturer's instructions. TNF- α concentrations in
159	BALF of WT, TLR2 KO, TLR2/4 double KO mice were measured using the ELISA
160	MAX Standard Kit (Biolegend, San Diego, CA) according to the manufacturer's
161	instructions.

163 **Real-time PCR.** Peritoneal macrophages $(5 \times 10^5 \text{ cells}/250 \,\mu\text{l})$ were cultured for 2 h in 164 a 48-well plate and then infected with 25 μ l of *M. pneumoniae* (OD₅₉₅ = 0.1) for 1, 2, or 6 165 h. Total RNA was isolated from whole lung tissue by using the NucleoSpin Kit

	166	(Clonetech, Mountain View, CA) and 1	μg of total RNA was used to syn	thesize cDNA
	167	using the ReverTra Ace qPCR RT Kit (T	Toyobo, Osaka, Japan). PCR was pe	rformed using
ìnt	168	THUNDERBIRD SYBR qPCR Mix (To	oyobo). The following primer sets w	vere purchased
f pr	169	from Takara: TNF-α, forward 5'-AA	GCCTGTAGCCCACGTCGTA-3	and reverse
o o	170	5'-GGCACCACTAGTTGGTTGTCTT	ΓG-3'; IL-6,	forward
hea	171	5'-CCACTTCACAAGTCGGAGGCTT	'A-3' and	reverse
e al	172	5'-GCAAGTGCATCATCGTTGTTCAT	TAC-3'; IL-10,	forward
nlin	173	5'-GACCAGCTGGACAACATACTGC	CTAA-3' and	reverse
0 0	174	5'-GATAAGGCTTGGCAACCCAAGT	'AA-3'; IL-17,	forward
she	175	5'-CTGATCAGGACGCGCAAAC-3'	and	reverse
فألطر	176	5'-TCGCTGCTGCCTTCACTGTA-3';	IFN-γ,	forward
s pu	177	5'-CGGCACAGTCATTGAAATCCTA	-3' and	reverse
e ot	178	5'-GTTGCTGATGGCCTGATTGTC-3'	; β-actin,	forward
VCC	179	5'-TGACAGGATGCAGAAGGAGA-3	' and	reverse
	180	5'-GCTGGAAGGTGGACAGTGAG-3	'. All data were normalized to β-ac	tin.
\leq	191			

167	using the ReverTra Ace qPCR RT Kit (Toyobo, O	saka, Japan). PCR was per	formed using
168	THUNDERBIRD SYBR qPCR Mix (Toyobo). Th	ne following primer sets w	ere purchased
169	from Takara: TNF-α, forward 5'-AAGCCTG	TAGCCCACGTCGTA-3'	and reverse
170	5'-GGCACCACTAGTTGGTTGTCTTTG-3';	IL-6,	forward
171	5'-CCACTTCACAAGTCGGAGGCTTA-3'	and	reverse
172	5'-GCAAGTGCATCATCGTTGTTCATAC-3';	IL-10,	forward
173	5'-GACCAGCTGGACAACATACTGCTAA-3'	and	reverse
174	5'-GATAAGGCTTGGCAACCCAAGTAA-3';	IL-17,	forward
175	5'-CTGATCAGGACGCGCAAAC-3'	and	reverse
176	5'-TCGCTGCTGCCTTCACTGTA-3';	IFN-γ,	forward
177	5'-CGGCACAGTCATTGAAATCCTA-3'	and	reverse
178	5'-GTTGCTGATGGCCTGATTGTC-3';	β-actin,	forward
179	5'-TGACAGGATGCAGAAGGAGA-3'	and	reverse

181

Immunofluorescence microscopy. Peritoneal macrophages $(2 \times 10^6 \text{ cells/ml})$ were 182cultured for 2 h before infection on coverslips in a 12-well plate. Next, the cells were 183

184	infected with 100 µl of <i>M. pneumoniae</i> M129 or GFP expressing <i>M. pneumoniae</i> TK165
185	(33) $(OD_{595} = 0.1)$ for 6 or 18 h. The samples were washed twice with PBS and fixed with
186	4% paraformaldehyde in PBS for 30 min at room temperature, washed three times with
187	PBS, and incubated successively three times for 5 min in blocking buffer (3% bovine
188	serum albumin in PBS) at room temperature. The samples were permeabilized in 0.1%
189	Triton X-100 and washed three times with PBS, followed by treatment with 2 μ g/ml anti-
190	microtubule-associated protein 1A/1B-light chain 3 (LC3) polyclonal goat antibody
191	(Santa Cruz, Dallas, TX) diluted in blocking buffer. After incubation for 1 h at room
192	temperature, the samples were washed three times for 5 min with blocking buffer, stained
193	with fluorescein isothiocyanate (FITC)- or rhodamine-labeled donkey anti-goat IgG (4
194	μ g/ml, Santa Cruz) in blocking buffer, and incubated for 1 h at room temperature. DNA of
195	macrophages and <i>M. pneumoniae</i> were stained with 4',6-diamidino-2-phenylindole
196	(DAPI). Fluorescent images were obtained using a LSM 710 confocal laser scanning
197	microscope (Zeiss, Oberkochen, Germany).
198	

Transposon mutagenesis. Approximately 10^7 CFU/ml of *M. pneumoniae* were transfected with 5 µg of pISM2062 using Gene Pulser (Bio-Rad, Hercules, CA) at 100 Ω resistance, 25 F capacitance, and 2.5 kV. Transformed *M. pneumoniae* colonies were

selected on PPLO agar containing 50 µg/ml of gentamicin. TLR2 KO peritoneal macrophages (5 × 10⁵ cells/250 µl) were infected with 25 µl of transformed *M.* pneumoniae (OD₅₉₅ = 0.02) for 3 h and then the culture supernatants were collected. The strains that showed decreased TNF- α induction were screened by ELISA.

206

207 Verification of the transposon-inserted regions. DNA of transposon inserted M. 208 pneumoniae was purified using the Fast Pure DNA Kit (Takara, Shiga, Japan). First PCR 209 amplification was performed with the following primers: specific for IS256, 210 5'-AAGTCCTCCTGGGTATGT-3'; and random primer, 2115'-GGCCACGCGTCGACTAGTACNNNNNNNNNACGCC-3'. A second PCR amplification was performed with the following primers: specific for IS256, 5'-212CGACTCTAGAGGATCCATTGTACCGTAAAAGGACTG-3'; and specific for random 213primer, 5'-CGGTACCCGGGGATCGGCCACGCGTCGACTAGTAC-3'. The amplified 214215PCR products were cloned into the pUC19 vector using In-fusion HD Cloning Kit (Clontech), and sequenced using the ABI3130 sequencer (Life Technologies, Carlsbad, 216217CA).

218

219 Hemadsorption assay. The hemadsorption assay was performed directly on an agar

225	Statistical analysis. All data were compared using one-way analysis of variance and
224	
223	removed by washing 3 times with PBS.
222	min, the suspension was carefully discarded and unbound erythrocytes were gently
221	resuspended in PBS to a final concentration of 0.5% (v/v). After incubation at 37°C for 30 $$
220	plate. In brief, the colonies were overlaid with 15 ml of fresh sheep blood, washed, and

the results are expressed as means and standard deviations. Differences between groups were compared by multiple comparisons using the Bonferroni t-test. Differences were considered significant at P values of <0.01 or 0.05.

RESULTS

230	TLR2-independent induction of pro-inflammatory cytokines by <i>M. pneumoniae</i> .
231	We previously demonstrated that purified or synthesized lipoproteins of <i>M. pneumoniae</i>
232	induced inflammatory responses through TLR2. To examine whether TLR2 is an
233	important receptor for the induction of inflammatory responses in live M. pneumoniae
234	infection, peritoneal macrophages derived from TLR2 KO mice were infected with M.
235	pneumoniae and induced TNF- α concentrations were measured using ELISA (Fig. 1A).
236	In WT macrophages, infection by both live and heat-killed M. pneumoniae induced
237	TNF- α expression. Contrary to expectations, live <i>M. pneumoniae</i> induced TNF- α
238	expression in TLR2 KO macrophages, which was slightly increased compared with that
239	in WT macrophages infected with live <i>M. pneoumoniae</i> . These results indicate that live <i>M.</i>
240	pneumoniae induces inflammatory responses through a TLR2-independent pathway.
241	Similar to lipoproteins of <i>M. pneumoniae</i> , heat-killed <i>M. pneumoniae</i> induced TNF-a
242	expression in WT macrophages; however, they failed to do so in TLR2 KO macrophages,
243	suggesting that lipoproteins and TLR2 are important to induce inflammatory responses in
244	the infection of heat killed <i>M. pneumoniae</i> . To rule out the possibility that heating of <i>M</i> .
245	pneumoniae resulted in conformational changes in the surface components of M.
246	pneumoniae leading to a reduction in TNF- α production, TLR2 KO macrophages were

247	infected with sonication-killed, overgrown, and gentamicin-killed M. pneumoniae (Fig.
248	1B). All treatments decreased the induction of TNF- α expression in TLR2 KO
249	macrophages. These results suggest that biological activity of M. pneumoniae play an
250	important role in the TLR2-independent pathway.

251	To investigate the temporal kinetics of <i>M. pneumoniae</i> -induced inflammatory
252	response, peritoneal macrophages from WT and TLR KO mice were infected with live
253	and heat-killed <i>M. pneumoniae</i> and TNF- α mRNA expression levels at 0.5, 1, 2, or 6 h
254	post-infection were measured by real-time PCR (Fig. 2A). TNF- α was expressed in WT
255	macrophages infected with both live and heat-killed <i>M. pneumoniae</i> . TNF- α expression
256	was observed at 0.5 h post-infection and the same level was sustained till 2 h. However,
257	$TNF\mbox{-}\alpha$ expression was not observed at 6 h post-infection. In TLR2 KO macrophages,
258	TNF- α expression was induced by live <i>M. pneumoniae</i> , whereas the expression was
259	reduced in the case of heat-killed <i>M. pneumoniae</i> infection. TNF- α expression by live <i>M</i> .
260	pneumoniae was observed at 1 h post-infection and reached a maximum level at 2 h. The
261	expression level at 2 h post-infection in TLR2 KO macrophages was approximately
262	2.5-fold higher than that in WT macrophages. To confirm whether the TLR2-independent
263	pathway was important for the induction of other pro- and anti-inflammatory cytokines,
264	the expressions of TFN- α , IL-6, IL-17, IFN- γ , and IL-10 mRNA were measured (Fig. 2B).

265	Although live and heat-killed <i>M. pneumoniae</i> induced TNF- α , IL-6 and IL-10 expression
266	in WT macrophages, heat-killed <i>M. pneumoniae</i> failed to induce expression of these
267	cytokines in TLR2 KO macrophages. <i>M. pneumoniae</i> -induced expression of IFN- γ and
268	IL-17 was not detected in either WT or TLR2 KO macrophages (data not shown).

270	Autophagy and Endocytosis dependent induction of pro-inflammatory cytokines.
271	To elucidate the mechanism by which live <i>M. pneumoniae</i> induces TLR2 independent
272	pro-inflammatory cytokine production, we examined the involvement of autophagy and
273	endocytosis. Peritoneal macrophages were treated with autophagy and endocytosis
274	inhibitors and then infected with live <i>M. pneumoniae</i> (Fig. 3A). 3-MA inhibits autophagy
275	by blocking autophagosome formation via the inhibition of type III Phosphatidylinositol
276	3-kinases (PI-3K) (34). When macrophages derived from WT and TLR2 KO mouse were
277	treated with 3-MA and infected with live <i>M. pneumoniae</i> , TNF- α induction was inhibited
278	in comparison with that of control PBS-treated cells. Chloroquine is a lysosomotropic
279	agent that prevents both fusion of autophagosome with lysosome, and lysosomal protein
280	degradation (35). In the presence of chloroquine, TNF- α induction in TLR2 KO
281	macrophages was completely inhibited; however, the induction in WT macrophages was
282	not decreased (Fig. 3A). To further examine whether the autophagy participates in

283	pro-inflammatory cytokines induction, localization of autophagy in M. pneumoniae
284	infected macrophages were examined. WT and TLR2 KO macrophages were infected
285	with live <i>M. pneumoniae</i> and the localizations of DNA of <i>M. pneumoniae</i> and autophagy
286	marker protein LC3 were observed with confocal microscopy. After 6 h of infection, M.
287	pneumoniae was observed as the small particles of DNA in macrophages (Fig. 3B and C,
288	arrows in upper panels), whereas the small particle of DNA was not observed in
289	macrophages without infection (Fig. 3B and C, lower panels). The small DNA particles
290	were co-localized with LC3 in both WT and TLR2 KO mouse (Fig. 3A and B, video S1
291	and S2), whereas the small particles of DNA was completely removed and co-localization
292	with LC3 was not observed at 18 h post infection (Fig. S1A and B). To confirm that small
293	particle of DNA was <i>M. pneumoniae</i> , WT and TLR2 KO macrophages were infected with
294	GFP expressing <i>M. pneumoniae</i> TK165, and the co-localization of <i>M. pneumoniae</i> and
295	LC3 was examined. The co-localization of GFP-expressing <i>M. pneumoniae</i> and LC3 was
296	also observed at 6h post infection (Fig. S2A and B). These results suggest that autophagy
297	is necessary for TLR2-independent induction of inflammatory responses.
298	Cytochalasin D is an inhibitor of phagocytosis and macropinocytosis that disrupts
299	actin filaments (36, 37). When TLR2 KO macrophages were treated with cytochalasin D
300	and infected with live <i>M. pneumoniae</i> , $TNF-\alpha$ induction was inhibited in comparison with

that of control DMSO-treated cells, whereas the induction was not decreased in WT
 macrophages (Fig. 3D). These results suggest that phagocytosis is also important for
 TLR2-independent inflammatory responses.

304

305 TLR4 dependent induction of pro-inflammatory cytokines. Some of TLRs such as 306 TLR4 and TLR7 serves as a sensor for autophagy (38-40). In addition that, TLR4, TLR7, 307 TLR8, and TLR9 are reported to be activated in mature endosomes and the acidification 308 of endosomes is necessary to induce the down stream signaling (41-43). Therefore the 309 involvement of TLR4 and TLR9 in pro-inflammatory cytokine induction was examined. 310 Macrophages were treated with the TLR4 and TLR9 antagonists VIPER and OD2088, 311respectively, and infected with M. pneumoniae (Fig. 4A). Although OD2088 administration did not affect of TNF-a induction, VIPER decreased the induction 312313 markedly, suggesting the involvement of TLR4 in the TLR2-independent pathway. 314 To confirm the involvement of TLR4, peritoneal macrophages derived from TLR4 KO 315mice and TLR2/4 double KO mice were infected with M. pneumoniae (Fig. 4B). In TLR 4 KO macrophages infected with live M. pneumoniae, TNF-α induction was decreased to 316 317 approximately 60% compared with that in WT macrophages. On the other hand, TNF-a 318 induction in TLR2/4 double KO macrophages was decreased to 40% compared with that

319	in TLR2 KO macrophages. In contrast, TNF- α induction by heat-killed <i>M. pneumoniae</i>
320	was completely dependent on TLR2. These results indicate the involvement of TLR4 in
321	TLR2-independent induction of inflammatory responses.
322	To further examine the association of TLRs, the involvement of MyD88, a critical
323	adapter protein of TLRs, was examined. Peritoneal macrophages from MyD88 KO mice
324	were infected with live or heat-killed <i>M. pneuumoniae</i> (Fig. 4C). The induction of TFN- α
325	by both live and heat <i>M. pneumoniae</i> was completely impaired, suggesting that MyD88 is
326	a critical factor for the induction of TLR2-independent inflammatory responses.
327	To determine whether the TLR2-independent pathway is involved in the development
328	of pneumonia, inflammatory responses in the lungs of mice were investigated. WT, TLR2
329	KO, and TLR2/4 double KO mouse were infected with <i>M. pneumoniae</i> intranasally and
330	TNF-ainduction in the bronchoalveolar lavage fluid (BALF) was measured using ELISA
331	(Fig. 4D). In TLR2 KO mouse, TNF-ainduction was increased compared with that in WT
332	mice. TNF- α induction in TLR2/4 double KO mice was decreased compared with that in
333	TLR2 KO mice. These results suggest that the TLR2-independent pathway is involved in
334	lung inflammation and TLR4 is an important receptor.
335	Since Mitogen-activated protein-kinase (MAPK) is thought to be a downstream
336	signaling of TLRs to induce autophagy, the involvement of MAPK was investigated (Fig.

337	4E). When WT macrophages were infected with live <i>M. pneumoniae</i> , TNF- α induction
338	was decreased by the c-jun N-terminal kinase (JNK) inhibitor SP600125 and the
339	extracellular signal-regulated kinase (ERK) inhibitor U0126. In contrast, TNF- α
340	induction in TLR2 KO macrophages was inhibited by SP600125, but not by U0126.
341	SB203580, an inhibitor of p38, failed to reduce the TNF- $\!\alpha$ induction in both WT and
342	TLR2 KO macrophages. These results indicate that TLR2-independent induction of
343	inflammatory responses is MAPK-dependent and JNK is a key factor of this signaling
344	pathway.

346	Cytadherence dependent induction of inflammatory responses. Next, transposon
347	mutagenesis was conducted to identify bacterial factors that related to the
348	TLR2-independent pathway. M. pneumoniae M129 was transformed with pISM2062
349	plasmids containing the IS256 transposon. TLR2 KO macrophages were infected with M.
350	pneumoniae mutants and those with reduced ability to induce TNF- α expression were
351	selected. Of 2,880 mutants, 2 strains, K2 and K3, were isolated as TNF- α non-inducible
352	mutants in TLR2 KO macrophages Fig. 6A. To identify the genes responsible for the
353	TLR2-independent induction of inflammatory responses, transposon-inserted regions in
354	the DNA of the K2 and K3 strains were amplified by PCR, cloned into pUC19 plasmids,

355	and sequenced (Table 1). In the K2 strain, the transposon was inserted in atpC, an ATP
356	synthase F0F1 subunit $\epsilon.$ In the K3 strain, the transposon was inserted within the
357	hypothetical protein, MPN333. The N terminal sequence of MPN 333 had similarity to
358	ATP-binding cassette (ABC)-2 family transporter protein. RNA expression of genes
359	downstream of atpC and MPN333 were not impaired. Although WT M. pneumoniae
360	normally bind to the culture flask through sialylated proteins contained in serum (44),
361	these 2 mutants floated in the medium. Therefor, cytadherence properties of these
362	mutants were examined using the hemadsorption assay (Fig. 6B). WT M. pneumoniae
363	were able to bind to sheep erythrocytes, but K2 and K3 did not exhibit binding activity,
364	indicating that these mutants lacked cytadherence properties.

DISCUSSION

366	Mycoplasma species lack cell walls and the cells are surrounded by cell membranes
367	(1). Moreover, mycoplasma cells do not contain TLR ligands such as LPS, PGN, and
368	lipoteichoic acid but contain an abundance of acylated proteins as cell-surface antigens,
369	and many putative lipoprotein-encoding genes have been identified in sequenced
370	mycoplasma genomes (45, 46). These findings suggest that lipoproteins are main
371	components of <i>M. pneumoniae</i> that induce inflammatory responses and cause pneumonia
372	in humans. We previously reported that the purified or synthesized lipoproteins of
373	mycoplasma species induce inflammatory responses through TLR2 (7-9). Moreover,
374	lipoproteins derived from various mycoplasmas have been reported to act as PAMPS
375	(47-50). However, the existence of lipoproteins in non-pathogenic mycoplasmas suggests
376	the presence of another mechanism by which M. pneumoniae induce inflammatory
377	responses. In this study, we demonstrated that live M. pneumoniae was able to induce
378	inflammatory responses even in the lung and macrophage cells of TLR2 KO mice (Fig. 1,
379	2, and 4). Notably, M. pneumoniae inactivated by heat, sonication, antibiotics, and
380	overgrowth failed to induce inflammatory responses in TLR2 KO macrophages (Fig. 1B),
381	suggesting that some biological activities of <i>M. pneumoniae</i> are necessary to induce
382	TLR2-independent inflammatory responses.

	383	To identify the bacterial factor that induces the TLR2-independent inflammation
	384	pathway, transposon mutagenesis was conducted. As a result, 2 mutants with decreased
ìnt	385	abilities to induce TNF- α expression in TLR2 KO macrophages were isolated (Fig. 5A
f pr	386	and Table 1). The transposons were inserted in MPN597 and MPN333. MPN597 was
d o	387	atpC, an ATP synthase F0F1 subunit $\epsilon.$ ATP synthase F0F1 subunit ϵ is a regulatory
hea	388	protein of the F0F1 type ATPase and can inhibit the ATP hydrolysis in the absence of
e al	389	proton motive forces (51). MPN333 is a hypothetical protein with an N-terminal
nlin	390	sequence similar to the ABC-2 family transporter protein. ABC-2 family transporter
o 0	391	protein is a subfamily of ABC transporters and related to capsular polysaccharide export
she	392	(52). Notably, these mutants were deficient in cytadherence (Fig. 5B). The cytadherence
ildu	393	of <i>M. pneumoniae</i> is mediated by attachment organelle, including P1 adhesin and other
s pu	394	additional proteins such as P30 or HMW proteins (26-29). These proteins are unique to
e ot	395	mycoplasma species, and their homologs have not been identified in any other bacterial
VCC	396	species (53). The cytadherence of <i>M. pneumoniae</i> is closely linked to the unique
₹ I	397	movement specific to mycoplasma species, called gliding motility (28). The gliding
\leq	398	motility of some mycoplasmas such as <i>M. mobile</i> is ATP-dependent (29). In addition, the
	399	ABC-2 family transporter protein is reportedly involved in the motility of Myxococcus

384	pathway, transposon mutagenesis was conducted. As a result, 2 mutants with decreased
385	abilities to induce TNF- α expression in TLR2 KO macrophages were isolated (Fig. 5A
386	and Table 1). The transposons were inserted in MPN597 and MPN333. MPN597 was
387	atpC, an ATP synthase F0F1 subunit $\epsilon.$ ATP synthase F0F1 subunit ϵ is a regulatory
388	protein of the F0F1 type ATPase and can inhibit the ATP hydrolysis in the absence of
389	proton motive forces (51). MPN333 is a hypothetical protein with an N-terminal
390	sequence similar to the ABC-2 family transporter protein. ABC-2 family transporter
391	protein is a subfamily of ABC transporters and related to capsular polysaccharide export
392	(52). Notably, these mutants were deficient in cytadherence (Fig. 5B). The cytadherence
393	of <i>M. pneumoniae</i> is mediated by attachment organelle, including P1 adhesin and other
394	additional proteins such as P30 or HMW proteins (26-29). These proteins are unique to
395	mycoplasma species, and their homologs have not been identified in any other bacterial
396	species (53). The cytadherence of <i>M. pneumoniae</i> is closely linked to the unique
397	movement specific to mycoplasma species, called gliding motility (28). The gliding
398	motility of some mycoplasmas such as <i>M. mobile</i> is ATP-dependent (29). In addition, the
399	ABC-2 family transporter protein is reportedly involved in the motility of Myxococcus
400	xanthus (54). Considering that complementation of mutated genes is impossible in M .

401	pneumoniae, we could not rule out the possibility that inactivation of downstream genes
402	of transposon-inserted genes resulted in the deficiency in cytadherence. However, the
403	mRNA expressions of down stream genes of atpC and MPN333 (MPN596 and bcrA,
404	respectively) were not impaired (data not shown). Taken together, these results indicate
405	that atpC and MPN333 may be the new virulence factors that are responsible for
406	cytadherence and inflammation in <i>M. pneumoniae</i> infections. However, in this study, we
407	failed to screen well-known cytadherence factors such as P1, P30, or HMW. This may
408	suggest that the functions of atpC or MPN333 itself are important for the induction of
409	inflammatory responses. Although further screening of mutants is necessary to clarify the
410	relationship between cytadherence and the induction of inflammatory responses, the
411	relationship between cytadherence and inflammatory responses in host cells are
412	consistent with our previous report that cytadherence of <i>M. pneumoniae</i> activates
413	cytokine production in human monocyte cells (32), and earlier reports that a protease
414	treatment decreases the induction of pro-inflammatory cytokines by <i>M. pneumoniae</i> (31).
415	Furthermore, <i>M. pneumoniae</i> cultured under non-adherent conditions fails to induce IL-4
416	expression in rodent mast cells (30). Moreover, elongated infection time or high
417	concentration of atpC and MPN333 mutants still induced pro-inflammatory cytokines
418	(data not show) in TLR2 KO macrophages. These results suggest that cytadherence is

419	more likely to be involved in the TLR2 independent induction of inflammatory responses
420	than the functions of atpC and MPN333. However, the mechanism by which M.
421	pneumoniae cytadherence activates the induction of pro-inflammatory responses has not
422	been determined. In this study, we observed that the TLR2-independent induction of
423	pro-inflammatory cytokines was dependent on endocytosis, because inhibition of
424	endocytosis with cytochalasin D decreased the TNF- α induction in TLR2 KO
425	macrophages (Fig. 3D). These result indicate that uptake of M. pneumoniae by
426	macrophages is necessary to TLR2 independent pathway and suggest that cytadherence
427	of <i>M. pneumoniae</i> may enhanced the uptake by macrophages.

428 The inductions of pro-inflammatory cytokines were inhibited by the inhibitors of autophagy, and M. pneumoniae was co-localized with autophagy marker protein LC3 in 429WT and TLR2 KO macrophages (Fig. 3). These results indicate that autophagy play an 430 important role in induction of pro-inflammatory cytokines by M. pneumoniae. An 431432autophagy inhibitor, chloroquine inhibits the fusion of lysosomes and autophagosomes. 433 In this study, chloroquine treatment completely decreased the TLR2 independent 434induction of pro-inflammatory cytokines, suggesting that degradation of M. pneumoniae in autophagosomes is required for the induction. The TLR2-independent induction of 435pro-inflammatory cytokine was also dependent on TLR4, Myd88 (Fig. 4). It was reported 436

437	that some TLRs such as TLR4 and TLR7 serves as a sensor for autophagy in Myd88
438	dependent manner, and MAPK is important downstream signal of this pathway (38-40,
439	55). These results suggest that recognition of <i>M. pneumoniae</i> with TLR4 induces
440	autophagy, followed by induction of pro-inflammatory cytokines. The TLR2 independent
441	pathway was also dependent on JNK MAPK in this study (Fig. 4E). This result was
442	consistent with the report that JNK MAPK was involved in induction of autophagy and
443	cell death (56).

444Generally, bacteria that are retained in, or escape from phagosome can be targeted by autophagy. Recently, LC3-associated phagocytosis (LAP) was shown to uptake and 445446degrade the bacteria without the ability to retain in or escape form phagosome (57). Similar to autophagy, LAP is consistent of autophagy-related protein including LC3, 447autophagy-related gene (ATG) 5, and ATG7. However, unlike autophagy, double 448 449 membrane structures are not formed around the LPA (58). Since it is still controversial whether M. pneumoniae can escape from phagosome and grow intracellular (59), we 450451could not rule out the possibility that the TLR2 independent induction of pro-inflammatory cytokines were dependent on LPA but not on autophagy. 452

In this study, TLR4 seems key receptor to induce autophagy and following inflammatory responses (fig. 4). TLR4 is essential for the recognition of LPS, which is

455	composed of lipid A, a core oligosaccharide, and an O-antigen. TLR4 recognizes lipid A
456	of LPS. Because mycoplasma species lack cell walls and dos not contain LPS, the ligands
457	for TLR4 in mycoplasmas remain unclear. Other than LPS, TLR4 also recognizes fungal
458	mannan and glucuronoxylomannan (60), protozoan glycoinositolphospholipids (61, 62),
459	and viral proteins (63, 64). Mycoplasma species also express unique glycolipids,
460	phosphoglycolipids (65), and polysaccharides (66, 67). Although further studies are
461	needed to determine the exact ligands of <i>M. pneumoniae</i> for TLR4, these molecules may
462	be potential TLR4 ligands. TNF- α induction was only partially decreased in
463	VIPER-treated TLR2 KO macrophages and TLR2/4 double KO macrophages (Fig. 3 and
464	4A). In contrast, TNF- α induction was completely inhibited in MyD88 KO macrophages
465	(Fig. 4B). Because MyD88 is an essential adaptor protein in TLR signaling, these results
466	suggest that TLRs are necessary to induce inflammatory responses in TLR2 KO
467	macrophages, and that other TLRs are associated with this induction in concert with
468	TLR2 and TLR4.
469	In conclusion, our results suggest that M. pneumoniae induced inflammatory
470	responses in TLR4 and autophagy dependent manner, and the cytadherence property of M.

pneumoniae is a key factor. Hence, the proteins involved in cytadherence including atpC
472 and MPN333, or TLR4 ligands present potential targets for the development of

473 alternative strategies to prevent and treat *M. pneumoniae* infection.

Strains	Locus tag	Gene name	Inserted position	Function		
K2	MPN597	atpC	31	ATP synt	hase F0F1	subunit ε
K3	MPN333	F10_orf750	768	ABC-2	family	transporter
				protein ^a		

474 Table 1. Transposon-inserted genes in *M. pneumoniae* mutants

475 ABC-2 family transporter protein^a, The N terminal sequence of MPN333 is similar to

476 ABC-2 family transporter protein.

477 **REFERENCES**

478	1.	Razin S. 1992. Peculiar properties of mycoplasmas: the smallest self-replicating
479		prokaryotes. FEMS Microbiol. Lett. 79:423-431.

- 480 2. Waites KB, Talkington DF. 2004. *Mycoplasma pneumoniae* and its role as a
- 481 human pathogen. Clin. Microbiol. Rev. 17:697-728.
- 482 3. Gil JC, Cedillo RL, Mayagoitia BG, Paz MD. 1993. Isolation of *Mycoplasma*

483 *pneumoniae* from asthmatic patients. Ann. Allergy **70:**23-25.

- 484 4. Kraft M, Cassell GH, Henson JE, Watson H, Williamson J, Marmion BP,
- 485 Gaydos CA, Martin RJ. 1998. Detection of *Mycoplasma pneumoniae* in the
- 486 airways of adults with chronic asthma. Am. J. Respir. Crit. Care. Med.
- 487 **158:**998-1001.
- 488 5. Pereyre S, Charron A, Hidalgo-Grass C, Touati A, Moses AE, Nir-Paz R,
- 489 **Bebear C.** 2012. The spread of *Mycoplasma pneumoniae* is polyclonal in both an
- 490 endemic setting in France and in an epidemic setting in Israel. PLoS One
- 491 **7:**e38585.
- 492 6. **Tryon VV, Baseman JB.** 1992. Pathgenic Determinant and Mechanisms, p.
- 493 457-489. In Maniloff J, McElhaney RN, Finch LR, Baseman JB (ed.),
- 494 Mycoplasmas- Molecular Biology and Pathogenesis. American Society for

495		Microbiology, Washington, D.C.
496	7.	Shimizu T, Kida Y, Kuwano K. 2008. Mycoplasma pneumoniae-derived
497		lipopeptides induce acute inflammatory responses in the lungs of mice. Infect.
498		Immun. 76: 270-277.
499	8.	Shimizu T, Kida Y, Kuwano K. 2005. A dipalmitoylated lipoprotein from
500		Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6
501		J. Immunol. 175:4641-4646.
502	9.	Shimizu T, Kida Y, Kuwano K. 2007. Triacylated lipoproteins derived from
503		Mycoplasma pneumoniae activate nuclear factor-kappaB through toll-like
504		receptors 1 and 2. Immunology 121:473-483.
505	10.	Akira S, Takeda K. 2004. Toll-like receptor signaling. Nat. Rev. Immunol.
506		4: 499-511.
507	11.	Kopp EB, Medzhitov R. 1999. The Toll-receptor family and control of innate
508		immunity. Curr. Opin. Immunol. 11:13-18.
509	12.	Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD,
510		Klimpel GR, Godowski P, Zychlinsky A. 1999. Cell activation and apoptosis by
511		bacterial lipoproteins through toll- like receptor-2. Science 285:736-739.
512	13.	Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR,

orii
of
ahead
online
oublished
cepts p
l Ac
\triangleleft

513		Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR,
514		Godowski PJ, Modlin RL. 1999. Host defense mechanisms triggered by
515		microbial lipoproteins through toll-like receptors. Science 285:732-736.
516	14.	Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD,
517		Espevik T, Ingalls RR, Radolf JD, Golenbock DT. 1999. Toll-like receptor 2
518		functions as a pattern recognition receptor for diverse bacterial products. J. Biol.
519		Chem. 274: 33419-33425.
520	15.	Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ. 1999.
521		The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their
522		requirement for Toll-like receptors. J. Immunol. 163:6748-6755.
523	16.	Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K,
524		Akira S. 1999. Differential roles of TLR2 and TLR4 in recognition of
525		gram-negative and gram-positive bacterial cell wall components. Immunity
526		11: 443-451.
527	17.	Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M,
528		Muhlradt PF, Akira S. 2000. Preferentially the R-stereoisomer of the
529		mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune
530		cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J.

531		Immunol. 164: 554-557.
532	18.	Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M,
533		Aderem A. 1999. The Toll-like receptor 2 is recruited to macrophage
534		phagosomes and discriminates between pathogens. Nature 401:811-815.
535	19.	Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK,
536		Akira S, Underhill DM, Aderem A. 2001. The innate immune response to
537		bacterial flagellin is mediated by Toll- like receptor 5. Nature 410 :1099-1103.
538	20.	Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M,
539		Hoshino K, Wagner H, Takeda K, Akira S. 2000. A Toll-like receptor
540		recognizes bacterial DNA. Nature 408:740-745.
541	21.	Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K,
542		Akira S. 1999. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to
543		lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol.
544		162: 3749-3752.
545	22.	Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos
546		E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B,
547		Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:
548		mutations in Tlr4 gene. Science 282:2085-2088.

549	23.	Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S,
550		Janeway CA, Jr. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor
551		family signaling pathways. Mol. Cell. 2:253-258.
552	24.	Levine B. 2005. Eating oneself and uninvited guests: autophagy-related pathways
553		in cellular defense. Cell 120: 159-162.
554	25.	Schmid D, Munz C. 2007. Innate and adaptive immunity through autophagy.
555		Immunity 27: 11-21.
556	26.	Krause DC, Balish MF. 2001. Structure, function, and assembly of the terminal
557		organelle of Mycoplasma pneumoniae. FEMS Microbiol. Lett. 198:1-7.
558	27.	Balish MF, Krause DC. 2002. Cytadherence and the Cytoskelton, p. 491-518. In
559		Razin S, Herrmann R (ed.), Molecular Biology and Pathogenicity of
560		Mycoplasmas. Kluwer Academic/Plenum Publishers, N.Y.
561	28.	Miyata M. 2008. Centipede and inchworm models to explain Mycoplasma
562		gliding. Trends Microbiol. 16:6-12.
563	29.	Miyata M. 2008. Molecular Mechanism of Mycoplasma Gliding - A novel Cell
564		Motility System, p. 137-175. In Lenz P (ed.), Cell Motil. Springer Science, N.Y.
565	30.	Hoek KL, Duffy LB, Cassell GH, Dai Y, Atkinson TP. 2005. A role for the
566		Mycoplasma pneumoniae adhesin P1 in interleukin (IL)-4 synthesis and release

567		from rodent mast cells. Microb. Pathog. 39: 149-158.
568	31.	Yang J, Hooper WC, Phillips DJ, Talkington DF. 2002. Regulation of
569		proinflammatory cytokines in human lung epithelial cells infected with
570		Mycoplasma pneumoniae. Infect. Immun. 70:3649-3655.
571	32.	Shimizu T, Kida Y, Kuwano K. 2011. Cytoadherence-dependent induction of
572		inflammatory responses by Mycoplasma pneumoniae. Immunology 133:51-61.
573	33.	Kenri T, Seto S, Horino A, Sasaki Y, Sasaki T, Miyata M. 2004. Use of
574		fluorescent-protein tagging to determine the subcellular localization of
575		mycoplasma pneumoniae proteins encoded by the cytadherence regulatory locus.
576		J. Bacteriol. 186:6944-6955.
576 577	34.	J. Bacteriol. 186:6944-6955. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ.
576 577 578	34.	 J. Bacteriol. 186:6944-6955. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002
576 577 578 579	34.	J. Bacteriol. 186: 6944-6955. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243: 240-246.
576 577 578 579 580	34. 35.	 J. Bacteriol. 186:6944-6955. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243:240-246. Shintani T, Klionsky DJ. 2004. Autophagy in health and disease: a double-edged
576 577 578 579 580 581	34. 35.	J. Bacteriol. 186 :6944-6955. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243 :240-246. Shintani T, Klionsky DJ. 2004. Autophagy in health and disease: a double-edged sword. Science 306 :990-995.
576 577 578 579 580 581 582	34.35.36.	 J. Bacteriol. 186:6944-6955. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243:240-246. Shintani T, Klionsky DJ. 2004. Autophagy in health and disease: a double-edged sword. Science 306:990-995. Mimura N, Asano A. 1976. Synergistic effect of colchicine and cytochalasin D
576 577 578 579 580 581 582 583	34.35.36.	J. Bacteriol. 186 :6944-6955. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243 :240-246. Shintani T, Klionsky DJ. 2004. Autophagy in health and disease: a double-edged sword. Science 306 :990-995. Mimura N, Asano A. 1976. Synergistic effect of colchicine and cytochalasin D on phagocytosis by peritoneal macrophages. Nature 261 :319-321.

585		specificity and unintended consequences. Cell Logist 2:203-208.
586	38.	Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT.
587		2007. Toll-like receptor 4 is a sensor for autophagy associated with innate
588		immunity. Immunity 27:135-144.
589	39.	Delgado MA, Deretic V. 2009. Toll-like receptors in control of immunological
590		autophagy. Cell Death Differ. 16:976-983.
591	40.	Xu Y, Liu XD, Gong X, Eissa NT. 2008. Signaling pathway of autophagy
592		associated with innate immunity. Autophagy 4:110-112.
593	41.	Gay NJ, Gangloff M. 2007. Structure and function of Toll receptors and their
594		ligands. Annu. Rev. Biochem. 76:141-165.
595	42.	Gangloff M. 2012. Different dimerisation mode for TLR4 upon endosomal
596		acidification? Trends Biochem. Sci. 37:92-98.
597	43.	Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF,
598		Lien E, Nilsen NJ, Espevik T, Golenbock DT. 2004. TLR9 signals after
599		translocating from the ER to CpG DNA in the lysosome. Nat. Immunol.
600		5: 190-198.
601	44.	Kasai T, Nakane D, Ishida H, Ando H, Kiso M, Miyata M. 2013. Role of
602		binding in Mycoplasma mobile and Mycoplasma pneumoniae gliding analyzed

603		through inhibition by synthesized sialylated compounds. J. Bacteriol.
604		195: 429-435.
605	45.	Chambaud I, Wroblewski H, Blanchard A. 1999. Interactions between
606		mycoplasma lipoproteins and the host immune system. Trends Microbiol.
607		7:493-499.
608	46.	Wieslamder A, Boyer MJ, Wroblewski H. 1992. Membrane protein structure, p.
609		93-112. In Maniloff J, McElhaney RN, Finch LR, Baseman JB (ed.),
610		Mycoplasmas- Molecular Biology and Pathogenesis. American Society for
611		Microbiology, Washington, D.C.
612	47.	Muhlradt PF, Kiess M, Meyer H, Sussmuth R, Jung G. 1997. Isolation,
613		structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from
614		Mycoplasma fermentans acting at picomolar concentration. J. Exp. Med.
615		185: 1951-1958.
616	48.	Shibata K, Hasebe A, Into T, Yamada M, Watanabe T. 2000. The N-terminal
617		lipopeptide of a 44-kDa membrane-bound lipoprotein of Mycoplasma salivarium
618		is responsible for the expression of intercellular adhesion molecule-1 on the cell
619		surface of normal human gingival fibroblasts. J. Immunol. 165:6538-6544.
620	49.	Muhlradt PF, Kiess M, Meyer H, Sussmuth R, Jung G. 1998. Structure and

621		specific activity of macrophage-stimulating lipopeptides from Mycoplasma
622		hyorhinis. Infect. Immun. 66:4804-4810.
623	50.	Jan G, Brenner C, Wroblewski H. 1996. Purification of Mycoplasma
624		gallisepticum membrane proteins p52, p67 (pMGA), and p77 by
625		high-performance liquid chromatography. Protein Expr. Purif. 7:160-166.
626	51.	Feniouk BA, Junge W. 2005. Regulation of the F0F1-ATP synthase: the
627		conformation of subunit epsilon might be determined by directionality of subunit
628		gamma rotation. FEBS Lett. 579:5114-5118.
629	52.	Reizer J, Reizer A, Saier MH, Jr. 1992. A new subfamily of bacterial ABC-type
630		transport systems catalyzing export of drugs and carbohydrates. Protein Sci.
631		1:1326-1332.
632	53.	Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R. 1996.
633		Complete sequence analysis of the genome of the bacterium Mycoplasma
634		pneumoniae. Nucleic Acids Res. 24:4420-4449.
635	54.	Wu SS, Wu J, Cheng YL, Kaiser D. 1998. The pilH gene encodes an ABC
636		transporter homologue required for type IV pilus biogenesis and social gliding
637		motility in Myxococcus xanthus. Mol. Microbiol. 29:1249-1261.
638	55.	Shi CS, Kehrl JH. 2008. MyD88 and Trif target Beclin 1 to trigger autophagy in

639		macrophages. J. Biol. Chem. 283:33175-33182.
640	56.	Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ.
641		2004. Regulation of an ATG7-beclin 1 program of autophagic cell death by
642		caspase-8. Science 304: 1500-1502.
643	57.	Romao S, Munz C. 2014. LC3-associated phagocytosis. Autophagy 10.
644	58.	Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu
645		M, Tanaka K, Cleveland JL, Withoff S, Green DR. 2007. Toll-like receptor
646		signalling in macrophages links the autophagy pathway to phagocytosis. Nature
647		450: 1253-1257.
648	59.	Baseman JB, Lange M, Criscimagna NL, Giron JA, Thomas CA. 1995.
649		Interplay between mycoplasmas and host target cells. Microb. Pathog.
650		19: 105-116.
651	60.	Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ. 2004.
652		Recognition of fungal pathogens by Toll-like receptors. Eur. J. Clin. Microbiol.
653		Infect. Dis. 23:672-676.
654	61.	Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW,
655		Kullberg BJ. 2002. The role of toll-like receptor (TLR) 2 and TLR4 in the host
656		defense against disseminated candidiasis. J. Infect. Dis. 185:1483-1489.

657	62.	Oliveira AC, Peixoto JR, de Arruda LB, Campos MA, Gazzinelli RT,
658		Golenbock DT, Akira S, Previato JO, Mendonca-Previato L, Nobrega A,
659		Bellio M. 2004. Expression of functional TLR4 confers proinflammatory
660		responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher
661		resistance to infection with <i>T. cruzi</i> . J. Immunol. 173: 5688-5696.
662	63.	Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp
663		RA. 2001. Involvement of toll-like receptor 4 in innate immunity to respiratory
664		syncytial virus. J. Virol. 75: 10730-10737.
665	64.	Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR. 2002. Murine
666		retroviruses activate B cells via interaction with toll-like receptor 4. Proc. Natl.
667		Acad. Sci. U. S. A. 99:2281-2286.
668	65.	Kornspan JD, Rottem S. 2012. The phospholipid profile of mycoplasmas. J
669		Lipids 2012: 640762.
670	66.	Wilson MH, Collier AM. 1976. Ultrastructural study of Mycoplasma
671		pneumoniae in organ culture. J. Bacteriol. 125:332-339.
672	67.	Daubenspeck JM, Bolland JR, Luo W, Simmons WL, Dybvig K. 2009.
673		Identification of exopolysaccharide-deficient mutants of Mycoplasma pulmonis.
674		Mol. Microbiol. 72:1235-1245.

675 ACKNOWLEDGEMENT

- 676 This work was supported by Grants-in-Aid for Scientific Research 23790488 and
- 677 Grant-in-Aid for Scientific Research on Innovative Areas 25117530 from the Ministry of
- 678 Education, Culture Sports, Science and Technology of Japan.

679 FIGURE LEGENDS

680	Figure 1. TNF- α induction in TLR2 KO macrophages. (A) Peritoneal macrophages
681	derived from WT and TLR2 KO mice were infected with live or heat-killed M.
682	pneumoniae. After 6 h of incubation, TNF- α concentrations in the culture medium were
683	measured using ELISA. (B) Peritoneal macrophages derived from TLR2 KO mice were
684	infected with heat-, sonication-, overgrown-, or antibiotic-killed M. pneumoniae. After 6
685	h of incubation, TNF- α concentrations in the culture medium were measured using
686	ELISA. All values are represented as the means and SD of 3 assays. *: $P < 0.01$ compared
687	with PBS by multiple comparison.

689	Figure 2. mRNA expression of pro-inflammatory cytokines by <i>M. pneumoniae</i> infection.
690	(A) Peritoneal macrophages derived from WT and TLR2 KO mice were infected with
691	live or heat-killed <i>M. pneumoniae</i> . After 1, 2, 3, and 6 h of incubation, total RNA was
692	isolated and TNF- α mRNA expression levels were measured using real-time PCR. All
693	values are represented as the means and SD of 3 assays. *: $P < 0.01$ compared with PBS
694	by multiple comparison. (B) Peritoneal macrophages derived from WT and TLR2 KO
695	mice were infected with live and heat-killed <i>M. pneumoniae</i> . After 6 h of incubation, total
696	RNA was isolated and the expression level of TNF- α , IL-6, and IL-10 mRNA were

697 measured using real-time PCR. All values are presented as the means and SD of 3 assays.

698 *: P < 0.01 compared with WT macrophages by multiple comparison.

699

700	Figure 3. Autophagy dependent induction of TNF-a. (A) Peritoneal macrophages derived
701	from TLR2 KO mice were treated with 100 μM chloroquine or 5 mM 3MA for 30 min.
702	The treated cells were infected with live <i>M. pneumoniae</i> . After 6 h of incubation, $TNF-\alpha$
703	concentration in the culture medium were measured using ELISA. (B, C) Peritoneal
704	macrophages were infected with live M. pneumoniae for 6 h. LC3 was stained with
705	anti-LC3 antibody and FITC-labeled secondary antibody (green). DNA of macrophages
706	and <i>M. pneumoniae</i> were stained with DAPI (blue). Small DNA particles derived from <i>M</i> .
707	pneumoniae were shown with arrows. Scale bar = 20 μ m. (D) Peritoneal macrophages
708	derived from TLR2 KO mice were treated with 2 μM cytochalasin D for 30 min and then
709	infected with <i>M. pneumoniae</i> . After 6 h of incubation, TNF- α concentrations in the
710	culture medium were measured using ELISA. All values are presented as the means and
711	SD of 3 assays. *: $P < 0.01$ compared with PBS or DMSO treatment by multiple
712	comparison. **: $P < 0.05$ compared with PBS or DMSO treatment by multiple
713	comparison.

715	Figure 4. TLR4- and MyD88-dependent TNF- α induction. (A) Peritoneal macrophages
716	derived from TLR2 KO mice were treated with 10 μM OD2088 or 50 μM VIPER for 30
717	min and then infected with <i>M. pneumoniae</i> . After 6 h of incubation, TNF- α
718	concentrations in the culture medium were measured using ELISA. All values are
719	presented as the means and SD of 3 assays. *: $P < 0.01$ compared with PBS treatment by
720	multiple comparison. (B) Peritoneal macrophages derived from TLR2 KO, TLR4 KO,
721	and TLR2/4 double KO mice were infected with <i>M. pneumoniae</i> . After 6 h of incubation,
722	TNF- α concentration in the culture medium were measured using ELISA. All values are
723	presented as the means and SD of 3 assays. *: $P < 0.01$ compared with WT macrophages
724	by multiple comparison. (C) Peritoneal macrophagesderived from TLR2 KO, TLR4 KO,
725	and MyD88 KO mice were infected with <i>M. pneumoniae</i> ($OD_{595} = 0.1$). After 6 h of
726	incubation, TNF- α concentrations in the culture medium were measured using ELISA.
727	All values represent the means and SD of three assays. All values are presented as the
728	means and SD of 3 assays. *: $P < 0.01$ compared with WT macrophages by multiple
729	comparison. (D) WT, TLR2 KO, and TLR2/4 double KO mice were intranasally infected
730	with <i>M. pneumoniae</i> . After 24h, the mice were infected with same amount of <i>M</i> .
731	pneumoniae again for an additional 24h. TNF- α concentrations in the BALF were
732	measured using ELISA. All values represent the means and SD of three assays. All values

733	are presented as the means and SD of 3 assays. **: $P < 0.05$ compared with WT mice by
734	multiple comparison. (E) Peritoneal macrophagesderived from TLR2 KO mice were
735	treated with 10 μM SB203580, 10 μM U0126, or 50 μM SP600123 for 30 min. The
736	treated cells were infected with M. pneumoniae. After 6 h of incubation, TNF-a
737	concentration in the culture medium were measured using ELISA. All values are
738	presented as the means and SD of 3 assays. *: $P < 0.01$ compared with DMSO treatment
739	by multiple comparison. **: $P < 0.05$ compared with DMSO treatment by multiple
740	comparison.

742	Figure 5. Cytadherence-dependence TNF- α induction. (A) Transposon mutagenesis of <i>M</i> .
743	pneumoniae was performed as described in the Materials and Methods section. Peritoneal
744	macrophages derived from TLR2 KO mice were infected with transformed M.
745	pneumoniae for 3h. TNF- α concentrations in the culture medium were measured usig
746	ELISA. All values are presented as the means and SD of 3 assays. *: $P < 0.01$ compared
747	with M129 by multiple comparison. (B) PPLO agar plates were overlaid with 15 ml of
748	fresh sheep blood, washed, and resuspended in PBS to a final concentration of 0.5% (v/v).
749	After incubation at 37° C for 30 min, the plates were washed with PBS. Bar = 1mm.

750 Fig. 1A

IAI Accepts published online ahead of print

761 Fig. 3A

763 Fig. 3B

DMSO

DAPI

merge

766 Fig. 3C

LC3

500

0

769

51

Cytocharasin D

770 Fig. 4A

775 Fig. 4C

780 Fig. 4E

783 Fig. 5A

785

786 Fig. 5B

788

IAI Accepts published online ahead of print