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Abstract. The main goal of this paper is to reveal the geometric meaning of the maxi-
mal number of exceptional values of Gauss maps for several classes of immersed surfaces
in space forms, for example, complete minimal surfaces in the Euclidean three-space,
weakly complete improper affine spheres in the affine three-space and weakly complete
flat surfaces in the hyperbolic three-space. For this purpose, we give an effective curva-
ture bound for a specified conformal metric on an open Riemann surface.

Introduction

The geometric nature of value distribution theory of complex analytic mappings is well-

known. One of the most elegant results of the theory is the geometric meaning of the

precise maximum “2” for the number of exceptional values of nonconstant meromorphic

functions on the complex plane C. Here we call a value that a function or map never

assumes an exceptional value of the function or map. In fact, Ahlfors [1] and Chern [5]

showed that the least upper bound for the number of exceptional values of nonconstant

holomorphic maps from C to a closed Riemann surface coincides with the Euler number

of the closed Riemann surface by using Nevanlinna theory (see also [21], [29] and [33]). In

particular, for nonconstant meromorphic functions on C, the geometric meaning of the

maximal number “2” of exceptional values is the Euler number of the Riemann sphere.

We note that if the closed Riemann surface is of genus ≥ 2, then such a map does not

exist because the Euler number is negative.

On the other hand, global properties of the Gauss map of complete minimal surfaces in

the Euclidean three-space R3 are closely related to value-distribution-theoretic properties

of meromorphic functions on C. In particular, Fujimoto [11] proved that the precise

maximum for the number of exceptional values of the Gauss map of a nonflat complete

minimal surface in R3 is “4”, and Osserman [30] showed that the Gauss map of a nonflat

algebraic minimal surface can omit at most 3 values (by an algebraic minimal surface,

we mean a complete minimal surface with finite total curvature). Recently, the author,

Kobayashi and Miyaoka [18] gave an effective upper bound for the number of exceptional
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values of the Gauss map for a special class of complete minimal surfaces that includes

algebraic minimal surfaces (this class is called the pseudo-algebraic minimal surfaces).

This also provided a geometric meaning for the Fujimoto and Osserman results for this

class, because the upper bound is described in terms of geometric invariants. However,

from [18] it was still not possible to understand the geometric meaning for general class.

The author also investigated value-distribution-theoretic properties of Gauss maps for

several classes of surfaces which may admit singularities. For instance, by refining the

Fujimoto analytic argument, the author and Nakajo [19] showed that the maximal number

of exceptional values of the Lagrangian Gauss map of weakly complete improper affine

fronts in the affine three-space R3 is “3”. As an application of this result, a simple proof of

the parametric affine Bernstein theorem for improper affine spheres in R3 was provided.

Moreover, the authors [17, 19] proved similar results for flat fronts in the hyperbolic

three-space H3.

The aim of this paper is to reveal the geometric meaning of the precise maximum for

the number of exceptional values of Gauss maps for these classes of surfaces. The paper

is organized as follows: In Section 1, we give a curvature bound for the conformal metric

ds2 = (1 + |g|2)m|ω|2 on an open Riemann surface Σ, where ω is a holomorphic 1-form

and g is a meromorphic function on Σ (Theorem 1.1). The proof is given in Section 2.

As a corollary of this theorem, we prove that the precise maximum for the number of

exceptional values of the nonconstant meromorphic function g on Σ with the complete

conformal metric ds2 is “m + 2” (Corollary 1.2 and Proposition 1.4). We note that the

geometric meaning of the “2” in “m + 2” is the Euler number of the Riemann sphere

(Remark 1.3). In Section 3, we give some applications of the main results. In particular,

we give the geometric meaning of the maximal number of exceptional values of Gauss

maps for several classes of immersed surfaces in space forms. For instance, the induced

metric from R3 on complete minimal surfaces is ds2 = (1+ |g|2)2|ω|2 (i.e. m = 2), thereby

the maximal number of exceptional values of the Gauss map g of nonflat complete minimal

surfaces in R3 is “4 (= 2 + 2)”. On the other hand, for the Lagrangian Gauss map ν

of weakly complete improper affine fronts, since ν is meromorphic, dG is holomorphic

and the complete metric is dτ 2 = 2(1 + |ν|2)|dG|2 (i.e. m = 1), the maximal number

of exceptional values of the Lagrangian Gauss map of weakly complete improper affine

fronts in R3 is “3 (= 1 + 2)”.

Finally, the author would like to thank Professors Junjiro Noguchi, Wayne Rossman,

Masaaki Umehara, Kotaro Yamada and the referee for their useful advice and comments.

In addition, the author would like to express his thanks to Professors Ryoichi Kobayashi,

Masatoshi Kokubu, Miyuki Koiso and Reiko Miyaoka for their encouragement of this

study.
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1. Main results

Now we state the main theorem of this paper.

Theorem 1.1. Let Σ be an open Riemann surface with the conformal metric

(1) ds2 = (1 + |g|2)m|ω|2,

where ω is a holomorphic 1-form, g is a meromorphic function on Σ, and m ∈ N. Suppose

that g omits q ≥ m+3 distinct values . Then there exists a positive constant C, depending

on m and the set of exceptional values, but not the surface Σ, such that for all p ∈ Σ we

have

(2) |Kds2(p)|1/2 ≤ C

d(p)
,

where Kds2(p) is the Gaussian curvature of the metric ds2 at p and d(p) is the geodesic

distance from p to the boundary of Σ, that is, the infimum of the lengths of the divergent

curves in Σ emanating from p.

As a corollary of Theorem 1.1, we give the following Picard-type theorem for the mero-

morphic function g on Σ with the complete conformal metric ds2 = (1 + |g|2)m|ω|2.

Corollary 1.2. Let Σ be an open Riemann surface with the conformal metric given

by (1). If the metric ds2 is complete and the meromorphic function g is nonconstant, then

g can omit at most m + 2 distinct values.

Proof. By way of contradiction, assume that g omits m + 3 distinct values. If ds2 is

complete, then we may set d(p) = ∞ for all p ∈ Σ. By virtue of Theorem 1.1, Kds2 ≡ 0

on Σ. On the other hand, the Gaussian curvature of the metric ds2 is given by

(3) Kds2 = − 2m|g′z|2
(1 + |g|2)m+2|ω̂z|2 ,

where ω = ω̂zdz and g′z = dg/dz. Thus Kds2 ≡ 0 if and only if g is constant. This

contradicts the assumption that g is nonconstant. ¤

Remark 1.3. The geometric meaning of the “2” in “m+2” is the Euler number of the

Riemann sphere. Indeed, if m = 0 then the metric ds2 = (1 + |g|2)0|ω|2 = |ω|2 is flat and

complete on Σ. We thus may assume that g is a meromorphic function on C because g

is replaced by g ◦ π, where π : C → Σ is a holomorphic universal covering map. On the

other hand, Ahlfors [1] and Chern [5] showed that the best possible upper bound “2” of

the number of exceptional values of nonconstant meromorphic functions on C coincides

with the Euler number of the Riemann sphere. Hence we get the conclusion.

Corollary 1.2 is optimal because there exist the following examples.
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Proposition 1.4. Let Σ be either the complex plane punctured at q− 1 distinct points

α1, · · · , αq−1 or the universal cover of that punctured plane. We set

ω =
dz∏q−1

i=1 (z − αi)
, g = z.

Then g omits q distinct values and the metric ds2 = (1 + |g|2)m|ω|2 is complete if and

only if q ≤ m + 2. In particular, there exist examples whose metric ds2 is complete and g

omits m + 2 distinct values.

Proof. We can easily show that g omits the q distinct values α1, · · · , αq−1 and ∞ on

Σ. A divergent curve Γ in Σ must tend to one of the points α1, · · · , αq−1 or ∞. Thus we

have ∫

Γ

ds =

∫

Γ

(1 + |g|2)m/2|ω| =
∫

Γ

(1 + |z|2)m/2

∏q−1
i=1 |z − αi|

|dz| = ∞,

when q ≤ m + 2. ¤

2. Proof of the main theorem

We first recall the notion of chordal distance between two distinct values in the Riemann

sphere C ∪ {∞}. For two distinct values α, β ∈ C ∪ {∞}, we set

|α, β| := |α− β|√
1 + |α|2

√
1 + |β|2

if α 6= ∞ and β 6= ∞, and |α,∞| = |∞, α| := 1/
√

1 + |α|2. We note that, if we take

v1, v2 ∈ S2 with α = $(v1) and β = $(v2), we have that |α, β| is a half of the chordal

distance between v1 and v2, where $ denotes the stereographic projection of the 2-sphere

S2 onto C ∪ {∞}.
Before proceeding to the proof of Theorem 1.1, we recall two function-theoretical lem-

mas.

Lemma 2.1. [13, (8.12) on page 136] Let g be a nonconstant meromorphic function on

∆R = {z ∈ C; |z| < R} (0 < R ≤ +∞) which omits q values α1, . . . , αq. If q > 2, then

for each positive η with η < (q − 2)/q, then there exists a positive constant C ′, depending

on q and L := mini<j |αi, αj|, such that

(4)
|g′z|

(1 + |g|2) ∏q
j=1 |g, αj|1−η

≤ C ′ R

R2 − |z|2 .

Lemma 2.2. [12, Lemma 1.6.7] Let dσ2 be a conformal flat metric on an open Riemann

surface Σ. Then, for each point p ∈ Σ, there exists a local diffeomorphism Φ of a disk

∆R = {z ∈ C; |z| < R} (0 < R ≤ +∞) onto an open neighborhood of p with Φ(0) = p

such that Φ is a local isometry, that is, the pull-back Φ∗(dσ2) is equal to the standard

Euclidean metric ds2
Euc on ∆R and, for a point a0 with |a0| = 1, the Φ-image Γa0 of the

curve La0 = {w := a0s; 0 < s < R} is divergent in Σ.
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Proof of Theorem 1.1. Let α1, . . . , αq be the exceptional values of g. We may assume that

αq = ∞ after a suitable Möbius transformation. We choose a positive number η with

q − 2(m + 1)

q
< η <

q − (m + 2)

q

and set m 6= 0 and λ := m/(q − 2− qη). Since q ≥ m + 3, then 1/2 < λ < 1 holds.

Now we define a new metric

(5) dσ2 = |ω̂z|2/(1−λ)

(
1

|g′z|
∏q−1

j=1

( |g − αj|√
1 + |αj|2

)1−η)2λ/(1−λ)

|dz|2

on the set Σ′ := {p ∈ Σ ; g′z(p) 6= 0}, where ω = ω̂zdz and g′z = dg/dz with respect to the

local complex coordinate z. Take a point p ∈ Σ′. Since the metric dσ2 is flat, by Lemma

2.2, there exists a local isometry Φ satisfying Φ(0) = p from a disk ∆R = {z ∈ C; |z| < R}
(0 < R ≤ +∞) with the standard Euclidean metric ds2

Euc onto an open neighborhood of

p ∈ Σ′ with the metric dσ2, such that, for a point a0 with |a0| = 1, the Φ-image Γa0 of the

curve La0 = {w := a0s; 0 < s < R} is divergent in Σ′. For brevity, we denote the function

g ◦ Φ on ∆R by g in the following. By Lemma 2.1, we get

(6) R ≤ C ′1 + |g(0)|2
|g′z(0)|

q∏
j=1

|g(0), αj|1−η < +∞.

Hence

Ldσ(Γa0) =

∫

Γa0

dσ = R < +∞,

where Ldσ(Γa0) denotes the length of Γa0 with respect to the metric dσ2. We assume that

the Φ-image Γa0 tends to a point p0 ∈ Σ\Σ′ as s → R. Taking a local complex coordinate

ζ := g′z in a neighborhood of p0 with ζ(p0) = 0, we can write

dσ2 = |ζ|−2λ/(1−λ)w|dζ|2

for some positive smooth function w. Since λ/(1− λ) > 1, we have

R =

∫

Γa0

dσ ≥ C̃

∫

Γa0

|dζ|
|ζ|λ/(1−λ)

= +∞,

which contradicts (6). Thus Γa0 diverges outside any compact subset of Σ as s → R.

Since dσ2 = |dz|2, we obtain by (5) that

(7) |ω̂z| =
(
|g′z|

q−1∏
j=1

(√
1 + |αj|2
|g − αj|

)1−η)λ

.
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By Lemma 2.1, we have

Φ∗ds = |ω̂z|(1 + |g|2)m/2|dz|

=

(
|g′z|(1 + |g|2)m/2λ

q−1∏
j=1

(√
1 + |αj|2
|g − αj|

)1−η)λ

|dz|

=

( |g′z|
(1 + |g|2) ∏q

j=1 |g, αj|1−η

)λ

|dz|

≤ (C ′)λ

(
R

R2 − |z|2
)λ

|dz|.

Thus we have

d(p) ≤
∫

Γa0

ds =

∫

La0

Φ∗ds ≤ (C ′)λ

∫

La0

(
R

R2 − |z|2
)λ

|dz| ≤ (C ′)λ R1−λ

1− λ
(< +∞)

because 0 < λ < 1. Moreover, by (6), we get that

(8) d(p) ≤ C ′

1− λ

(
1 + |g(0)|2
|g′z(0)|

q∏
j=1

|g(0), αj|1−η

)1−λ

.

On the other hand, the Gaussian curvature Kds2 of the metric ds2 = (1 + |g|2)m|ω|2 is

given by

Kds2 = − 2m|g′z|2
(1 + |g|2)m+2|ω̂z|2 .

Thus, by (7), we also get that

(9) |Kds2|1/2 =
√

2m

( |g′z|
1 + |g|2

)1−λ q∏
j=1

|g, αj|(1−η)λ.

Since |g, αj| ≤ 1 for each j, we obtain that

(10) |Kds2(p)|1/2d(p) ≤
√

2mC ′

1− λ
=: C.

By the definitions of C ′ and λ, we see that C is positive and depends on m, q and

L := mini<j |αi, αj|. ¤

3. Applications

In this section, we give several applications of our main results.
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3.1. Gauss map of minimal surfaces in the Euclidean 3-space. We briefly recall

some basic facts of minimal surfaces in R3. Details can be found, for example, in [12] and

[31]. Let X = (x1, x2, x3) : Σ → R3 be an oriented minimal surface in R3. By associating

a local complex coordinate z = u+
√−1v with each positive isothermal coordinate system

(u, v), Σ is considered as a Riemann surface whose conformal metric is the induced metric

ds2 from R3. Then

(11) 4ds2X = 0

holds, that is, each coordinate function xi is harmonic. With respect to the local complex

coordinate z = u +
√−1v of the surface, (11) is given by

(12) ∂̄∂X = 0,

where ∂ = (∂/∂u−√−1∂/∂v)/2 and ∂̄ = (∂/∂u +
√−1∂/∂v)/2. Hence each φi := ∂xidz

(i = 1, 2, 3) is a holomorphic 1-form on Σ. If we set

(13) ω = φ1 −
√−1φ2, g =

φ3

φ1 −
√−1φ2

,

then ω is a holomorphic 1-form and g is a meromorphic function on Σ. Moreover, the func-

tion g coincides with the composition of the Gauss map and the stereographic projection

from S2 onto C ∪ {∞}, and the induced metric ds2 is given by

(14) ds2 = (1 + |g|2)2|ω|2.

Applying Theorem 1.1 to the metric ds2, we can show the Fujimoto theorem for the

Gauss map of minimal surfaces in R3.

Theorem 3.1. [11, Theorem I and Corollary 3.4] Let X : Σ → R3 be an oriented

minimal surface whose Gauss map g : Σ → C∪{∞} omits more than 4 (= 2+2) distinct

values. Then there exists a positive constant C depending on the set of exceptional values,

but not the surface, such that for all p ∈ Σ the inequality (2) holds. In particular, the

Gauss map of a nonflat complete minimal surface in R3 can omit at most 4 (= 2 + 2)

values.

3.2. Lorentzian Gauss map of maxfaces in the Lorentz-Minkowski 3-space.

Maximal surfaces in the Lorentz-Minkowski 3-space R3
1 are closely related to minimal

surfaces in R3. In this subsection we treat maximal surfaces with some admissible singu-

larities, called maxfaces, as introduced by Umehara and Yamada [36]. We remark that

maxfaces, non-branched generalized maximal surfaces in the sense of [9] and non-branched

generalized maximal maps in the sense of [15] are all the same class of maximal surfaces.

The Lorentz-Minkowski 3-space R3
1 is the affine 3-space R3 with the inner product

〈 , 〉 = −(dx1)2 + (dx2)2 + (dx3)2,



8 Y. KAWAKAMI

where (x1, x2, x3) is the canonical coordinate system of R3. We consider a fibration

pL : C3 3 (ζ1, ζ2, ζ3) 7→ Re(−√−1ζ1, ζ2, ζ3) ∈ R3
1.

The projection of null holomorphic immersions into R3
1 by pL gives maxfaces. Here, a

holomorphic map F = (F1, F2, F3) : Σ → C3 is called null if {(F1)
′
z}2+{(F2)

′
z}2+{(F3)

′
z}2

vanishes identically, where ′ = d/dz denotes the derivative with respect to a local complex

coordinate z of Σ. For maxfaces, an analogue of the Enneper-Weierstrass representation

formula is known (see also [20]).

Theorem 3.2. [36, Theorem 2.6] Let Σ be a Riemann surface and (g, ω) a pair con-

sisting of a meromorphic function and a holomorphic 1-form on Σ such that

(15) dσ2 := (1 + |g|2)2|ω|2

gives a (positive definite) Riemannian metric on Σ, and |g| is not identically 1. Assume

that

Re

∫

γ

(−2g, 1 + g2,
√−1(1− g2)) ω = 0

for all loops γ in Σ. Then

(16) f = Re

∫ z

z0

(−2g, 1 + g2,
√−1(1− g2)) ω

is well-defined on Σ and gives a maxface in R3
1, where z0 ∈ Σ is a base point. Moreover,

all maxfaces are obtained in this manner. The induced metric ds2 := f ∗〈 , 〉 is given by

ds2 = (1− |g|2)2|ω|2,

and the point p ∈ Σ is a singular point of f if and only if |g(p)| = 1.

We call g the Lorentzian Gauss map of f . If f has no singularities, then g coincides with

the composition of the Gauss map (i.e., (Lorentzian) unit normal vector) n : Σ → H2
± into

the upper or lower connected component of the two-sheet hyperboloid H2
± = H2

+ ∪H2
− in

R3
1, where

H2
+ := {n = (n1, n2, n3) ∈ R3

1 ; 〈n, n〉 = −1, n1 > 0},
H2
− := {n = (n1, n2, n3) ∈ R3

1 ; 〈n, n〉 = −1, n1 < 0},

and the stereographic projection from the north pole (1, 0, 0) of the hyperboloid onto the

Riemann sphere C∪{∞} (see [36, Section 1]). A maxface is said to be weakly complete if

the metric dσ2 as in (15) is complete. We note that (1/2)dσ2 coincides with the pull-back

of the standard metric on C3 by the null holomorphic immersion of f (see [36, Section

2]).

Applying Theorem 1.1 to the metric dσ2, we can get the following theorem.
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Theorem 3.3. Let f : Σ → R3
1 be a maxface whose Lorentzian Gauss map g : Σ →

C ∪ {∞} omits more than 4 (= 2 + 2) distinct values. Then there exists a positive

constant C depending on the set of exceptional values, but not Σ, such that for all p ∈ Σ

we have

|Kdσ2(p)|1/2 ≤ C

d(p)
,

where Kdσ2(p) is the Gaussian curvature of the metric dσ2 at p and d(p) is the geodesic

distance from p to the boundary of Σ. In particular, the Lorentzian Gauss map of a nonflat

weakly complete maxface in R3
1 can omit at most 4 (= 2 + 2) values.

As a corollary of this result, we give a simple new proof of the Calabi-Bernstein theorem

([4], [7]) for maximal space-like surfaces in R3
1 from the viewpoint of value-distribution-

theoretic properties of the Lorentzian Gauss map. We remark that Aĺıas and Palmer [2],

Estudillo and Romero [8, 9, 10], Osamu Kobayashi [20], Romero [32] and Umehara and

Yamada [36] have approached this theorem from other viewpoints.

Corollary 3.4. Any complete maximal space-like surface in R3
1 must be a plane.

Proof. Since a maximal space-like surface has no singularities, the complement of the

image of g contains at least the set {|g| = 1} ⊂ C ∪ {∞}. On the other hand, we obtain

ds2 = (1− |g|2)2|ω|2 ≤ (1 + |g|2)2|ω|2 = dσ2.

Thus if ds2 is complete, then dσ2 is also complete. By Theorem 3.3, its Lorentzian Gauss

map is constant, that is, it is a plane. ¤

3.3. Lagrangian Gauss map of improper affine fronts in the affine 3-space. Im-

proper affine spheres in the affine 3-space R3 also have similar properties to minimal

surfaces in the Euclidean 3-space. Recently, Mart́ınez [27] discovered the correspondence

between improper affine spheres and smooth special Lagrangian immersions in the com-

plex 2-space C2 and introduced the notion of improper affine fronts, that is, a class of

(locally strongly convex) improper affine spheres with some admissible singularities in R3.

We note that this class is called “improper affine maps” in [27], but we call this class “im-

proper affine fronts” because Nakajo [28] and Umehara and Yamada [37, 38] showed that

all improper affine maps are wave fronts in R3. The differential geometry of wave fronts

is discussed in [34]. Moreover, Mart́ınez gave the following holomorphic representation

for this class.

Theorem 3.5. [27, Theorem 3] Let Σ be a Riemann surface and (F,G) a pair of

holomorphic functions on Σ such that Re(FdG) is exact and |dF |2 + |dG|2 is positive

definite. Then the induced map ψ : Σ → R3 = C×R given by

ψ :=

(
G + F,

|G|2 − |F |2
2

+ Re

(
GF − 2

∫
FdG

))
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is an improper affine front. Conversely, any improper affine front is given in this way.

Moreover we set x := G + F and n := F − G. Then Lψ := x +
√−1n : Σ → C2 is a

special Lagrangian immersion whose induced metric dτ 2 from C2 is given by

dτ 2 = 2(|dF |2 + |dG|2).
In addition, the affine metric h of ψ is expressed as h := |dG|2 − |dF |2 and the singular

points of ψ correspond to the points where |dF | = |dG|.

The nontrivial part of the Gauss map of Lψ : Σ → C2 ' R4 (see [6]) is the meromorphic

function ν : Σ → C ∪ {∞} given by

ν :=
dF

dG
,

which is called the Lagrangian Gauss map of ψ. An improper affine front is said to be

weakly complete if the induced metric dτ 2 is complete. We note that

dτ 2 = 2(|dF |2 + |dG|2) = 2(1 + |ν|2)|dG|2.
Applying Theorem 1.1 to the metric dτ 2, we can get the following theorem. This is a

generalization of [19, Theorem 3.2].

Theorem 3.6. Let ψ : Σ → R3 be an improper affine front whose Lagrangian Gauss

map ν : Σ → C ∪ {∞} omits more than 3 (= 1 + 2) distinct values. Then there exists a

positive constant C depending on the set of exceptional values, but not Σ, such that for

all p ∈ Σ we have

|Kdτ2(p)|1/2 ≤ C

d(p)
,

where Kdτ2(p) is the Gaussian curvature of the metric dτ 2 at p and d(p) is the geodesic

distance from p to the boundary of Σ. In particular, if the Lagrangian Gauss map of a

weakly complete improper affine front in R3 is nonconstant, then it can omit at most 3

(= 1 + 2) values.

Since the singular points of ψ correspond to the points where |ν| = 1, we can obtain

a simple proof of the parametric affine Bernstein theorem ([3], [16]) for improper affine

spheres from the viewpoint of value-distribution-theoretic properties of the Lagrangian

Gauss map. For the proof, see [19, Corollary 3.6].

Corollary 3.7. Any affine complete improper affine sphere in R3 must be an elliptic

paraboloid.

3.4. Ratio of canonical forms of flat fronts in the hyperbolic 3-space. We denote

by H3 the hyperbolic 3-space, that is, the simply connected Riemannian 3-manifold with

constant sectional curvature −1, which is represented as

H3 = SL(2,C)/SU(2) = {aa∗ ; a ∈ SL(2,C)} (a∗ := tā).
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For a holomorphic Legendrian immersion L : Σ → SL(2,C) on a simply connected Rie-

mann surface Σ, the projection

f := LL∗ : Σ → H3

gives a flat front in H3. Here, flat fronts in H3 are flat surfaces in H3 with some admissible

singularities (see [23], [26] for the definition of flat fronts in H3). We call L the holomorphic

lift of f . Since L is a holomorphic Legendrian map, L−1dL is off-diagonal (see [14], [25],

[26]). If we set

L−1dL =

(
0 θ

ω 0

)
,

then the pull-back of the canonical Hermitian metric of SL(2,C) by L is represented as

ds2
L := |ω|2 + |θ|2

for holomorphic 1-forms ω and θ on Σ. A flat front f is said to be weakly complete if the

metric ds2
L is complete [24, 37]. We define a meromorphic function on Σ by the ratio of

canonical forms

ρ :=
θ

ω
.

Then a point p ∈ Σ is a singular point of f if and only if |ρ(p)| = 1 [22]. We note that

ds2
L = |ω|2 + |θ|2 = (1 + |ρ|2)|ω|2.

Applying Theorem 1.1 to the metric ds2
L, we can get the following theorem. This is a

generalization of [19, Theorem 4.5].

Theorem 3.8. Let f : Σ → H3 be a flat front on a simply connected Riemann surface

Σ. Suppose that the ratio of canonical forms ρ : Σ → C∪{∞} omits more than 3 (= 1+2)

distinct values. Then there exists a positive constant C depending on the set of exceptional

values, but not Σ, such that for all p ∈ Σ we have

|Kds2
L
(p)|1/2 ≤ C

d(p)
,

where Kds2
L
(p) is the Gaussian curvature of the metric ds2

L at p and d(p) is the geodesic

distance from p to the boundary of Σ. In particular, if the ratio of canonical forms of a

weakly complete flat front in H3 is nonconstant, then it can omit at most 3 (= 1 + 2)

values.

If Σ is not simply connected, then we consider that ρ is a meromorphic function on its

universal covering surface Σ̃. As a corollary of Theorem 3.8, we give a simple proof of the

classification ([35], [39]) of complete nonsingular flat surfaces in H3. For the proof, see

[17, Corollary 3.5].

Corollary 3.9. Any complete nonsingular flat surface in H3 must be a horosphere or

a hyperbolic cylinder.
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[6] B. Y. Chen and J. M. Morvan, Géométrie des surfaces lagrangiennes de C2, J. Math. Pures

Appl. 66 (1987), 321–335.
[7] S. Y. Cheng and S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces,

Ann. of Math. 104 (1976), 407–419.
[8] F. J. M. Estudillo and A. Romero, On maximal surfaces in the n-dimensional Lorentz-

Minkowski space, Geom. Dedicate 38 (1991), 167–174.
[9] F. J. M. Estudillo and A. Romero, Generalized maximal surfaces in Lorentz-Minkowski space

L3, Math. Proc. Cambridge Philos. Soc. 111 (1992), 515–524.
[10] F. J. M. Estudillo and A. Romero, On the Gauss curvature of maximal surfaces in the 3-

dimensional Lorentz-Minkowski space, Comment. Math. Helv. 69 (1994), 1–4.
[11] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math.

Soc. Japan 40 (1988), 235–247.
[12] H. Fujimoto, Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm, Aspects of

Mathematics, E21. Friedr. Vieweg & Sohn, Braunschweig, 1993.
[13] H. Fujimoto, Nevanlinna theory and minimal surfaces, Geometry V, 95–151, 267–272, Encyclopae-

dia Math. Sci., 90, Springer, Berlin, 1997.
[14] J. A. Gálvez, A. Mart́ınez and F. Milán, Flat surfaces in hyperbolic 3-space, Math. Ann. 316

(2000), 419–435.
[15] T. Imaizumi and S. Kato, Flux of simple ends of maximal surfaces in R2,1, Hokkaido Math. J.

37 (2008), 561–610.
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