プレキャストコンクリートを用いた マイクロパイル工法のCO₂排出量

稲冨芳寿1・吉武 勇2・杉本 健3・前田志保4・三浦房紀5

 ¹正会員 極東興和株式会社 (〒114-0023東京都北区滝野川7-2-13)

 E-mail: inatomi@kkn.co.jp

 ²正会員 山口大学大学院准教授 理工学研究科 (〒755-8611 山口県宇部市常盤台2-16-1)

 yositake@yamaguchi-u.ac.jp

 ³学生会員 山口大学大学院 理工学研究科 社会建設工学専攻 (〒755-8611 山口県宇部市常盤台2-16-1)

 E-mail: k017vf@yamaguchi-u.ac.jp

 ⁴学生会員 山口大学大学院 理工学研究科 社会建設工学専攻 (〒755-8611 山口県宇部市常盤台2-16-1)

 E-mail: m035vf@yamaguchi-u.ac.jp

 ⁵正会員 山口大学大学院教授 理工学研究科 (〒755-8611 山口県宇部市常盤台2-16-1)

 E-mail: m035vf@yamaguchi-u.ac.jp

本研究は、プレキャストコンクリートを用いたマイクロパイル工法のCO₂排出量を定量的に評価することを目的としている.本報では、プレキャストコンクリートをしばしば用いるL型擁壁およびボックスカルバートのモデルケースについてCO₂排出量を推定した.さらに現場打ちコンクリート構造と対比しながら、マイクロパイルを基礎としたプレキャストボックスカルバート建設の実施工例について、CO₂排出量の推定を行った.その結果、プレキャストコンクリートを用いたマイクロパイル工法は、一般的な工法に比べ、CO₂排出量の低減に有効であることが示された.

Key Words: CO₂ emission, pre-cast concrete, micropile, retaining wall, box culvert

1. はじめに

土木コンクリート構造物の建設工程において,資 材製造,輸送,施工に大別すると,資材製造に関す る環境負荷(主にCO₂排出)の割合が極めて大きいこ とが知られている^{1),2)}.

ここで躯体構造のプレキャスト化は、断面寸法を 縮小できるため構成材料の使用量が少ない上に、施 工期間を短縮でき、それに伴う建設機械の稼動時間 の短縮にも寄与するため、CO₂排出量の低減に効果 的である.しかしながら、計画構造物が杭基礎形式 となる場合、プレキャストコンクリートを積極的に 活用されない現状もある.

杭基礎とプレキャストコンクリートを組み合わせ る場合,両者の施工誤差の調整が課題であることか ら,図-1に示すような杭基礎と現場打ちベースコン クリートを結合した連続版上に,プレキャストコン クリートを敷設する構造がしばしば採用されている.

このような構造では,現場打ちコンクリートの作 業を要し,躯体構造のプレキャスト化の有効性(工 期の短縮,施工の省力化・機械化)が充分に発揮で きない可能性もある.

本研究の主眼とするマイクロパイル工法は, 杭径 が200mm程度, 長さが1~3m程度の短尺鋼管を主部 材として, 小型のボーリングマシンを用いて施工す る杭基礎工法である. そのため, 橋梁の桁下などで 空頭が制限される場合や, 既設構造物や現道交通に 近接して充分な施工スペースが確保できない場合な ど, 厳しい施工条件の現場で採用されている³.

これまで著者らは、現場打ちコンクリートをほと

図-1 プレキャストコンクリート擁壁と杭基礎の結合例

んど用いず,マイクロパイルの杭頭をプレキャスト 部材に直接結合する構造について検討してきた⁴⁾.

この構造は、プレキャストコンクリート部材にあ らかじめ埋設した鋼製筒状部材内でマイクロパイル の杭頭をモルタル充填結合するものであり、マイク ロパイルの施工誤差をある程度許容しながら、比較 的容易に両者を一体化できる特徴がある.

本研究では、このマイクロパイルとプレキャスト コンクリートを直接結合する構造に着目し、同構造 を適用して構造物を構築した場合の環境負荷を定量 的に把握するために、現場打ちコンクリート構造と 対比しながら、CO2排出量の推定を行った.

特に本論文では、プレキャストコンクリートのモ デルケースとして、道路構造物や水路構造物でプレ キャストコンクリート製品が多用されているL型擁 壁およびボックスカルバートを取り上げ、さらには ボックスカルバートの実施工例について、CO₂排出 量の推定を行った.

一般的な杭基礎や従来のマイクロパイルでは,現 場打ちコンクリートによる施工が必須となるが,本 研究で対象としたマイクロパイルとプレキャストコ ンクリートの結合構造を用いることで,構造物の建 設におけるCO2排出量の低減が期待される.

2. CO₂排出量の推定方法

(1) CO₂排出量推定の方針

本研究で対象とするマイクロパイルと(プレキャ スト)コンクリートの組み合わせでは、同等の機能 とした各形式の耐久性は同程度であり、維持管理・ 更新のサイクルによる差異は小さいと予想される.

そこで本研究では、構造物の建設によるCO₂排出 量のみに着目し、維持管理、解体・処分および更新 のライフサイクルは含めないものとした.そのため、 CO₂排出量の推定対象は、構造物建設時における資 材製造、材料・製品の運搬、および現場施工(土工 等を除く基礎工,現場打ち躯体工、プレキャストコ ンクリートの設置工)とした.本研究におけるCO₂ 排出量の推定には、資源の採掘輸送を含む積み上げ 法に基づく原単位^{5).6)}を用いた.

(2) 資材製造によるCO₂排出量

マイクロパイルを基礎とする構造物の建設に用い る資材は、コンクリート、セメント系固化材、鉄筋 および鋼管・鋼板である.ここで、セメントについ ては、コンクリートの2次製品工場で一般的に用い られる普通ポルトランドセメントを対象とした.

表─1 配合条件							
-75 L	呼び強度	単位量 kg/m ³					
項日		水	セメント	細骨材	粗骨材		
コンク リート	24	173	299	841	980		
	30	177	353	790	978		
	35	178	405	746	977		
モルタル	50 N/mm ²	338	938	938			
グラウト	30 N/mm ²	605	1,210				

表-2 資材製造による CO₂原単位⁶⁾

祝 2 員内表垣によるCO2赤千匹				
I	頁目	原単位(kg-CO ₂ /t)		
	セメント	766.6		
	細骨材	3.7		
	粗骨材	2.9		
躯体	プラント	7.68		
	蒸気養生	38.5/m ³		
	鉄筋	767.4		
	鋼製筒状部材	1,256.0		
充填	セメント	766.6		
モルタル	細骨材	3.7		
71/17	セメント	766.6		
ドイル	鉄筋	767.4		
1.11	鋼管	1,256.0		

表−3 往復運搬距離

項目	往復(km)				
生コンクリート	40				
プレキャストコンクリート	200				
その他の資材	100				

表-4 運搬に伴う CO₂原単位⁶⁾

項目	原単位(kg-CO ₂ /km/t)
アジテータ車 4.5m ³	0.253
トラック 4t	0.153
トラック 10t	0.122

表-5 現場施工における CO₂原単位

項目	原単位*(kg-CO ₂ /日)	
コンクリートポンフ。	306.40	
アジテータ車 4.5 m ³		248.07
ラフテレーンクレーン	25t	392.41
	50t	522.54
マイクロパイル機械		241.44
クローラクレーン 4.9	70.27	
発動発電機 45kVA		140.94

※軽油 2.82kg-CO₂/*l*から換算⁶

一般的な生コンクリートの配合条件から設定した 各呼び強度(24・30・35)のコンクリート配合,な らびにこれまでの施工実績に基づき設定した充填結 合用のモルタルおよびマイクロパイルの注入用グラ ウトの配合条件を表-1に示す.

本研究では、式(1)に示すように各条件の資材使 用量 W_m (t)に、**表**-2に示す資材製造原単位 U_m を乗じ ることにより、資材製造による CO_2 排出量 E_m を推定 した.

$$E_m = W_m \times U_m \tag{1}$$

(3) 材料・製品の運搬に伴うCO2排出量

現場施工に必要な資材の運搬に関する項目は,生 コンクリート,鉄筋,型枠,セメント,鋼管・鋼板, 仮設材およびプレキャストコンクリートである.各 資材について設定した往復運搬距離を**表-3**に示す.

生コンクリートは、山口県内のJIS認定工場の分 布状況を勘案し、概ね全域を網羅できる距離として 往復運搬距離を40kmとし、そのほかの資材につい

図-2 L型擁壁計画条件図

表-6 L型擁壁のモデルケースと部材構成

ケース	躯体	ベースコンクリート		
L-C	現場打ち	鉄筋コンクリート		
LDC	プレキャスト	現場打ち		
L-r-C	コンクリート	鉄筋コンクリート		
I D D	プレキャスト	プレキャストコンクリート		
L-P-P	コンクリート	(杭頭結合構造含)		
тр	プレキャストコン	クリート(杭頭結合構造含)		
L-P	(ベースコ	コンクリート省略)		

ては、既往の文献⁵⁾を参考に往復運搬距離を100km と設定した.さらにプレキャストコンクリートは、 中国地方5県のJIS認定工場の分布状況を勘案し、概 ね全域を網羅できる距離として往復運搬距離を 200kmと設定した.

本研究では、資材ごとの往復運搬距離に資材質量 を乗じた延べ運搬距離 L_t を算出し、さらに表 – 4 に 示す運搬機械の運搬原単位 U_t を乗じることにより、 資材・製品の運搬に伴う CO_2 排出量 E_t を推定した (式(2)).

$$E_t = L_t \times U_t \tag{2}$$

(4) 現場施工におけるCO,排出量

現場施工には、コンクリート工、鉄筋工、型枠工、 足場・支保工、仮設工およびマイクロパイル工など がある.本研究では、各使用機械の稼動日数 T_c を算 出し^{7)、8)}、日当り燃料消費量⁹⁾から求めた施工原単位 U_c を乗じて、現場施工における CO_2 排出量 E_c を推定 した.本研究で用いた主要機械の施工原単位 U_c を **表-5**に示す(式(3)).

$$E_c = T_c \times U_c \tag{3}$$

3. L型擁壁モデルケースにおけるCO。排出量

(1) モデル概要

L型擁壁のCO₂排出量の推定では、図-2に示す計 画条件に対して、表-6に示すような部材構成の異な る4つのモデルを設定した.各モデルケースの構造 断面図を図-3に示す.L型擁壁のモデルケースでは、

						-
ク	rース		L-C	L-P-C	L-P-P	L-P
コンクリ	レーア	24**	288.0	180.0		
m ³	3	30**		90.8	177.9	130.8
型	枠 m ²		600.0	160.0		
鉜	卡筋 t		16.1	16.8	13.3	9.7
鋼製管	所状部材	t			2.9	2.9
モルタル m ³				2.0	2.0	
足場	, 掛 m	l ²	520.0			
工場	5t 以	下		211.0	211.0	327.0
製品	10t 🖇	大下			225.0	
	施工長	ŧ m	1,000.0	1,000.0	1,000.0	1,000.0
マイクロ	グラウ	$\vdash m^3$	26.9	26.9	26.9	26.9
パイル	鉄筋	t	15.9	15.9	15.9	15.9
	鋼管	t	46.7	46.7	45.0	45.0

表-7 L型擁壁 100m あたりの施工数量

*数値は**表-1** 中の呼び強度を表す

表-8	L型擁壁モデルケースの資材製造による
	CO ₂ 排出量(kg-CO ₂ /100m)

	_	•	-		
	ケース	L-C	L-P-C	L-P-P	L-P
	コンクリート	67,718	67,445	49,167	36,170
ÁI.	プラント等	5,530	5,199	10,265	7,547
 躯	鉄筋	12,355	12,892	10,206	7,444
14.	鋼材			3,642	3,642
	小計	85,603	89,032	73,280	54,803
7	モルタル			1,464	1,464
イカ	グラウト	24,915	24,915	24,915	24,915
シロ。	鉄筋	12,202	12,202	12,202	12,202
1	鋼管	58,705	58,705	56,463	56,463
ル	小計	95,822	95,822	95,044	95,044
	合計	181,425	184,854	168,324	149,847
比	」(対ケース L-C)	100%	102%	93%	83%

表-9 L型擁壁モデルケースの資材等の

延べ運搬距離(km・t)							
ケース L-C L-P-C L-P-P L-P							
アジテー	ータ車 4.5m ³	11,520	7,200				
	4t	576	154				
トラック	10t 躯体	4,210	43,880	87,200	65,400		
	10t 基礎	9,514	9,514	9,716	9,716		

延長100mのL型擁壁の建設,およびその基礎として 2m間隔で各2本打設した計100本のマイクロパイル 施工を含めてCO₂排出量を推定した.なお,各ケー スの躯体構造は,同等の耐荷性能となるよう断面寸 法・鉄筋量等を決定したものである.ここで,基礎 (マイクロパイル)については,躯体構造に応じて 杭頭に作用する荷重に若干の差異が生じるものの, 土圧および上載荷重の影響が支配的であることから, マイクロパイルの仕様および配置条件を一定とした.

(2) 資材製造によるCO₂排出量

各ケースの施工数量および資材製造によるCO₂排 出量*E_m*の推定結果をそれぞれ表-7,表-8に示す. 表-7に示すように、マイクロパイルに使用する資材 は、各ケースでほぼ同じであるため、CO₂排出量の 差異は躯体構造に用いる資材の使用量に左右される.

そこで各ケースにおける資材製造によるCO₂排出 量*E*_mを比較すると、ケースL-Cを基準とするとき、 ケースL-P-Cでは約102%と微増し、プレキャストコ ンクリートのみを主に用いるケースL-P-P・ケース L-Pでは、同比約93%、約83%と低減できることが わかる.これは、各ケースの躯体構造におけるコン クリートおよび鉄筋の製造によるCO₂排出量に強く 依存する結果である.

ここで,各ケースの資材製造によるCO₂排出総量 E_mの約24~37%を占め,最も影響の大きいコンクリ

表-10 L型擁壁モデルケースの資材等運搬に伴う

CO₂排出量(kg-CO₂/100m)

ケース	L-C	L-P-C	L-P-P	L-P			
生コン	2,915	1,822					
躯体用資材	602	5,377	10,638	7,979			
基礎用資材	1,161	1,161	1,185	1,185			
合計	4,677	8,360	11,824	9,164			
比 (対ケース L-C)	100%	179%	253%	196%			

表-11 L型擁壁モデルケースの現場施工における

CO₂排出量(kg-CO₂/100m)

	ケース		L-C	L-P-C	L-P-P	L-P
	コンクリートポンプ車		1,226	919		
	アジテータ車 4.5m ³		992	744		-
躯体		25t	2,747			
Т.	フノテレーシ	25t		1,570	1,570	2,354
	<i><i>yv-y</i></i>	50t			1,568	
	小計		4,965	3,233	3,138	2,354
	マイクロパー	イル	9,658	9,658	9,658	9,658
基本	クローラクレー	ン 4.9t	2,811	2,811	2,811	2,811
埏工	発動発電	機	5,638	5,638	5,638	5,638
	小 計		18,107	18,107	18,107	18,107
合計		23,072	21,340	21,245	20,461	
	比(対ケース L	-C)	100%	92%	92%	89%

表-12 L型擁壁建設の CO₂排出量総括(kg-CO₂/100m)

ケース		L-C	L-P-C	L-P-P	L-P
	資材製造	85,603	89,032	73,280	54,803
躯	運搬	3,516	7,199	10,638	7,979
体	現場施工	4,965	3,233	3,138	2,354
	症	94,084	99,464	87,056	65,136
	資材製造	95,822	95,822	95,044	95,044
基	運搬	1,161	1,161	1,185	1,185
礎	現場施工	18,107	18,107	18,107	18,107
	症	115,090	115,090	114,336	114,336
	合 計	209,174	214,554	201,393	179,472
比 (対ケースL-C)		100%	103%	96%	86%

図-4 L型擁壁建設の全工程における CO2 排出量

ート製造によるCO₂排出量に着目する.ケースL-C のコンクリート製造によるCO₂排出量を基準とする とき,ケースL-P-Cは約100%(=67,445/67,718)と 同程度であるが,ケースL-P-Pは約73%(=49,167/

図-5 ボックスカルバート計画条件図

表-13 ボックスカルバートのモデルケースと部材構成

ケース	躯体	ベースコンクリート
B-C	現場打ち	鉄筋コンクリート
DDC	プレキャスト	現場打ち
B-P-C	コンクリート	鉄筋コンクリート
חחח	プレキャスト	プレキャストコンクリート
B-P-P	コンクリート	(杭頭結合構造含)
рр	プレキャストコング	クリート (杭頭結合構造含)
D-P	(ベースコ	コンクリート省略)

b) ケース B-P-C

c) ケース B-P-P
 d) ケース B-P
 図-6 ボックスカルバート構造断面図(単位:mm)

67,718), ケースL-Pは約53%(=36,170/67,718)と なることから, プレキャストコンクリートを用いて, 断面寸法を小さくすることが, 大幅なCO₂排出量の 低減につながることが窺える.

(3) 材料・製品の運搬に伴うCO₂排出量

各ケースの延べ運搬距離を**表-9**に表し,材料・製品の運搬に伴うCO₂排出量*E*_tの推定結果を**表-10**に示 す.ケースL-Cの材料・製品の運搬に伴うCO₂排出 量*E*_tを基準とするとき,ケースL-P-Cは約179%,ケ ースL-P-Pは約253%,ケースL-Pは約196%となった.

この結果は、最も運搬距離の長いプレキャストコ ンクリートを多用するケースが、材料・製品の運搬 に伴うCO₂排出量*E*_iが多いことを表している.しか しながら、これらの運搬に伴うCO₂排出量*E*_iは、前 述の資材製造に伴うCO₂排出総量*E*_mに比して約3~ 7%であり、その影響はあまり大きいものではない.

(4) 現場施工におけるCO₂排出量

各ケースの現場施工における CO_2 排出量 E_c の推定 結果を表-11に示す.これらの結果に示すように, 各ケースの基礎工における CO_2 排出量は, 躯体工も 含めた現場施工の全 CO_2 排出量において約78~88% に相当し,高い割合を占めている.

各ケースのCO₂排出量の差異は、躯体工における CO₂排出量によるため、その影響はあまり大きくな いが、ケースL-Cを基準とするとき、ケースL-P-C・ ケースL-P-Pでは約92%、ケースL-Pでは約89%と低 減できる推定結果が得られた.

(5) CO₂排出量の総括

L型擁壁の建設に伴う全工程(資材製造,材料・製品の運搬,現場施工)におけるCO₂排出量の集計結果を表-12および図-4に示す.

各ケースの全工程におけるCO₂排出量は、ケース L-Cを基準とするとき、ケースL-P-Cでは約103%と 微増し、プレキャストコンクリートのみを主に用い るケースL-P-Pでは約96%、ケースL-Pでは約86%と 低減できている.これは、図-4の棒グラフにも明ら かなように、各ケースの躯体の資材製造によるCO₂ 排出量に強く依存した結果である.

ボックスカルバートモデルケースにおける CO₂排出量

(1) モデル概要

ボックスカルバートのCO₂排出量の推定では,

ケース		B-C	B-P-C	B-P-P	B-P	
コン/力 川	۲ ۲	24**	700.0	294.4		
	- r	30*			94.9	
III		35**		343.0	343.0	388.8
型枠 m ²			1,716.6	160.0		
鉄	筋 t		54.1	67.1	51.9	50.2
鋼製筒状部材 t					2.9	2.9
モルタル m ³				2.0	2.0	
足場 掛 m ²		840.0				
支保工 空 m ³		896.0				
工場 製品				857.0	1,101.5	979.3
	施工	長 m	1,000.0	1,000.0	1,000.0	1,000.0
マイクロ	グラウ	ント m ³	26.9	26.9	26.9	26.9
パイル	鉄倉	伤 t	15.9	15.9	15.9	15.9
	鋼管	章 t	46.7	46.7	45.0	45.0

**数値は表-1 中の呼び強度を表す

表-15 ボックスカルバートモデルケースの資材製造 による CO₂排出量(kg-CO₂/100m)

	ケース	B-C	B-P-C	B-P-P	B-P
	コンクリート	164,616	177,613	134,627	122,915
	プラント等	13,440	25,444	25,267	22,434
躯	鉄筋	41,516	51,493	39,828	38,523
体	鋼材			3,642	3,642
	小計	219,572	254,550	203,364	187,514
7	モルタル			1,464	1,464
イカ	グラウト	24,915	24,915	24,915	24,915
L.	鉄筋	12,202	12,202	12,202	12,202
イ	鋼管	58,705	58,705	56,463	56,463
ル	小計	95,822	95,822	95,044	95,044
	合計	315,394	350,372	298,408	282,558
(対	比 ケース B-C)	100%	111%	95%	90%

図-5に示す計画条件に対して,L型擁壁と同様に 表-13に示すような部材構成の異なる4つのモデルを 設定した.各モデルケースの構造断面図を図-6に示 す.

ボックスカルバートのモデルケースにおいてもL 型擁壁のモデルケースと同様に,延長100mのボッ クスカルバートの建設,およびその基礎として2m 間隔で各2本打設した計100本のマイクロパイル施工 を含めてCO2排出量を推定した.なお,本例におい ても,前章に示したL型擁壁と同様に,各ケースの 躯体構造は同等の耐荷性能を有するものとし,基礎 (マイクロパイル)についても,上載荷重の影響が 支配的であることから,マイクロパイルの仕様およ び配置条件を一定とした.

(2) 資材製造によるCO₂排出量

各ケースの施工数量を表-14 に表し、また資材製

表-16 ボックスカルバートモデルケースの資材等の 延べ運搬距離 (km・t)

ケース		B-C	B-P-C	B-P-P	B-P
アジテー	・タ車 4.5m ³	28,000	11,776		
	4t	1,648			
トラック	10t 躯体	14,090	178,110	220,304	195,860
	10t 基礎	9,514	9,514	9,716	9,716

表-17 ボックスカルバートモデルケースの資材等運搬 に伴う CO₂排出量(kg-CO₂/100m)

ケース	B-C	B-P-C	B-P-P	B-P
生コン	7,084	2,979		
躯体用資材	1,971	21,753	26,877	23,895
基礎用資材	1,161	1,161	1,185	1,185
合計	10,216	25,893	28,062	25,080
比 (対ケース B-C)	100%	253%	275%	246%

表-18 ボックスカルバートモデルケースの現場施工に おける CO,排出量(kg-CO₂/100m)

	ケース		B-C	B-P-C	B-P-P	B-P
	コンクリートポンフ	『車	2,758	1,226		
躯体	アジテータ車4.	5m ³	2,233	992		
т Т	ラフテレーン	25t	9,810			
	クレーン	50t		6,793	8,883	7,838
基	マイクロパイル	/	9,658	9,658	9,658	9,658
礎	クローラクレーン	4.9t	2,811	2,811	2,811	2,811
⊥.	発動発電機		5,638	5,638	5,638	5,638
	合計		32,908	27,118	26,990	25,945
J	比(対ケース B-C)	100%	82%	82%	79%

表-19 ボックスカルバート建設の CO₂排出量総括 (kg-CO₂/100m)

	ケース	B-C	B-P-C	B-P-P	B-P	
	資材製造	219,572	254,550	203,364	187,514	
躯	運搬	9,055	24,732	26,877	23,895	
体	現場施工	14,801	9,011	8,883	7,838	
	計	243,428	288,293	239,124	219,247	
	資材製造	95,822	95,822	95,044	95,044	
基	運搬	1,161	1,161	1,185	1,185	
礎	現場施工	18,107	18,107	18,107	18,107	
	計	115,090	115,090	114,336	114,336	
合計		358,518	403,383	353,460	333,583	
比 (対ケース B-C)		100%	113%	99%	93%	

造による CO₂排出量 E_m の推定結果を表-15 に示す. 各ケースにおける資材製造による CO₂排出量 E_m は, ケース B-C を基準とすると,ケース B-P-C は約 111%と増加し,プレキャストコンクリートのみを 主に用いるケース B-P-P およびケース B-P では,同 比約 95%,約 90%と低減できることがわかる.

この傾向は、先述の L 型擁壁の推定結果と同様 であり、コンクリート製造による CO₂ 排出量は、 ケース B-C を基準とするとき,ケース B-P-C は約 108%(=177,613/164,616),ケース B-P-P は約 82%(=134,627/164,616),ケース B-P は約 75%(= 122,915/164,616)の推定結果が得られた.

(3) 材料・製品の運搬に伴うCO2排出量

各ケースの延べ運搬距離を表-16に表し,材料・ 製品の運搬に伴うCO₂排出量*E*_tの推定結果を表-17に 示す.ケースB-Cの材料・製品の運搬に伴うCO₂排 出量*E*_tを基準とするとき,ケースB-P-Cは約253%, ケースB-P-Pは約275%,ケースB-Pは約246%となり,

図-7 ボックスカルバート建設全工程の CO2 排出量

L型擁壁のモデルケースと比較して、ケースB-Cとの比が大きくなる推定結果が得られた.

これは、延べ運搬距離に影響を及ぼすプレキャス トコンクリートの質量が、L型擁壁のモデルに比し て2.5~4.0倍程度と大きいことが主な要因である.

(4) 現場施工におけるCO₂排出量

各ケースの現場施工における CO_2 排出量 E_c の推定 結果を表-18に示す.ケースB-Cの現場施工におけ る CO_2 排出量 E_c を基準とするとき、ケースB-P-C・ ケースB-P-Pでは約82%、ケースB-Pは約79%となり、 L型擁壁の推定結果よりも高い効果が得られた.

これは、プレキャストコンクリートを多用することで、足場・支保工にかかる施工を省力化できるため、現場施工における CO_2 排出量 E_c の低減につながったものと判断される.

(5) CO₂排出量の総括

ボックスカルバートの建設に伴う全工程における CO₂排出量の集計結果を表-19および図-7に示す. 各ケースの全工程におけるCO₂排出量は,ケース

B-Cを基準とするとき、ケースB-P-Cでは約113%と 増加し、ケースB-P-Pは同比約99%とほとんど差異 は生じず、ケースB-Pでは同比約93%と低減できる 推定結果が得られた.

本研究の推定結果によれば、ボックスカルバート 躯体に杭頭結合部を有するプレキャストコンクリー トを用いて、ベースコンクリートを省略することが、 CO₂排出量低減に有効と判断される.

ボックスカルバート実施工例におけるCO₂排 出量の評価

(1) 概要

本研究では、前章までに示したモデルケースを用 いたCO₂排出量の推定・評価に加え、より実用的な 評価例を示すことを目的に、港湾の埋立造成工事の 一環として施工された水路用ボックスカルバートの 実施工例¹⁰⁾を取り上げ、その建設に伴うCO₂排出量 の推定を行なった。前章同様にプレキャストコンク リートを用いたマイクロパイル工法によるCO₂排出 量を主対象とし、さらに比較のため現場打ちコンク リートと鋼管杭を組み合わせた、一般的な構造形式 のCO₂排出量を求めた。

対象とした計画構造物は、図-8に示すように延長 L=17m、内空寸法B×H=4.0m×4.9mのボックスカル バートであり、主要部材の構成は、プレキャストボ ックスカルバート、杭頭結合部を有するプレキャス トベースコンクリート、およびそれらを支持するマ イクロパイルである.

(2) 比較ケース

本研究では、プレキャストコンクリートとマイク ロパイルを組み合わせた構造(ケースP-MP)と、 現場打ちコンクリートと鋼管杭を組み合わせた構造 (ケースC-SP)について、CO₂排出量の推定を行っ た.両ケースの施工断面図を図-9に示す.

ここで、前述のモデルケースによる試算と同様に、 両ケースにおけるボックスカルバートの躯体構造は、 同等の耐荷性能となるよう断面寸法・鉄筋量等を設 定した. さらに、異なる性能の杭の支持力を合わせ るため、ケースP-MPではマイクロパイル(ϕ 178mm×39.2m)を計12本配置し、ケースC-SPでは、 鋼管杭(ϕ 700mm×34.0m)を計10本配置するもの とした.

図-9 a)に示すように, 躯体(ボックスカルバー ト本体およびベースコンクリート)をすべてプレキ ャスト化したケースP-MPでは, 躯体を水中に投入 して設置することが可能であるため、仮締切を省略 することができる.一方、躯体を現場打ちコンクリ ートで構築するケースC-SPでは、足場、鉄筋、型 枠を含むコンクリート作業をドライ環境で行なう必 要があるため、図-9 b)に示すような二重締切工を 伴う仮締切が必要となる¹⁰.

本章におけるCO₂排出量の推定対象は,前述のモ デルケースと同様に,構造物建設時における資材製 造,材料・製品の運搬,および現場施工とした.両

駆体		ケーン	C-SP	P-MP	
躯体 35 [※] 19.2 躯体 m ³ 40 [※] 111.9 鉄筋 t 16.7 20.0 工場製品 t 20t以下 327.0 鋼管杭 施工長 m 340.0 (t=9mm) 鋼管 t 52.1 基礎 近日小田 470.4	1	コンクリート	24**	179.9	
躯体 m 40 ^{**} 111.9 鉄筋 t 16.7 20.0 工場製品 t 20t以下 327.0 鋼管杭 施工長 m 340.0 (t=9mm) 鋼管 t 52.1 基礎 470.4	躯体		35**		19.2
鉄筋 t 16.7 20.0 工場製品 t 20t以下 327.0 鋼管杭 施工長 m 340.0 (t=9mm) 鋼管 t 52.1 基礎 470.4		m	40**		111.9
工場製品 t 20t以下 327.0 鋼管杭 施工長 m 340.0 (t=9mm) 鋼管 t 52.1 基礎 施工長 m 470.4		鉄筋 t		16.7	20.6
鋼管杭 (t=9mm) 施工長 m 340.0 基礎 52.1		工場製品 t	20t以下		327.0
(t=9mm) 鋼管 t 52.1 基礎 施工長 m 470.4		鋼管杭	施工長 m	340.0	
基礎 施工長 m 470.4	基礎	(t=9mm)	鋼管 t	52.1	
卒焼 パート・ 3		:	施工長 m		470.4
マイクロ グフワト m ² 13.3		マイクロ	グラウト m ³		13.3
パイル 鉄筋 t 7.1		パイル	鉄筋 t		7.7
鋼管 t 26.7			鋼管 t		26.7
足場 掛 m ² 276.0		足場	掛 m ²	276.0	
支保工 空 m ³ 333.2		支保工	. 空 m ³	333.2	
仮設 鋼矢板 III 型 10m 枚 290.0	仮設	鋼矢板 III	型10m 枚	290.0	
仮設鋼材 t 20.0 45.0		仮設約	鋼材 t	20.0	45.0
覆工板 m ² 144.0		覆工	板 m ²		144.0
₊ 掘削 m ³ 1,040.0	+	掘肖	IJ m ³	1,040.0	
<u>上上</u> 埋戻 m ³ 2,093.0	┶┶┶	埋房	\vec{z} m ³	2,093.0	

表-20 主要資材の数量

*数値は呼び強度を表す

表-21 実施工例における CO₂ 排出量(kg-CO₂)

	項目	C-SP	P-MP
皈休	現場打ちコンクリート	63,720	
7位14	プレキャストコンクリート		78,626
	仮設	55,805	11,380
	基礎	70,417	67,550
	合計	189,941	157,556
	比較(P-MP/C-SP)	83	%

ケースの施工数量を表-20に示す.

なお、ケースP-MPにおける各資材数量、コンク リート配合およびプレキャストコンクリート製品の 運搬等は実現場の条件を用いており、ケースC-SP では同条件を考慮した上で、標準的な材料・数量等 を設定したものである.

(3) CO₂排出量の比較結果

両ケースの水路ボックスカルバートの建設に伴う CO₂排出量の集計結果を表-21および図-10に示す. 表-21に示すように,躯体構築に関するCO₂排出量 は,ケースC-SPに対するケースP-MPの比が約 123%(=78,626/63,720)に相当する推定結果となっ た.

結果は、先述のボックスカルバートのモデルケー スにおける推定結果と異なる傾向であるが、これは 大型断面のボックスカルバートのため、比較的高強 度(35・40N/mm²)のコンクリートを用いたことに起 因している.なお、先述のモデルケースの試算で示 したように、ベースコンクリートを省略した結合構 造とすることで、躯体構築におけるCO₂排出量の低 減が可能になるものと推察される.

また、鋼管杭を用いるケースC-SPとマイクロパ イルを用いるケースP-MPの基礎工においては、両 者にほとんど差異はないものの、仮設におけるCO₂ 排出量では、ケースP-MPがケースC-SPの約20%と なったことから、全体としてCO₂排出量を約83%(P-MP/C-SP=157,566/189,941)に低減することがで きた.これは、躯体構造をプレキャスト化すること で、仮締切を省略したことが、大きな要因と考えら れる.

6. まとめ

本研究では、マイクロパイルとプレキャストコン クリートを直接結合する構造に着目し、同構造を適 用して土木コンクリート構造物を構築した場合の環 境負荷の評価を試みた.

マイクロパイルとプレキャストコンクリートを組 み合わせた土木コンクリート構造物の例として,L 型擁壁およびボックスカルバートの各モデルケース, ならびにボックスカルバートの実施工例を取り上げ, 現場打ちコンクリート構造と対比しながら,その建 設に伴うCO₂排出量を推定した.本研究の範囲内に おいて得られた知見を以下に要約する.

(1)L型擁壁のモデルケースの推定結果より,全工 程におけるCO2排出量は,現場打ちコンクリー トを用いるケースL-Cと比較して、プレキャス トコンクリートのみを主に用いるケースL-P-Pお よびケースL-Pは、約96%、約86%と低減できる.

- (2)ボックスカルバートのモデルケースの推定結果 より、全工程におけるCO2排出量は、現場打ち コンクリートを用いるケースB-Cと比較して、 杭頭結合部を有するプレキャストコンクリート を用いて、ベースコンクリートを省略するケー スB-Pは、約93%と低減できる.
- (3) L型擁壁、ボックスカルバートともに、構造物の建設に伴うCO2排出量のうち、資材製造によるCO2排出量の影響が最も大きく、全体の約83~88%を占めている.
- (4) ボックスカルバートの実施工例におけるCO₂排 出量の推定結果より、本例の施工条件において は、マイクロパイルとプレキャストコンクリー トを組み合わせることで、仮締切工を省略でき るため、鋼管杭と現場打ちコンクリートを組み 合わせた構造形式に比べ、CO₂排出量を約83% に低減できる.

一般的な杭基礎工法では、プレキャストコンクリートを使用する場合でも、現場打ちベースコンクリートを用いることが必須となる.これに対して、著者らが考案したマイクロパイルとプレキャストコンクリートの結合構造では、現場打ちコンクリートの省略も可能となる.

そのため,資材使用量の削減によるCO₂排出量の 低減効果や仮設工の縮小もしくは省略によるCO₂排 出量の低減効果が期待できる.今後は,躯体構造の いっそうの合理化および施工の省力化,仮設工の合 理化を含めた総合的な適用性の検討が必要と考えら れる.

参考文献

- 堺 孝司,草薙悟志:コンクリート構造物の環境設計に関する基礎的研究,コンクリート工学年次論文集, Vol.26, No.2, pp.1-6, 2004.
- 2) 堺 孝司、小嶋克宏、草薙悟志、入谷祥王:交通渋 滞交差点における鉄筋コンクリート地下道建設によ る環境便益評価に関する研究、土木学会論文集G、 Vol.63, No.1, pp.40-50, 2007.
- 3) 池水富美矢:高耐力マイクロパイル工法の新しい活 用事例,土木施工, Vol.47, No.2, pp.73-79, 2006.
- 4) 稲富芳寿,直野和人,山根隆志,吉武 勇,三浦房 紀,中川浩二:小口径杭とプレキャストRC部材の結 合構造に関する実大実験,土木学会論文集F, Vol.64, No.1, pp.15-23, 2008.

- 5) 土木学会:コンクリートの環境負荷評価(その2), コンクリート技術シリーズ62, 2004.
- 1
 6) 土木学会:コンクリート構造物の環境性能照査指針 (試案),2005.
- 7) 建設物価調査会:国土交通省土木工事標準積算基準書, 2007.
- 8) 高耐力マイクロパイル研究会:高耐力マイクロパイ

ル積算資料, 2006.

- 9) 日本建設機械化協会:建設機械等損料表, 2007.
- 宮田宏昭,板敷幸栄,多田英文,中古賀健吾:埋立 地ボックスカルバートの合理化施工,土木施工, Vol.46, No.11, pp.84-91, 2005.

(2008. 7. 14 受付)

EVALUATION OF CO₂ EMISSION FROM CONSTRUCTION OF MICROPILE METHOD USING PRECAST CONCRETE MEMBER

Yoshikazu INATOMI, Isamu YOSHITAKE, Ken SUGIMOTO, Shiho MAEDA and Fusanori MIURA

The purpose of the present study is to evaluate quantitatively CO_2 emission from micro pile method using pre-cast concrete member. This paper describes CO_2 emission by using typical models of L-shaped retaining wall and box culvert, which often employ pre-cast concrete member. Additionally, the authors estimated CO_2 emission of an actual pre-cast box culvert for micro pile construction as comparing with cast-in-place concrete. As these results, the micro pile method with pre-cast concrete indicated higher effectiveness of CO_2 emission reduction than normal construction.