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Nonlinear Evolutions of Surface Gravity Waves on Fluid of Finite Depth
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New types of nonlinear evolution equations are derived that describe finite-amplitude surface gravity
waves on a two-dimensional incompressible and inviscid fluid of finite depth. The novelty is as follows:
(a) The equations can be expressed as a single equation with respect to the surface elevation, and (b) the
expansion is in a steepness parameter and does not involve other approximations such as long waves or
shallow water. Both the shallow- and deep-water limits of the equations are discussed.

PACS numbers: 47.35.+i, 03.40.Kf, 47. 10.+g, 47.90.+a

b p„„+p»» =0 ( —ee & x & ee, —1 & y & art),

with the boundary conditions

K'

rh+xrg„rl„= —
P» on y =art, (2)

The study of finite-amplitude surface gravity waves has
a long history [1,2]. Various wave phenomena, such as
modulation effects and instabilities of wave trains [3],
formation of solitary waves [4] and breaking waves [5],
etc. , have been investigated extensively from both the ex-
perimental and theoretical points of view. Many at-
tempts have been made to derive approximate nonlinear
evolution equations (NEEs) according to the physical sit-
uation. In the case of shallow-water waves, the Korte-
weg-de Vries (KdV) and Boussinesq equations were de-
rived as typical model equations that describe the time
evolution of the free-surface profile. For the finite-depth

case, however, the corresponding equations have not been
obtained explicitly as yet. In this respect a NEE pro-
posed by Byatt-Smith should be remarked upon [6]. He
derived an integrodifferential evolution equation for un-

steady inviscid surface waves with the aid of the theory of
conformal mappings. Although his equation is exact, it is

quite complicated and it seems to be intractable without
introducing some approximations. As for other related
works, a review paper due to Miles [4] may be referred
to.

The purpose of this Letter is to derive finite-depth ana-

logs of the Boussinesq-type equations. A new method
developed here is based on an elementary theory of com-

plex functions and a systematic perturbation theory with

respect to the steepness parameter.
We consider the two-dimensional irrotational flow of

an incompressible and inviscid fluid of uniform depth. In
the dimensionless variables, the equation governing the
fluid motion is written in the form [1]

t appended to p and ri denote partial differentiations.
This notation will be used throughout the paper. ri is as-
sumed to be negative without loss of generality. The di-
mensional quantities, with tildes, are related to the corre-
sponding dimensionless ones by the relations x = lx,
y =hpy, t =(l/cp)t, ri art, and p =(gla/cp)p, where l, a,
and cp are characteristic scales of length, amplitude, and
velocity of the wave, respectively, —hp is the vertical
coordinate of the flat bottom, and g is the acceleration
due to gravity. The dimensionless parameters a, a, and b

are then defined by a a/l, a=a/hp, and b=hp/I. Note
the relation e=ab. e is called the steepness parameter.
cp is given by cp dgl/x where x is assumed to be b ' in

the shallow-water limit 8 0 and I in the deep-water
limit b ~ in accordance with the phase velocity of
linear surface gravity waves. The effect of the surface
tension has been neglected in (3) to simplify the discus-
sion. It can be included without any difficulty.

Let us proceed to derive the time evolutions of the free
surface and the horizontal component of the surface ve-

locity. We first take the solution of (1) of the form

i [f+(x ib—y, t ) f—(x+ iby—, t )],
where f+(z, t) [f (z, t)] is an a-nalytic function of z in

the strip 0 & Imz & 2b ( —2b & Imz & 0) and given ex-
plicitly by

f+ OO

f~(z, t) =+ coth[tr(y z)/2b]f(y, t)dy .—

(6)

Here f is an arbitrary real function defined appropriately
on the real axis. The boundary condition (4) on the bot-
tom of fluid is then found to be satisfied automatically.
The key idea in the next step is to consider the boundary
values of f+ when Imz ~0. It then turns out that

p, +
2

(6 p„+p»)+ri=O on y =art, (3)
f+ (x+ iO, t) = —,

' (1+iT)f(x,t),
where T is an integral operator given by

0 asy —1. (4)

Here P=p(x,y, t) is the velocity potential, ri =ri(x, t) is
the profile of the free surface, and the subscripts x, y, and

f+ oo

Tf(x, t) = P J coth[n(y —x)/2blf(y, t)dy . (s)

The symbol P means the Cauchy principal-value integral.
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By virtue of (7) we obtain the important relations

f+(x+io, t)+f (x——io, t) =f(x, t),
f+(x+io, t) f —(x -—io, t) = iT—f(x, t).

(9)

/rrr~»-,„= i [f~—r(x —icr/, t) f r—(x+—icr/, t)], (i3)

where the relation @=ad has been used. If we substitute
(11)-(13)into (2) and (3), we obtain the exact system of
NEEs for r/ and f.

In order to derive the approximate NEEs, we note that
in the case of fluid of finite depth the parameters 8 and x
may be assumed to be of the order of unity, whereas c is
small compared with unity. The latter assumption corre-
sponds to considering small- but finite-amplitude waves
and it enables us to expand (11)-(13)in powers of c. In
the following we derive NEEs correct up to O(c). The
extension of the equations to higher orders can be made
straightforwardly and hence all details are omitted.

If we expand (11)-(13)in c and use (9) and (10), we

immediately have the expressions for the first two terms
of the expansions:

y„~» .„= Tf. -c~f—..+O(c2),

i/r» ~» g„b[f» cr/Tf»»+ O(c )]

Nr I» -.g
= —Tfr cr/f. &+—o(c')

(i4)

(is)

At this stage it is convenient to introduce the horizontal
component of the surface velocity given by u =p„~»-,„.
Then f„ in (14) can be solved iteratively and it is ex-
pressed in terms of u as

On the free surface the derivatives of the velocity poten-
tial are evaluated from (S) as

p„~»-,„=—i [f+ „(x icr/—,t) f—„(x+icr/, t)],
r/»~»-, „=—b[f+ „(x—icr/, t)+f , (x—+icr/,t)], (12)

O(c) terms, we obtain the time evolution of u:

u, +r/„+c[xuu, —r/, Tr/„]+O(c ) =0. (2o)

The system of Eqs. (19) and (20) is just a finite-depth
analog of the Boussinesq-type equations [1] in the theory
of shallow-water ~aves. It is also possible to derive a sin-
gle equation for r/ by combining (19) and (20). To show
this we first solve (19) with respect to u iteratively to
yield

x u = Tr/, + cT[(r/Tr/, )„+T(r/r/„) ]+O(c') . (2i)

+ Tq,' xT(gT—q„)]„+O(c') =O, (22)

where the approximate equation r/„= —xTr/„+O(c) has
been used to eliminate r/« in the O(c) term together with
the formulas

TTf =f, T(fg) =T[(Tf)(Tg)]+gTf+fTg.
Equation (22) is a finite-depth analog of the Boussinesq
equation. The new types of equations (19), (20), and
(22) are the main results of the present Letter. In the
linear approximation Eq. (22) reduces to r/„+xTr/„=0
and it exhibits a solution of the form g =r/ocos(kx —cot)
with to=+' Jxktanh(bk), reproducing the exact linear
dispersion relation for surface gravity waves on fluid of
finite depth.

Next we discuss both the shallow- and deep-water lim-
its of these equations.

(i) Sha!low water limit -(b 0).—In this case we take
K=6 ' and assume a to be small. With the expansion
Tf = —b'f„—(b /3)f„„„+O(b ), Eqs. (19) and (20) re-
duce, respectively, to

By substituting (21) into (20) and then operating T on
both sides, the desired equation for g arises as

r/r( + x Tr/» +c[ x r/r/» + 2 r/r Tr/r

f„=—Tu +cT(r/Tu„) +0(c'),
where T is an inverse operator of T, i.e., TT =TT =I and
it is given by

$2
r/r+u +a(ur/) + u„„+O(ab',b4) =0,

3

ur+t/»+auu»+O(ab ) =0.

(23)

(24)

1
" u(y t)Tu(x t)= — P . „[ (

'

)/ ]
dy. (18)

Substituting (14), (1S), and (17) into (2), we find the
time evolution of g:

r/,
—xTu+ xci(ur/)„+ T(r/Tu„)]+0(c') =O. (i9)

On the other hand, if we substitute (14)-(17) into (3)
and then differentiate the resultant equation with respect
to x and use the approximate equations r/r

= x Tu+ O(c)
and u, = —r/„+ O(c) to eliminate time derivatives in

The above system of equations is a variant of the Bous-
sinesq system and is called the Broer-Kaup system [7-9].
This system has been shown to be completely integrable
[7,9]. The usual form of the Boussinesq system [1] can
be derived from (23) and (24) by introducing the mean
horizontal velocity u which may be related to u by
u =u —(8 /3)u„„and assuming a=0(b ). For the pur-

pose of taking the shallow-water limit of Eq. (22), we

employ the expansion Tf =(2b) ' f sgn(y —x)f(y,
t)dy O+(B) where sgnx is the sign function. This leads
to the equation

It t gxx
$2 f+ OO

r/»»»» a (r/r/»)»+2r/r r/»r J sgn(y —x)r/r(y, t)dy +O(ab, b ) =0. (2s)
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The Boussinesq equation, ri +Hu+c[(uri)„+H(riHu„)]+O(c') =O,

u, +rix+c[uu„+tbHtb]+O(c ) =0,
(28)

(29)

$2
rt, +3rirtg+ rtgt+O(a, b ) =0,

3Q
(27)

which is nothing but the KdV equation.
(ii) Deep-water limit (b eo).—The deep-water limit

can be taken quite easily because in this limit the opera-
tors T and T reduce to H and —H, respectively, where H
is the Hilbert transform, i.e., Hf (x) = ( I/tr) Pf— (y—x) 'f(y)dy. In the basic equations (1)-(4), however,
it is necessary to rescale the vertical coordinate as y =by
before taking the limit. As a result only one parameter e
exists in the system under consideration when b
since tr 1 in this limit. Equations (19), (20), and (22)
then become

can be obtained from (25) with the assumptions that (a)
a =O(b ) and (b) ri, may be replaced by —rt„ in

O(a, b ) terms which represent nonlinearity and disper-
sion. However, since Eq. (26) admits both right- and
left-moving solutions, only the former solutions are con-
sistent with the assumption (b). It should be remem-
bered, however, that the original Boussinesq equation
(26) rests on these assumptions [4]. From this point of
view Eq. (25), which does not depend on (b), is superior
to Eq. (26). One notes that Byatt-Smith [6] also ob-
tained a similar equation to (25). To derive an equation
which describes a unidirectional motion to the right, for
instance, it is appropriate to use a reference frame mov-

ing with the phase velocity of the wave. In this system
wave profiles change very slowly so that it is legitimate to
introduce a slowly varying time scale. The corresponding
coordinate and time transformations may be expressed as
(=x t and —r at/2 since in the present case the phase
velocity has been normalized to unity. Then Eq. (25)
reduces, under the assumption of a =O(b ), to

H—g. c—[gq. +H(~H~„)+H(H~, )'l„+O(c2) =O,

(3o)

where use has been made of the formula H(q, )
=H(Hrt, ) +2rt, Hrt, in deriving (30). Equation (30) ex-
hibits solutions which propagate in both directions as in-

dicated by the linear dispersion relation to= ~d(k).
However, we have not succeeded as yet in obtaining the
equation corresponding to the KdV equation. The situa-
tion is the same as that for Eq. (22) and these interesting
problems should be pursued further.

In this Letter we have derived new types of equations,
in particular Eqs. (19), (20), (22), (25), and (28)-(30),
that describe finite-amplitude surface gravity waves by
means of a systematic perturbation method. In future
work we shall reexamine various wave phenomena men-
tioned in the introductory part on the basis of these equa-
tions.

The author thanks Professor M. Nishioka for continual
encouragement.
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