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  A novel weighted cumulative delta-check method 
for highly sensitive detection of specimen mix-up 
in the clinical laboratory    

  Abstract 

  Background:  We sought to detect specimen mix-up by 

developing a new cumulative delta-check method appli-

cable to a mixture of test items with heterogeneous units 

and distribution patterns. 

  Methods:  The distributions of all test results were suc-

cessfully made Gaussian using power transformation. 

Values were then standardized into z-score (zx) based on 

reference interval (RI) so that limits of RI take zx =   ±  1.96. To 

find a weight for summing absolute value of delta between 

current and previous zx (Dz), we evaluated the distribu-

tion of Dz. Its central portion was always regarded as 

Gaussian despite the presence of symmetrical long tails. 

Thus, an adjusted SD (aSD) representing the center was 

estimated with an iterative method. By setting 1/aSD 2  as a 

weight factor, we computed a weighted mean of Dz as an 

index for specimen mix-up (wCDI). 

  Results:  The performance of wCDI was evaluated, using 

a model laboratory database consisting of 32 basic test 

items, by a simulation study generating artificial cases 

of mix-up. When wCDI was computed from three com-

monly ordered test sets consisting of 6 – 9 items each, its 

diagnostic efficiency in detecting the artificial cases was 

0.937 – 0.967 expressed as area under ROC curves (AUC). 

When the performance of wCDI was evaluated simply by 

the number of test items (p) included in the computa-

tion, AUC gradually increased from 0.944 (p = 5) to 0.976 

(p = 8). However, when p   ≥   10, AUC stayed at approxi-

mately 0.98. 

  Conclusions:  wCDI was proven to be highly effective in 

uncovering cases of specimen mix-up. The diagnostic effi-

ciency of wCDI depends only on the number of test items 

included in the computation.  
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   Introduction 
 Laboratory automation has advanced greatly in parallel 

with ever increasing number of orders to clinical laborato-

ries. However, processing of specimens remains dependent 

on manual work, and specimen mix-ups can occur through 

mislabeling and patient misidentification [ 1 ,  2 ]. In fact, the 

incidence is reported to be not negligible [ 3 ,  4 ], although 

incidents are usually detected by the clinician. However, 

such incidents often lead to mistrust towards the clinical 

laboratory. Therefore, the laboratory must make an all-out 

effort to detect such errors before reporting test results. 

A simple strategy is to automatically retest the specimen 

when any test result exceeds a certain threshold or when 

results of associated test items are discordant. Due to the 

high prevalence of extreme values, such protective meas-

ures increase the cost of running a laboratory. 

 Naturally, the only plausible measure of identifying 

specimen mix-up is to evaluate consistency of the current 

test results with the previous results. As a basic function 

of the laboratory information system (LIS), automatic 

comparison with previous results is made, and a large 

difference (delta) from the previous one is marked to 

arouse suspicion. However, interpretation for a set of 

deltas is usually not straight-forward, requiring knowl-

edge on inherent variability of each test item. 

 Several schemes have been reported to automati-

cally judge possible specimen mix-up. They are based on 

either summation of deltas of simultaneously measured 

test items [ 5 ] or discriminant function analysis of a set of 
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deltas for selected [ 6 ] or all test items [ 7 ]. These methods, 

however, are not expected to work properly because the 

distribution patterns of test results differ greatly from 

one test item to another [ 8 ]. A delta from non-Gaussian 

skewed distribution tends to exert more influence in the 

analysis. Furthermore, biological variability of test results 

differs greatly among test items. For example, glucose or 

triglyceride shows large fluctuations even among healthy 

individuals depending on the sampling conditions. There-

fore, analysis of deltas should be made in consideration 

of heterogeneous distribution patterns and differences in 

biological variability. 

 We have developed a new delta-check method that 

has overcome both problems by the normalization of 

the distributions through power transformation and 

by a weighted summation of deltas based on biological 

vari ability. It also features exclusion of influential data 

points in deriving biological variability using an iterative 

procedure [ 9 ] and uniform expression of all test results 

by z-score. This method was designated as the weighted 

cumulative delta-check (wCDC) method. In this report, we 

describe the theoretical formulation and demonstrate the 

performance of the wCDC method with a simulation gener-

ating artificially mixed-up cases in a model LIS database.  

  Materials and methods 

  Theoretical formulation of the wCDC method 

  Normalization of distribution patterns 

 We have reported previously that test results from healthy indivi-

duals did not follow Gaussian distribution in most analytics, but 

their distributions can be transformed into Gaussian using the fol-

lowing modifi ed Box-Cox power transformation formula [ 8 ,  10 ]. 
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− −= ≠

 

  X T    =  log( x  –  a ) ( p  = 0) 

 where  x  and X  T   represent test values before and aft er trans formation, 

and  p  and  a  designate power and the origin of trans formation, re-

spectively. 

 Target data in LIS, however, contain a large number of extreme 

values that apparently aff ect estimation of  p  and  a . Therefore, before 

power transformation, we truncated 1% of the data on each tail of the 

distribution. The maximum likelihood estimation method was used 

for fi tting  p  and  a . As the two estimators are dependent on each other, 

we adopted an algorithm to estimate just  p  by this method and then 

set  a  at a location corresponding to mean (M)  –  4  ×  SD of the trans-

formed data, that is,  a = p  ×  (M − 4SD + 1)  (1/p)  + a 0  , where   a  0   represents the 

previous  a . The initial value for  a  was set at  x min  − (Me − x min )/10  where 

 Me represents median and x min   represents the smallest observed 

value. Aft er adjusting  a, p  was again estimated iteratively until both 

parameters stabilized. In consideration of gender-dependent diff er-

ence in distributions of test results, the transformation was done 

separately for male and female in all the test items.  

  Uniform expression of test results 

 To make results of any test item comparable and unaff ected by 

measurement units, all the transformed test results were stand-

ardized to a uniform scale on the basis of reference interval (RI) as 

explained below. 

 First, the lower and upper limits of the RI (LL, UL), were trans-

formed to LL T  and UL T  by the power transformation: 
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Assuming the RI was determined parametrically aft er power 

transformation with the same  p  and  a , mean (M T ) and SD (SD T ) of RI 

under the transformed scale were computed as follows: 

   2
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 Using M T  and SD T , transformed test result X T  was converted to z 
x
  

(z-score) with the following formula. 
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 This conversion to the uniform scale was done separately for 

male and female using the gender-specifi c RIs. 

 These fl ows of data processing are illustrated in  Figure 1 .   

  Derivation of SD representing within-individual 
differences 

 As the next step, to derive within-individual diff erence in two suc-

cessive measurements, we consecutively scanned an individual re-

sult, from current to the past, and retrieved an immediate past result 

of the same patient one or more days apart, if any. The diff erence of 

the two (D 
z
 ) was computed aft er power transformation and stand-

ardization as  z curr  − z prev  , and the distribution of D 
z
  for all records was 

examined item by item. We tried to use the SD of D 
z
  as the index 

of within-individual diff erence. However, distributions of D 
z
  were 

always symmetrical but had long tails, and extreme values in the 

tails had strong infl uence in computing SD. Therefore, we adopted 

the iterative truncation and correction (ITC) method [ 9 ] to obtain an 

unbiased mean and SD unaff ected by extreme values in the periph-

ery of the distribution. The ITC method was originally developed for 

computing means in a setting of external quality assurance surveys, 

in which we oft en observe a cluster of extreme values in the periph-

Authenticated | ichihara@yamaguchi-u.ac.jp author's copy
Download Date | 2/14/13 10:54 AM



Yamashita et al.: Novel delta-check method      3
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 Figure 1      Schematic flow of data processing required to implement 

wCDC method. 

 Light blue frequency distribution curve area represents all results 

for given test item retrieved from the LIS. Green-colored band below 

the curve represents reference interval (RI) for the test item. Inner 

green curve area drawn just above RI bar illustrates imaginary distri-

bution of reference values used for computing the RI.    

ery of peer group distributions. ITC involves an iterative process of 

truncation of large blocks of data on both tails of the distribution 

(outside  M  ±  k  ×  SD ) followed by correction of M and SD according to 

the truncation coeffi  cient (k). This adjustment is valid only when 

we can assume Gaussian distribution in the central portion (within 

 M  ±  k  ×  SD ). Using this principle, we derived adjusted SD (aSD) for the 

distribution of D 
z
 .  

  Computation of weighted cumulative delta-check index 

 We assumed that the larger the aSD of a given test item, the less eff ec-

tive the item to be used for distinguishing specimen mix-up. There-

fore, we used the inverse of aSD 2  as a weight, w ,  in the summation 

of D 
z
 . 

   
2

1w
aSD

=
 

 Thus, a new index to indicate possible specimen mix-up, named 

weighted cumulative delta index (wCDI), was derived by the follow-

ing formula, 
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 where we assume that there are k-test items simultaneously meas-

ured in current and previous records. An absolute diff erence of the 

i-th test item (i = 1, 2,  … , k) between the two measurements,  | D 
zi
  | , is 

multiplied by the weight, w 
i
 , and summed for k items, and then di-

vided by the sum of the weights.   

  Procedures for validation 

  Data source 

 A model database retrieved in 1998 from a large clinical labora-

tory and made totally anonymous for use in the practicum of a 

laboratory informatics course was used for the validation study. 

The database was composed of 171,547 records (inpatient 79,307; 

outpatient 92,240) consisting of 22,677 unique IDs representing a 

period of 1 year. The test items used for the evaluation were the 

32 most commonly measured items including white blood cell 

(WBC), red blood cell (RBC), hemoglobin (Hgb), hematocrit (Hct), 

platelet (PLT), mean corpuscular volume (MCV), mean corpuscular 

hemoglobin (MCH), mean corpuscular hemoglobin concentration 

(MCHC), total protein (TP), albumin (ALB), sodium (Na), potas-

sium (K), chloride (Cl), calcium (Ca), inorganic phosphate (IP), 

blood urea nitrogen (BUN), creatinine (CRE), uric acid (UA), total 

cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low 

density lipoprotein cholesterol (LDL-C), triglyceride (TG), glucose 

(GLU), aspartate aminotransferase (AST), alanine aminotrans-

ferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase 

(ALP), γ-glutamyltransferase (GGT), amylase (AMY), choline ester-

ase (CHE), activated partial thromboplastin time (APTT), and pro-

thrombin time (PT). 

 The average number of test items measured per order was 17.4. 

The minimum number of simultaneously measured items valid for 

computing wCDI was set to 5. Thus, a total of 137,134 paired records 

were used for the validation study.  

  Tests for normality of distribution 

 Goodness-of-fi t to Gaussian distribution was done by the following 

two methods: 1) Skewness and kurtosis [ 11 ]. Skewness (Sk) represents 

a degree of asymmetry in distribution: Gaussian distribution gives 

Sk = 0.0, and a distribution skewed toward lower and upper tails gives 

Sk  <  0.0 and Sk  >  0.0, respectively. Kurtosis (Kt) represents the peaked-

ness of distribution: Gaussian distribution gives Kt = 0.0, and a steeper 

distribution such as a logarithmic Gaussian distri bution gives Kt  >  0.0. 

We regarded fulfi llment of both  − 0.3  <  Sk  <  0.3 and  − 0.3  <  Kt  <  0.3 as 

Gaussian distributions. 

 As computation of Sk and Kt is severely infl uenced by the pres-

ence of extreme values in tails of distribution, we applied a non-

parametric truncation procedure before computing Sk and Kt by 
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excluding data points located outside the following lower and upper 

extreme limits (eLL, eUL). 

  eLL  =  Q 1 – 3.0  ×  ( Me  –  Q 1) 

  eUL  =  Q 3 + 3.0  ×  ( Q 3 –  Me ) 

 where Me, Q1, and Q3 represent the median and fi rst and third quar-

tiles of a given distribution, respectively. 

 2)  χ  2 -test for normality. On the basis of M and SD of the distri-

bution, test values were partitioned into eight segments by setting 

seven boundary values between  − 1.6SD and 1.6SD. Goodness-of-fi t to 

Gaussian distribution can be evaluated from observed and expected 

frequencies (Oi and Ei) for each segment (i = 1, … , 8) as follows [ 12 ]: 
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 This method was used to test for normality of a distribution aft er 

truncation by the ITC method. However, the size of the data we dealt 

with was so huge that statistical testing of normality is too sensitive. 

Therefore, we modifi ed the testing by repeatedly resampling a subset 

of the original dataset for 100 times and computed the average of the 

 χ  2  values. We arbitrarily set the data size for resampling as 200.  

  Diagnostic evaluation of wCDI 

 To evaluate performance of the wCDC method, we conducted a sim-

ulation study using the model database. We computed wCDI con-

secutively for each record, from current to the past for the entire data-

set. These values constituted   ‘  natural  ’   wCDI for the control group. 

To obtain cases of specimen mix-up, we randomly created pairs of 

unmatched records among those of the same day and computed 

wCDI. These values represented wCDI for the   ‘  artifi cial  ’   group. Then, 

performance of the wCDC method in detecting the artifi cial group 

was evaluated in two parts according to the combination of test items 

included in computing wCDI. In part one, evaluation was limited to 

those wCDI that were computed for three commonly ordered test sets 

consisting of six to nine items each. In part two, the evaluation was 

made according to the number of test items included in computing 

wCDI, disregarding the combination of test items. A cut-off  value to 

distinguish the natural and artifi cial groups was determined based 

on receiver-operating characteristic (ROC) curve analysis [ 13 ]. An 

overall degree of diff erentiation was expressed as the area under the 

ROC curve (AUC).    

  Results 

  Performance of the power transformation 

 Effectiveness of the power transformation to normalize 

patients ’  test results is shown in  Table 1 . The test items 

examined here were all known to have skewed distribu-

tion with  | Sk |   >  0.3. The effect of excluding 1% of the data 

on each tail of the distribution before transformation was 

examined. The Sk and Kt values were computed for three 

cases: Case 1 for distributions of the original dataset and 

Case 2 and Case 3 for distributions after power transfor-

mation without and with exclusion of extreme values, 

respectively. For the sake of space, the analytical results 

 Name    n a  

 1) Original  2) Box-Cox transformation without 
truncation 

   n b  

 3) Box-Cox transformation with 
truncation 

 Sk  Kt  p  a  Sk  Kt  p  a  Sk  Kt 

WBC 75610 0.63c –0.23 0.108 0.2 0.05 0.03 74192 0.316 1.5 0.10 0.04

TP 45272 –0.42c 0.04 2.636 0.4 0.01 0.29 44486 2.051 1.4 –0.11 0.29

ALB 36068 –0.43c 0.44d 1.446 0.6 –0.23 0.67d 35464 0.863 1.3 –0.52c 0.31d

Na 48079 –0.62c –0.04 2.443 118.1 –0.43c 0.34d 47387 2.550 118.1 –0.43c 0.34d

Ca 22241 –0.50c 0.08 1.393 3.8 –0.40c 0.19 21827 2.832 3.8 –0.19 0.34d

BUN 72673 0.91c –0.70d 0.032 0.6 0.32c –0.03 71412 0.000 5.7 0.07 0.09

CRE 73352 1.13c –1.43d 0.562 0.0 0.94c –1.05d 71914 0.000 0.3 0.52c –0.35d

HDL-C 13035 0.48c 0.03 0.169 2.9 0.08 0.23 12786 0.289 21.9 –0.08 0.22

TG 23240 0.98c –0.52d 0.024 4.8 0.22 0.25 22799 0.086 40.1 –0.12 0.14

GLU 20736 1.15c –0.92d 0.041 23.1 0.74c –0.17 20346 0.016 66.1 0.32c 0.21

AST 49325 1.25c –1.33d 0.520 1.0 0.94c –0.67d 48479 0.028 9.9 0.18 –0.03

ALT 49300 1.38c –1.54d 0.021 2.5 0.38c 0.04 48455 0.000 5.9 0.11 0.18

LDH 40649 0.71c –0.33d 0.023 33.4 0.26 0.05 39837 0.141 103.5 0.03 0.05

ALP 40155 1.02c –0.91d 0.026 15.5 0.45c –0.10 39359 0.000 103.5 0.09 0.03

GGT 57020 1.60c –2.11d –0.004 4.7 0.42c 0.19 55893 0.000 3.3 0.50c 0.16

AMY 18881 0.71c –0.21 0.026 1.8 0.00 0.13 18532 0.200 22.7 –0.09 0.05

APTT 16954 1.06c –0.74d 0.026 15.2 0.46c 0.06 16623 0.070 21.3 0.06 0.12

 Table 1      Effectiveness of Gaussian transformation by modified Box-Cox formula.  

   a Number of original dataset;  b Number of truncated dataset; Sk, Skewness (c | Sk |   >  0.3); Kt, Kurtosis (  d   | Kt |   >  0.3).  
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are shown only for the male dataset. However, the almost 

identical results were obtained in the female dataset.  

 From the values of Sk and Kt, it is evident that the 

original distributions (Case 1) deviate severely from the 

Gaussian form. Meanwhile, comparison of performance 

between Cases 2 and 3 showed that prominent increase 

in the success rate of Gaussian transformation occurred 

in the latter case. The estimated  p  did not differ much 

between Case 2 and Case 3, but the estimated  a  did change 

appreciably, implying that aberrant/unrealistic values 

often exist in the lower tail of distribution of test values, 

such as zero, in the LIS, and the exclusion procedure was 

effective in removing them.  

  Derivation of within-individual differences 

 The magnitude of within-individual differences was com-

puted as the SD of the distribution of D 
z
  for each test item. 

Computed SD of D 
z
  for the 32 test items with or without 

using the ITC method are listed in  Table 2 , which clearly 

shows that the SD by ITC method (aSD) is obviously smaller 

than the SD without the ITC method. Results of the  χ  2 -test 

clearly indicate that the central portion of the distribution 

of D 
z
  can be regarded as Gaussian. The analytical results 

in the table are again shown only for the male dataset and 

those for the female dataset were omitted.  

 Six typical distributions of D 
z
  for ALB, ALP, Ca, Cl, 

GGT, and GLU are illustrated in  Figure 2 . Each has clear 

peak at D 
z
  = 0.0 and shows very smooth symmetrical dis-

tribution but has long tails. Theoretical Gaussian curves 

were drawn over the histograms by use of the original M 

and SD or the adjusted M and aSD. Nearly perfect fitting 

of the latter curve to the histogram again indicates that 

the central portion of the distribution is Gaussian and 

that the ICT method is very effective in deriving SD unaf-

fected by extreme values in the periphery. As all data were 

both transformed and standardized, aSD of any test item 

is now mutually comparable and indicates the magnitude 

of within-individual difference. Smaller values of aSD in 

the ascending order were observed for the following test 

items: TP, MCV, ALP, MCH, ChE, MCHC, and GGT (Table 2).   

  Diagnostic performance of wCDI 

  Fixed combination of test items 

 The performance of wCDI in identifying specimen mix-up 

was investigated by artificially generating cases of mix-up. 

Although wCDI can be computed for any combination of 

 Name  Without ITC method  With ITC method 

 Mean  SD   χ  2   Mean  aSD   χ  2  

WBC 0.03 1.46 36.31a 0.07 0.77 9.95

RBC 0.05 1.09 23.99a 0.03 0.71 9.78

Hgb 0.07 1.28 25.86a 0.04 0.81 10.26

Hct 0.05 1.09 21.90a 0.02 0.73 9.80

PLT –0.02 0.92 42.14a 0.00 0.46 10.74

MCH 0.01 0.37 20.89a 0.01 0.25 10.08

MCHC 0.01 0.38 12.05a 0.01 0.33 10.37

MCV 0.00 0.51 60.47a –0.01 0.21 9.86

TP 0.02 1.06 107.13a –0.02 0.20 12.41a

ALB 0.05 1.10 21.90a –0.02 0.75 9.50

Na –0.02 0.95 16.73a –0.01 0.73 10.08

K –0.03 1.36 15.28a –0.04 1.03 10.80

Cl 0.00 1.04 14.76a 0.00 0.83 9.95

Ca 0.02 1.33 64.08a –0.01 0.66 10.08

IP 0.06 1.88 73.92a 0.00 0.82 9.82

BUN 0.00 1.17 40.24a 0.00 0.61 10.52

CRE 0.01 1.04 54.67a 0.01 0.51 9.97

UA 0.03 1.11 72.94a 0.00 0.51 10.32

TC 0.01 0.65 14.97a 0.00 0.51 10.92

HDL-C –0.01 0.60 15.43a 0.00 0.47 10.92

LDL-C 0.02 0.78 16.74a 0.01 0.59 10.48

TG 0.01 0.79 19.01a 0.01 0.55 10.12

GLU 0.04 1.76 60.80a 0.02 0.74 10.42

AST 0.02 1.08 37.83a 0.04 0.57 9.93

ALT 0.00 0.82 36.37a 0.05 0.45 10.10

LDH 0.04 0.91 44.28a 0.04 0.46 9.42a

ALP 0.00 0.50 62.23a 0.02 0.23 9.58

GGT 0.00 0.78 59.82a 0.05 0.34 11.32

AMY –0.01 1.22 74.66a 0.00 0.46 10.14

CHE 0.01 0.42 25.89a 0.00 0.26 10.07

PT(%) 0.03 1.46 30.06a –0.01 0.86 10.54

APTT –0.04 0.75 47.60a 0.00 0.35 9.52

  Table 2      Effectiveness of the iterative truncation and correction (ITC) 

method in adjusting SD.  

  a p  <  0.05,  χ  2  
(df

 = 5, p
 = 0.05)

  = 11.07.  

test items, we examined three commonly ordered test sets: 

Set 1 (WBC, RBC, Hb, Ht, PLT, MCV, MCH, MCHC), Set 2 

(TP, Alb, BUN, CRE, UA, Na, K, Cl, Ca), and Set 3 (ALT, AST, 

LDH, ALP, GGT, TP). 

 Results of the simulation study are shown in  Table 

3 A. The accuracy of distinguishing two groups by 

wCDI, expressed as AUC (4th column), were as high as 

0.937 – 0.967. Sensitivity of correctly detecting artificial 

cases was determined using a cut-off value of wCDI that 

gives a false-positive (FP) rate of 5.0%, 7.5%, or 10%. 

The sensitivities were 63.2% – 84.8%, 74.0% – 89.2%, and 

80.7% – 91.6%, respectively (5th – 7th columns). The same 

analysis was done for a special case when wCDI values 

without weight (or equal weight regardless of aSD) were 

used for the detection. As expected, it resulted in poor 

accuracy (Table 3B).   
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 Figure 2      Examples of distribution of deltas (within-individual 

differences between current and previous z scores). 

 Theoretical Gaussian curves were drawn over the histogram by 

use of the original mean and SD of the distribution (curve drawn in 

black color) and by use of the adjusted mean and SD (aSD) based 

on the ICT method (curve drawn in red color). The analysis was done 

separately for male and female, and this figure was made for the 

male dataset.    

  Arbitrary combination of test items 

 We also evaluated the performance of wCDC methods for 

arbitrary combination of test items. The same simulation 

study was performed by artificially generating cases of 

mix-up. Performance was evaluated simply by stratifying 

wCDI for   ‘  natural  ’   and   ‘  artificial  ’   cases by the number of 

test items included in the computation.  Figure 3  shows 

how the AUC (Figure 3A), cut-off value, and sensitivity of 

detection (by setting FP rate at 5%, 7.5%, or 10%) change 

with the number of test items k ( = 5 – 20) used in com puting 

wCDI (Figure 3B and C). AUC and sensitivity increased 

        Data size      AUC   Sensitivity, % (cut-off value ) 

  Artificial   Natural   FP == 5%   FP == 7.5%   FP == 10% 

(  A) Fixed test item (with weight)                   
    Set 1  (WBC, RBC, Hb, Ht, PLT, MCV, MCH, MCHC)   126,211   105,691   0.967   84.8% (0.82)   89.2% (0.73)   91.6% (0.67) 

    Set 2  (TP, Alb, Na, K, Cl, Ca, BUN, CRE, UA)   4087   10,205   0.953   74.8% (1.13)   81.7% (1.02)   86.2% (0.94) 

    Set 3  (AST, ALT, LDH, ALP, GGT, TP)   36,327   39,255   0.937   63.2% (1.07)   74.0% (0.92)   80.7% (0.82) 

  (B) Fixed test item (without weight)                   
    Set 1  (WBC, RBC, Hb, Ht, PLT, MCV, MCH, MCHC)   126,211   105,691   0.952   76.2% (1.21)   82.5% (1.07)   86.2% (0.98) 

    Set 2  (TP, Alb, Na, K, Cl, Ca, BUN, CRE, UA)   4087   10,205   0.944   70.0% (1.17)   77.8% (1.06)   83.5% (0.98) 

    Set 3  (AST, ALT, LDH, ALP, GGT, TP)   36,327   39,255   0.933   61.2% (1.37)   71.8% (1.19)   78.8% (1.07) 

  Table 3      Performance of the wCDC method when applied to common test sets.  

 FP, False-positive.  

proportionately for k   ≤   10 but remained almost unchanged 

for k  >  10, and the cut-off value decreased until k = 10 and 

remained unchanged for k  >  10. Therefore, for k  >  10, cut-off 

values can be set approximately at 0.90, 0.83, and 0.75, 

respectively, for FP rates of 5%, 7.5%, and 10%. To deter-

mine the effect of a weighting factor in computing wCDI, 

we also evaluated the results for wCDI with equal weight-

ing and show the corresponding results in broken lines. 

It is evident that performances are always poor without 

weighing in the computation.  
 From these results, we found that it was not necessary 

to set an individual cut-off value for wCDI for each combi-

nation of test items. Rather, we can set the cut-off value to 

judge wCDI according to the number of test items included 

in the computation.    

  Discussion 
 There have been various attempts to detect possible cases 

of specimen mix-up in routine clinical laboratory data by 

use of information techniques. However, real clinical labo-

ratory data are very heterogeneous and contain a number 

of extreme data. Therefore, simple statistical analysis is 

of no use in uncovering cases of mix-up. We coped with 

this problem by applying a series of techniques for data 

analyses. 

 First, we converted the distribution of patients ’  test 

values into Gaussian with a modified Box-Cox power 

transformation formula after excluding 1% of extreme 

values on both ends of the distribution. We proved that 

this method was very effective in bringing the distribu-

tion very close to Gaussian. Although we have found that 

almost all laboratory test results from healthy individu-

als can be converted to Gaussian by the Box-Cox method 

[ 8 ,  10 ], it is of great interest to find that patient test values 
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 Figure 3      Performance of the wCDC method in relation to number of test items. 

 (A) Effect of weighting (solid line) versus non-weighting (dashed line) on AUC for distinguishing cases of mix-up. (B) and (C) Cut-off values 

and sensitivities, respectively, corresponding to false-positive rates of 5% (blue line), 7.5% (green line), and 10% (red line). Dashed lines 

represent wCDI computed without weighting.    

can be also converted to Gaussian for almost all test items 

simply by prior exclusion of highly extreme values. This 

implies that the distribution becomes symmetrical, and 

balanced treatment of abnormal values on lower and 

higher sides is possible. 

 In testing for normality by use of Sk and Kt after apply-

ing power transformation, we had to truncate data in the 

tails of the transformed distributions because both para-

meters are very sensitive to extreme values with cubic and 

fourth-power terms of deviation from mean, respectively, in 

the formulae. Tukey ’ s procedure is conventionally used to 

truncate data outsides ( Q1 − 1.5  ×  IQR  and  Q3 + 1.5  ×  IQR ) where 

IQR represents interquartile range ( Q3 − Q1 ). However, it 

assumes symmetrical distribution in the truncation. We 

overcame this problem by adopting cut-off values reflecting 

the asymmetry,  Q1 − 3.0  ×  (Me − Q1)  and  Q3+3.0  ×  (Q3 − Me) , for 

the lower and upper sides, respectively. They correspond to 

0.7 and 99.3 percentile points in the case of Gaussian dis-

tribution. We believe it is essential to use our formulae in 

dealing with laboratory test results that sometimes show 

highly skewed distribution. 

 Another step we took was conversion of the trans-

formed value into a z-score to deal with test results uni-

formly regardless of measurement units. In this conver-

sion, we used a special approach to standardize the value 

on the basis of the gender-specific RI because we believed 
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that the standardized value (z-score) should be clinically 

interpretable by scaling the reference limits (LL, UL) as 

 − 1.96 and 1.96. In fact, the merit of scaling z-score based 

on RI was that we can graphically display two sets of test 

results for current and past tests as shown in  Figure 4 A, and 

users can interpret clinical significance of observed differ-

ence in z-scores. This graphical display was built as a part 

of a system implementing the new delta-check method. In 

parallel, the system offers a view showing degrees of dif-

ference in reference to expected variability (aSD of delta) 

of each test item (Figure 4B). This way, the system provides 

information regarding both clinical and analytical impli-

cations of the observed difference, thus facilitating final 

judgment of whether data deviating highly from previous 

results can be regarded as a case of mix-up.  
 The most crucial and challenging issue in esta blishing 

the wCDC method was to estimate variability of difference 

in two successive test results from routine laboratory data 

that included all kinds of extreme results. Actually, distri-

bution of differences between current and previous values 

(D 
z
 ) showed smooth symmetrical distribution but always 

had a very long tail on either end. This fact implies that 

SD computed from the entire range of distribution cannot 

be used as a measure of within-individual differences. 

However, we found that the central portion of the distri-

bution was clearly regarded as Gaussian by the limited-

range  χ  2 -test. Therefore, we applied the ICT method [ 9 ] to 

obtain an adjusted SD representing the central portion. 

The ICT method was originally developed to derive unbi-

ased means (center) of test value distributions in external 

quality control surveys. We proved that the method is also 

applicable to derive unbiased SD of a distribution contain-

ing a large number of extreme values on either or both tails. 

 In testing normality of distribution of D 
z
  in its central 

portion, we needed to use the  χ  2 -test. However, it is very 

sensitive to data size. Actually, when all the observed 

frequencies are uniformly multiplied by the factor of m, 

 χ  2  statistics are simply increased m times although the 

degree of freedom does not change and the cut-off value 

remains the same as illustrated in the formulae below: 

   

2
2

1

( )k
i i

i i

O E
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−χ =∑
 

   

2 2
2

1 1
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i i i i
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 This property of the statistical test hinders its use with 

our large-scale data. Therefore, we adopted an approach 

to apply the method by repeatedly sampling a small 

subset of the original dataset and taking an average of the 

 χ  2  values. This way we could objectively judge differences 

in distribution patterns with or without the ITC method. 

We believe this modification is appropriate in a practical 

sense because our purpose was only to demonstrate that 

greatly improved fitting to the Gaussian distribution of 

the central part is possible with the ITC method compared 

with not using the method. 

 With regard to the general applicability of the new 

delta-check method, we have evaluated the per formance 

of detecting the artificially mixed-up cases with or 

without limiting the dataset to those from outpatients. 

There was no appreciable difference in the performance 

attributable to a change in the proportion of abnormal 

results in the database. It implies that the Gaussian 

transformation makes the magnitude of differences in 

test results equivalent regardless of the test level used 

for comparison. 

 Another important consideration in applying the 

new delta-check method is allowable limit of time inter-

val between two successive measurements. When the 

interval is too long, the performance may be affected by 

age-related changes in test results especially for data from 

pediatric and aged population.

Therefore, the system now sets the maximum 

time interval to 1 year. Furthermore, the system auto-

matically provides information about the time interval 

between the two successive measurements so that the 

user can interpret the implication of the difference from 

the time interval. However, the system can refresh a list 

of the SDs for within-individual differences regularly. 

Therefore, its performance is not affected by a long-term 

bias in the analytical system or by a shift in the patient 

population. 

 A possible problem with the wCDC method could be 

that wCDI does not take into consideration of correlations 
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 Figure 4      Two-way displays showing differences between current 

and previous test results provided by the wCDC system when the 

wCDI value exceeds a certain limit. 

 (A) Clinical implication view shown in the uniform scale using 

z-scores. (B) Degree of deviation between the two measurements in 

reference to the expected variability (aSD) of each test item.    

Authenticated | ichihara@yamaguchi-u.ac.jp author's copy
Download Date | 2/14/13 10:54 AM



Yamashita et al.: Novel delta-check method      9

among test items involved in the calculation. Detection of 

specimen mix-up can be improved by use of Mahalano-

bis distance of two sets of data in multivariate space after 

Gaussian transformation and standardization. However, 

it requires a fixed set of test items for computation and 

determining the cut-off value. In contrast, wCDI can be 

computed flexibly for any combination of test items and 

uses cut-off values according to the number of test items 

included in computing wCDI.  
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