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ON MONO-INJECTIVE MODULES

AND

MONO-OJECTIVE MODULES

Derya Keskin Tütüncü and Yosuke Kuratomi

Abstract. In [5] and [6], we have introduced a couple of relative gener-
alized epi-projectivities and given several properties of these projectivi-
ties. In this paper, we consider relative generalized injectivities that are
dual to these relative projectivities and apply them to the study of di-
rect sums of extending modules. Firstly we prove that for an extending
module N , a module M is N-injective if and only if M is mono-N-
injective and essentially N-injective. Then we define a mono-ojectivity
that plays an important role in the study of direct sums of extending
modules. The structure of (mono-)ojectivity is complicated and hence it
is difficult to determine whether these injectivities are inherited by finite
direct sums and direct summands even in the case where each module
is quasi-continuous. Finally we give several characterizations of these
injectivities and find necessary and sufficient conditions for the direct
sums of extending modules to be extending.

1. Preliminaries

Throughout this paper R will be a ring with identity and all modules
considered will be unitary right R-modules. A moduleM is called extending
if every submodule of M is essential in a direct summand of M . We use the
notation A ⊆e M and B ≤⊕ M to indicate that A is an essential submodule
of M and B is a direct summand of M . For a direct sum M = X ⊕ Y ,
pX :M = X ⊕ Y → X denotes the projection of M = X ⊕ Y to X.

Let M and N be two modules. M is said to be essentially N -injective if
every homomorphism with essential kernel from a submodule of N into M
extends to M . M is said to be mono-N -injective if every monomorphism
from a submodule of N into M extends to M . In Section 2, we prove that
for an extending module N , a module M is N -injective if and only if M is
mono-N -injective and essentially N -injective (Theorem 2.3).

LetM and N be modules. M is said to be generalized (mono-)N -injective
or (mono-)N -ojective if, for any submodule X of N and any homomorphism
(monomorphism) f : X →M , there exist the decompositionsM =M1⊕M2

and N = N1 ⊕N2, a homomorphism (monomorphism) g1 : N1 →M1 and a
monomorphism g2 :M2 → N2 satisfying the following property :
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(∗) For any x ∈ X, we express x, f(x) in N = N1 ⊕ N2, M = M1 ⊕M2

as x = n1 + n2, f(x) = m1 +m2. Then g1(n1) = m1 and g2(m2) = n2.
Let A and B be modules. B is said to be almost A-injective if, for any

submodule X of A and any homomorphism f : X → B, there exists a
homomorphism g : A → B with g|X = f , or there exist a non-zero direct
summand A′ of A and a homomorphism h : B → A′ with h ◦ f = pA′ |X ,
where pA′ is the projection of A onto A′. The almost injectivities are useful
for the study of direct sums of uniform modules (cf. [1]). In the case that
A is indecomposable, we note that B is A-ojective if and only if B is almost
A-injective.

A module M is said to be weakly generalized mono-N -injective or weakly
mono-N -ojective if, for any submodule X of N and any monomorphism
f : X → M , there exist an essential submodule Y of X, decompositions
M = M1 ⊕ M2 and N = N1 ⊕ N2 and monomorphisms g1 : N1 → M1,
g2 :M2 → N2 satisfying the condition (∗) for Y , that is,

(∗) For any y ∈ Y , we express y, f(y) in N = N1 ⊕N2, M =M1 ⊕M2 as
y = n1 + n2, f(y) = m1 +m2. Then g1(n1) = m1 and g2(m2) = n2.

Note that M is (weakly) mono-N -ojective iff N is (weakly) mono-M -
ojective. In Section 3, we study several properties of relative mono-ojectivity
and find necessary and sufficient conditions for the direct sum of extending
modules to be extending in terms of the (weakly) mono-ojectivity (see, The-
orem 3.3).

Let M = M1 ⊕ M2 and let ϕ : M1 → M2 be a homomorphism. Put

〈M1
ϕ
→ M2〉 = {m1 − ϕ(m1) | m1 ∈ M1}. Then this is a submodule of

M which is called the graph with respect to M1 → M2. Note that M =

M1 ⊕M2 = 〈M1
ϕ
→M2〉 ⊕M2.

For undefined terminologies, the reader is referred to [2], [9] and [12].
The following give several properties of relative essentially injective mod-

ules and relative ojective modules.

Proposition 1.1. (cf.[3, pp.16-17])
(1) Let A and B be modules. If A is essentially B-injective, then A is

essentially C-injective for any submodule C of B.
(2) Let A be a module and let {Bi | i ∈ I} be a family of modules. Then

A is essentially ⊕IBi-injective if and only if A is essentially Bi-injective for
all i ∈ I.

(3) Let A1, · · · , An, B be modules. Then A1 ⊕ · · · ⊕ An is essentially B-
injective if and only if Ai is essentially B-injective for all i ∈ {1, · · · , n}.

Proposition 1.2. (cf.[8, Proposition 1.4], [10, Proposition 3.8]) Let A and
B be modules. Then

(1) If A is B-ojective, then A is essentially B-injective.
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(2) If A is B-ojective, then A′ is B′-ojective for any A′ <⊕ A and B′ <⊕

B.

In general, an essentially B-injective module need not be B-ojective. For
example, let B be an injective module with exactly one nonzero proper
submodule S and let A be an indecomposable non-extending module that
contains a simple submodule not isomorphic to S. Then A is essentially
B-injective, but not B-ojective ([7, Example 2.3]).

2. Mono-injective modules

We recall the definition of relative mono-injectivity. Let M and N be
modules. M is said to be mono-N -injective if, for any submodule X of
N and any monomorphism f : X → M , there exists a homomorphism
g : N →M with g|X = f .

Clearly mono-injectivities are inherited by direct summands as follows:

Proposition 2.1. LetM and N be modules. IfM is mono-N -injective, then
M ′ is mono-N ′-injective for any direct summands M ′ <⊕ M and N ′ <⊕ N .

Proof. Straightforward. �

Lemma 2.2. (cf.[11, Lemma 2.2]) Let M = M1 ⊕ M2 and let X be a
submodule of M . If X1 ⊆e M1 for X1 ⊆ X, then X ⊇e X1 ⊕ (M2 ∩X).

The following result deals with the connection between injectivity, mono-
injectivity and essentially injectivity.

Theorem 2.3. Let M be a module and let N be an extending module. Then
M is N -injective if and only if M is mono-N -injective and essentially N -
injective.

Proof. It is enough to prove “if” part. Let X be a submodule of N , let
f : X → M be a homomorphism. Since N is extending, there exists a
decomposition N = N1 ⊕N2 such that ker f ⊆e N1. By Lemma 2.2, we see

X ⊇e ker f ⊕ (N2 ∩X) · · · (a).

Since M is mono-N2-injective, there exists a homomorphism g : N2 → M
such that g|(N2∩X) = f |(N2∩X). Define g∗ : N = N1 ⊕N2 → M by g∗(n1 +
n2) = g(n2) and put ϕ = (g∗|X) − f . Let 0 6= x ∈ X. By (a), there exists
r ∈ R such that 0 6= xr ∈ ker f⊕(N2∩X), xr can be expressed as xr = k+y
with k ∈ ker f , y ∈ N2∩X. Then ϕ(xr) = g∗(xr)−f(xr) = g(y)−f(k+y) =
f(y)− f(y) = 0 and so kerϕ ⊆e X.

SinceM is essentially N -injective, there exists a homomorphism ψ : N →
M such that ψ|X = ϕ. Put h = g∗ − ψ. Then, for any x ∈ X, h(x) =
g∗(x)− ψ(x) = g∗(x)− ϕ(x) = g∗(x)− (g∗(x)− f(x)) = f(x).

Therefore M is N -injective. �
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Proposition 2.4. LetM be an extending module. IfM is mono-M -injective,
then M is essentially M -injective.

Proof. Let X be a submodule of M and let f : X →M be a homomorphism
with ker f ⊆e X. As M is extending, there exists a decompositon M =
M1 ⊕ M2 such that X is essential in M1. Define g : X ⊕ M2 → M by
g(x+m2) = f(x) and put ϕ = 1X⊕M2

− g. Since ker g = ker f ⊕M2 ⊆e M ,
ϕ is a monomorphism. So there exists an endomorphism ϕ∗ :M →M with
ϕ∗|X⊕M2

= ϕ. Put ψ = 1M − ϕ∗. Then, for any x ∈ X,

ψ(x) = x− ϕ∗(x) = x− ϕ(x) = x− (x− g(x)) = g(x) = f(x).

Thus M is essentially M -injective. �

We note that, in general, a mono-N -injective module is not essentially
N -injective.

Example 2.5. (cf.[5, Example 2.7]) Let S and S′ be simple modules with
S 6≃ S′. Let M and K be uniserial modules with the following conditions:

(i) M ∩K = S,
(ii) M ⊃ S ⊃ 0, K ⊃ K1 ⊃ K2 ⊃ S ⊃ 0,
(iii) M/S ≃ S, K/K1 ≃ S′, K1/K2 ≃ S, K2/S ≃ S′.
Put N = M +K. (Using path algebra, we can see that there exist such

modules M , N .)
(I) First we show “M is mono-N/S(= M/S ⊕K/S)-injective.” Let X be

a submodule of N/S and let f : X →M be a monomorphism. In the case of
f(X) = M , X is an uniserial module with length 2. So we see X = K1/S.
Then the tops of M and K1/S are not isomorphic, a contradiction. Thus we
see f(X) = S. Since the socle of N/S is M/S ⊕K2/S and X ≃ S, we see
X =M/S. Thus there exists a homomorphism g : N/S =M/S⊕K/S →M
such that g|X = f . Thus M is mono-N/S-injective.

(II) Next we show “M is not essentially N/S-injective.” Let f ′ : K1/S →
K1/K2 be the canonical epimorphism and let ǫ : K1/K2 → S be an iso-
morphism. Then f = ǫ ◦ f ′ : K1/S → S is a homomorphism with ker f =
K2/S ⊆e K1/S. Assume that f is extended to g : K/S → M . If Im g = S
and ker g = K1/S, then S = Im g ≃ K/K1 ≃ S′, a contradiction. If
Im g = M , then the map ϕ = π ◦ g : K/S → M/S is an epimorphism with
kerϕ = K1/S, where π : M → M/S is the canonical epimorphism. Then
S ≃M/S = Im ϕ ≃ K/K1 ≃ S′, a contradiction. Thus M is not essentially
K/S-injective.

Therefore M is mono-N/S-injective, but not essentially N/S-injective.

As an immediate consequence of Theorem 2.3 and Propositon 2.4, we
obtain the following:
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Theorem 2.6. (cf. [4]) A module M is quasi-injective if and only if M is
extending and mono-M -injective.

3. Mono-ojective modules

We recall the definition of relative mono-ojectivity.

Definition. Let M and N be modules. M is said to be generalized
(mono-)N -injective or (mono-)N -ojective if, for any submodule X of N and
any homomorphism (monomorphism) f : X → M , there exist decomposi-
tions M =M1 ⊕M2 and N = N1 ⊕N2, a homomorphism (monomorphism)
g1 : N1 → M1 and a monomorphism g2 : M2 → N2 satisfying the following
property :

(∗) For any x ∈ X, we express x, f(x) in N = N1 ⊕ N2, M = M1 ⊕M2

as x = n1 + n2, f(x) = m1 +m2. Then g1(n1) = m1 and g2(m2) = n2.

Note that “mono-ojectivity” is named “symmetrically injective” in [7].

Proposition 3.1. Let M be a module and let N be an extending module.
If M is N -ojective, then M is mono-N -ojective.

Proof. Let X be any submodule of N and g : X −→ M a monomorphism.
Since N is extending, there exists the decomposition N = N1 ⊕ N2 such
that X ⊆e N1. By Proposition 1.2, M is N1-ojective and hence there exist

the decompositions N1 = N1 ⊕ N1 and M = M ⊕ M together with the

homomorphism h1 : N1 −→ M and monomorphism h2 : M −→ N1 such
that for x = n1+n1 and g(x) = m+m one has h1(n1) = m and h2(m) = n1.
Since X is essential in N1 and g is a monomorphism, we see that h1 is a

monomorphism. Now we have the decompositions N = (N1 ⊕ N2) ⊕ N1

and M = M ⊕M together with the monomorphisms h1 : N1 −→ M and

h2 :M −→ N1⊕N2 such that for x = n1+(n1+n2) and g(x) = m+m one
has h1(n1) = m and h2(m) = n1 + n2. Thus M is mono-N -ojective. �

We recall the definition of relative weakly mono-ojectivity. A module
M is said to be weakly generalized mono-N -injective or weakly mono-N -
ojective if, for any submodule X of N and any monomorphism f : X →M ,
there exist an essential submodule Y of X, decompositions M = M1 ⊕M2,
N = N1 ⊕N2 and monomorphisms g1 : N1 → M1, g2 : M2 → N2 satisfying
the following condition (∗):

(∗) For any y ∈ Y , we express y, f(y) in N = N1 ⊕N2, M =M1 ⊕M2 as
y = n1 + n2, f(y) = m1 +m2. Then g1(n1) = m1 and g2(m2) = n2.
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In this case, the decompositons N = N1 ⊕ N2, M = M1 ⊕ M2 and
monomorphisms g1 : N1 → M1, g2 : M2 → N2 are said to be satisfy the
condition (∗) for Y .

Since any mono-N -ojective module is weakly mono-N -ojective, for any
extending module N , we see the following:
N -injective ⇒ N -ojective ⇒ mono-N -ojective ⇒ weakly mono-N -

ojective.
We note that, in general, a mono-N -ojective module is not N -ojective. For
example, Z/2Z is mono-Z/8Z-ojective but is not essentially Z/8Z-injective
(not Z/8Z-ojective).

Theorem 3.2. Let N be an extending module. Then the module M is N -
ojective if and only if M is essentially N -injective and mono-N ′-ojective for
any direct summand N ′ of N .

Proof. “Only if” part is clear by Proposition 1.2.
“If” part: Let X be a submodule of N and let f : X → M be a ho-

momorphism. By Zorn’s lemma, Γ = {(Xi, fi) | X ⊆ Xi ⊆ N, fi|X = f}
has a maximal element (X∗, f∗). Since N is extending, there exists a de-
composition N = N∗ ⊕ N∗∗ such that ker f∗ ⊆e N

∗. Since M is essen-
tially N∗-injective and ker f∗ ⊆e X

∗ ∩ N∗, there exists a homomorphism
g∗ : N∗ → M with g∗|X∗∩N∗ = f∗|X∗∩N∗ . Let x∗ + n∗ ∈ X∗ + N∗. If
x∗ + n∗ = 0, then n∗ = −x∗ ∈ N∗ ∩ X∗ and so g∗(n∗) = −f∗(x∗). Thus
we can define ϕ : X∗ +N∗ → M by ϕ(x∗ + n∗) = f∗(x∗) + g∗(n∗). By the
maximality of (X∗, f∗) ∈ Γ, X∗+N∗ = X∗ and so N∗ ⊆ X∗. Hence we see
X∗ = N∗ ⊕ (X∗ ∩N∗∗).

AsM is mono-N∗∗-ojective, there exist decompositions N∗∗ = N∗∗⊕N∗∗,

M = M ⊕M and monomorphisms g1 : N∗∗ →M , g2 :M → N∗∗ such that

g1(n∗∗) = m and g2(m) = n∗∗ for any y = n∗∗ + n∗∗ ∈ X∗ ∩ N∗∗ and
f∗(y) = m+m.

Define α : N∗ → N∗∗ by α(n∗) = g2 p
M

g∗(n∗), where p
M

: M =

M ⊕M → M is the projection. Put ρ = pM ◦ g∗ ◦ β : 〈N∗ α
→ N∗∗〉 → M ,

where β : 〈N∗ α
→ N∗∗〉 → N∗ is the canonical isomorphism and pM : M =

M ⊕M →M is the projection.

Put M1 = M , M2 = M , N1 = 〈N∗ α
→ N∗∗〉 ⊕ N∗∗, N2 = N∗∗, ϕ2 = g2

and define ϕ1 = ρ+g1 : N1 →M1 by ϕ1((n
∗−α(n∗))+n∗∗) = pM (g∗(n∗))+

g1(n∗∗).
For any x∗ ∈ X∗, we express x∗ in N = N1 ⊕N2 as x∗ = n1 +n2 = (n∗ −

α(n∗)+n∗∗)+n∗∗. By n∗ ∈ X∗, f∗(x∗) = f∗(n∗)+f∗(−α(n∗)+n∗∗+n∗∗) =
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g∗(n∗) + g1(n∗∗) + g−1
2 (−α(n∗)) + g−1

2 (n∗∗) = pM(g∗(n∗)) + p
M
(g∗(n∗)) +

g1(n∗∗)+ g−1
2 (−g2pMg

∗(n∗))+ g−1
2 (n∗∗) = pM (g∗(n∗)) + g1(n∗∗)+ g−1

2 (n∗∗).

Put m1 = pM (g∗(n∗)) + g1(n∗∗) ∈M1 and m2 = g−1
2 (n∗∗) ∈M2. Then

ϕ1(n1) = ϕ1(n
∗ − α(n∗) + n∗∗) = pM (g∗(n∗)) + g1(n∗∗) = m1

and

ϕ2(m2) = g2(g
−1
2 (n∗∗)) = n∗∗ = n2.

Thus M is N -ojective. �

Let {Mi | i ∈ I} be a family of modules. The decompositionM = ⊕i∈IMi

is said to be exchangeable if, for any direct summand X of M , there exists
Mi ⊆ Mi (i ∈ I) such that M = X ⊕ (⊕i∈IMi). A module M is said
to have the (finite) internal exchange property if, any (finite) direct sum
decomposition ⊕i∈IMi of M is exchangeable.

The following proof is essentially due to [8, Theorem 2.1].

Theorem 3.3. Let M1 and M2 be extending modules with the finite internal
exchange property and put M = M1 ⊕M2. Then the following conditions
are equivalent:

(1) M is extending with the finite internal exchange property,
(2) M is extending and the decomposition M =M1⊕M2 is exchangeable,
(3) M1 and M2 are mutually relative ojective,
(4) M1 is M2-ojective and M2 is essentially M1-injective,
(5) M1 and M2 are mutually relative essentially injective, N1 is mono-

N2-ojective for all direct summands N1 of M1 and N2 of M2,
(6) M1 and M2 are mutually relative essentially injective, N1 is weakly

mono-N2-ojective for all direct summands N1 of M1 and N2 of M2.

Proof. (1)⇔(2)⇔(3) : By [8, Theorem 2.15].
(3)⇒(4)⇒(5) : By Proposition 1.2 and Proposition 3.1.
(5)⇒(6) is clear.
(6)⇒(2) : Let X be a submodule of M and put Xi = Mi ∩X (i = 1, 2).

Since Mi is extending, there exists the decomposition Mi = M ′
i ⊕M ′′

i with
Xi ⊆e M ′′

i (i = 1, 2). Put M ′ = M ′
1 ⊕ M ′

2 and X ′ = M ′ ∩ X. Then
X ⊇e X1 ⊕ X2 ⊕ X ′ by Lemma 2.2. Define f : pM ′

1
(X ′) → pM ′

2
(X ′) by

f(pM ′

1
(x′)) = pM ′

2
(x′) and then f is an isomorphism, where pM ′

i
: M ′ =

M ′
1⊕M

′
2 →M ′

i (i = 1, 2) is the projection. As M ′
i is extending, there exists

a decomposition M ′
i = Ni ⊕ Ti with pM ′

i
(X ′) ⊆e Ti (i = 1, 2). Since T2 is

weakly mono-T1-ojective, there exist an essential submodule Y of pM ′

1
(X ′),

the decompositons Ti = T ′
i⊕T

′′
i (i = 1, 2) and monomorphisms g1 : T

′
1 → T ′′

2 ,
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g2 : T
′
2 → T ′′

1 with the condition (∗) for Y . Then we see

〈Y
f
→ f(Y )〉 ⊆e 〈T

′
1

g1
→ T ′′

2 〉 ⊕ 〈T ′
2

g2
→ T ′′

1 〉

and

X1 ⊕X2 ⊕ 〈Y
f
→ f(Y )〉 ⊆e X1 ⊕X2 ⊕X ′ ⊆e X · · · (i).

Put Z = M ′′
1 ⊕M ′′

2 ⊕ 〈T ′
1

g1
→ T ′′

2 〉 ⊕ 〈T ′
2

g2
→ T ′′

1 〉 and Qi = T ′′
i ⊕Ni (i = 1, 2).

Then M = Z ⊕Q1 ⊕Q2. For any x ∈ X, we express x in M = Z ⊕Q1 ⊕Q2

as x = z+ q, where z ∈ Z and q ∈ Q1 ⊕Q2. By X
′ ∩ (Q1 ⊕Q2) = 0 and (i),

we define a homomorphism γ : pZ(X) → pQ1⊕Q2
(X) by γ(z) = q and then

ker γ ⊆e pZ(X). By (1) ⇒ (3) and Proposition 1.1, Q1 ⊕ Q2 is essentially
Z-injective and hence there exists a homomorphism γ∗ : Z → Q1 ⊕Q2 with
γ∗|pZ(X) = γ.

Thus we see

X = 〈pZ(X)
γ
→ pQ1⊕Q2

(X)〉 ⊆e 〈Z
γ∗

→ Q1 ⊕Q2〉

and

M = 〈Z
γ∗

→ Q1 ⊕Q2〉 ⊕Q1 ⊕Q2.

ThereforeM is extending and the decompositon M =M1⊕M2 is exchange-
able. �

Corollary 3.4. Let A be a semisimple module and let B be an extending
module with the finite internal exchange property. If A is essentially B-
injective, then M = A ⊕ B is extending with the finite internal exchange
property.

Now we consider whether weakly mono-ojectivities are inherited by di-
rect summands, finite direct sums in the case that each module is quasi-
continuous.

Proposition 3.5. Let M be quasi-continuous and let N be extending with
the finite internal exchange property. If M is weakly mono-N -ojective, then
M is weakly mono-N ′-ojective for any direct summand N ′ <⊕ N .

Proof. Let X be a submodule of N ′ and let f : X → M be a monomor-
phism. As N ′ is extending, we can assume that X is essential in N ′. Since
M is weakly mono-N -ojective, there exist an essential submodule Y of
X, decompositions N = N1 ⊕ N2, M = M1 ⊕ M2 and monomorphisms
g1 : N1 → M1, g2 : M2 → N2 with the condition (∗) for Y . As N satisfies

the finite internal exchange property, there exists a direct summand Ni of

Ni (i = 1, 2) such that N = N ′ ⊕ N1 ⊕ N2. Let Ni = Ni ⊕ Ni. Define
α : N1 ⊕ N2 = pN1⊕N2

(N ′) → p
N1⊕N2

(N ′) by α(pN1⊕N2
(n′)) = p

N1⊕N2

(n′)

for any n′ ∈ N ′. Put αi = α|Ni
and Qi = 〈Ni

αi→ N1 ⊕ N2〉. Now define
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α∗
i : Ni → Ni by α

∗
i (ni) = p

Ni
(αi(ni)) and define β∗i : 〈Ni

α∗

i→ Ni〉 → Nj by

β∗i (ni − α∗
i (ni)) = p

Nj
αi(ni) for i 6= j. Then we see

Qi = 〈〈Ni

α∗

i→ Ni〉
β∗

i→ Nj〉 (i, j = 1, 2, i 6= j).

Since M is extending, there exists a direct summand M ′
1 of M1 such that

g1(〈N1
α∗

1→ N1〉) ⊆e M
′
1. By Y ⊆e N

′ = Q1 ⊕ Q2, we see Qi ∩ Y ⊆e Qi

(i = 1, 2). For x1 ∈ Q1 ∩ Y , we express x1 in 〈〈N1
α∗

1→ N1〉
β∗

1→ N2〉

as x1 = n1 − β∗1(n1), where n1 ∈ 〈N1
α∗

1→ N1〉. Then g1(n1) = 0 imply
g−1
2 (β∗1(n1)) = 0, since g1 and g2 are monomorphisms. Hence the natural

map γ1 : g1(〈N1
α∗

1→ N1〉) → g−1
2 (β∗1(〈N1

α∗

1→ N1〉)) is a homomorphism. Since
M is quasi-continuous, M2 isM

′
1-injective. So there exists a homomorphism

γ∗1 :M ′
1 →M2 such that γ∗1 |

g1(〈N1

α∗

1→N1〉)
= γ1.

Now we put ϕ1 = ǫ2g1ǫ1 : Q1 = 〈〈N1
α∗

1→ N1〉
β∗

1→ N2〉 → 〈M ′
1

γ∗

1→ M2〉,

where ǫ1 : Q1 → 〈N1
α∗

1→ N1〉 and ǫ2 : M ′
1 → 〈M ′

1

γ∗

1→ M2〉 are canonical
isomorphisms.

Then, for any x1 = n1 − β∗1(n1) ∈ Q1 ∩ Y , ϕ1(x1) = ǫ2g1ǫ1(x1) =

ǫ2g1(n1) = g1(n1)− γ∗1g1(n1) = g1(n1)− γ1g1(n1) = g1(n1)− g−1
2 (β∗1(n1)) =

f(x1).
Thus ϕ1 is a monomorphism with ϕ1|Q1∩Y = f |Q1∩Y .
On the other hand, by pN2

(Q2 ∩ Y ) ⊆ g2(M2), there exists a direct sum-

mand M ′
2 of M2 with g−1

2 (pN2
(Q2 ∩ Y )) ⊆e M

′
2. Let π : N2 = 〈N2

α∗

2→

N2〉 ⊕ N2 → 〈N2
α∗

2→ N2〉 be the projection and put γ∗2 = g1β
∗
2π(g2|M ′

2
) :

M ′
2 → M1. For x2 ∈ Q2 ∩ Y , we express x2 in 〈〈N2

α∗

2→ N2〉
β∗

2→ N1〉 as

x2 = n2 − β∗2(n2), where n2 ∈ 〈N2
α∗

2→ N2〉. Then f(x2) = f(n2 − β∗2(n2)) =
g−1
2 (n2) − g1(β

∗
2(n2)). By n2 ∈ pN2

(Q2 ∩ Y ), we see g−1
2 (n2) ∈ M ′

2. Hence

γ∗2(g
−1
2 (n2)) = g1β

∗
2πg2(g

−1
2 (n2)) = g1β

∗
2(n2) and so f(x2) = g−1

2 (n2) −

γ∗2(g
−1
2 (n2)). Thus f(Q2 ∩ Y ) ⊆ 〈M ′

2

γ∗

2→M1〉. By g
−1
2 (pN2

(Q2 ∩ Y )) ⊆e M
′
2,

we see f(Q2 ∩ Y ) ⊆e 〈M ′
2

γ∗

2→ M1〉. Now we put ϕ2 = ǫ4πg2ǫ3 : 〈M ′
2

γ∗

2→

M1〉 → Q2, where ǫ3 : 〈M ′
2

γ∗

2→ M1〉 → M ′
2 and ǫ4 : 〈N2

α∗

2→ N2〉 → Q2 are
canonical isomorphisms. Then ϕ2|f(Q2∩Y ) = f−1|f(Q2∩Y ).

By g−1
2 (pN2

(Q2 ∩ Y )) ⊆e M
′
2, π|g2(M ′

2
) is a monomorphism and so ϕ2 is a

monomorphism.
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Since f is a monomorphism, we see

〈M ′
1

γ∗

1→M2〉 ∩ 〈M ′
2

γ∗

2→M1〉 = 0

by (Q1∩Y )∩(Q2∩Y ) = 0 and f(Qi∩Y ) ⊆e 〈M
′
i

γ∗

i→Mj〉 (i, j = 1, 2, i 6= j).
As M is quasi-continuous,

〈M ′
1

γ∗

1→M2〉 ⊕ 〈M ′
2

γ∗

2→M1〉 <⊕ M.

Thus M is weakly mono-N ′-ojective. �

LetM and N be quasi-continuous and letM be weakly mono-N -ojective.
Since weakly mono-ojectivity is symmetric, M ′ is weakly mono-N ′-ojective
for any direct summands N ′ <⊕ N and M ′ <⊕ M .

Proposition 3.6. Let M be a quasi-continuous module and let N = N1 ⊕
· · · ⊕Nt be an extending module with the finite internal exchange property.
If M is weakly mono-Ni-ojective for all i ∈ {1, · · · , t}, then M is weakly
mono-N -ojective.

Proof. Let X be a submodule of N , let f : X →M be a monomorphism and
put F = {1, · · · , t}. Since N is extending with the finite internal exchange
property, there exists a direct summand X∗ of N such that X ⊆e X

∗ and
N = X∗ ⊕N ′′

1 ⊕ · · · ⊕N ′′
t , where Ni = N ′

i ⊕N ′′
i (i ∈ F ). Hence there exists

an isomorphism α : N ′
1⊕· · ·⊕N ′

t → X∗. Put X∗
i = α(N ′

i) and Xi = X∗
i ∩X

for any i ∈ F . Then we see Xi ⊆e X
∗
i .

By Proposition 3.5, M is weakly mono-X∗
i -ojective for any i ∈ F and so

there exist an essential submodule Yi of Xi, decompositions X∗
i = X∗

i ⊕X
∗
i ,

M = Mi ⊕Mi and monomorphisms gi : X∗
i → Mi, hi : Mi → X∗

i with the
condition (∗) for Yi.

AsMi is extending, there exists a direct summandKi ofMi with gi(X∗
i ) ⊆e

Ki. Since gi and hi are monomorphisms and Yi ⊆e X
∗
i , we see f(Yi) ⊆e

Ki ⊕ Mi. Hence (Ki ⊕ Mi) ∩ (Kj ⊕ Mj) = 0 for any i 6= j. As M is
quasi-continuous, there exists a direct summand T of M such that M =

T ⊕K1 ⊕ · · · ⊕Kt ⊕M1 ⊕ · · · ⊕Mt.

Put N = X∗
1 ⊕ · · · ⊕ X∗

t , N = X∗
1 ⊕ · · · ⊕ X∗

t ⊕ N ′′
1 ⊕ · · · ⊕ N ′′

t , M =

K1⊕· · ·⊕Kt⊕T and M =M1⊕· · ·⊕Mt. Then, g = g1+ · · ·+ gt : N →M

and h = h1+· · ·+ht :M → N are monomorphisms that satisfy the condition
(∗) for X1 ⊕ · · · ⊕Xt. Thus M is weakly mono-N -ojective. �

Corollary 3.7. Let N be quasi-continuous and let M = M1 ⊕ · · · ⊕Mt be
extending with the finite internal exchange property. If Mi is weakly mono-
N -ojective for all i ∈ {1, · · · , t}, then M is weakly mono-N -ojective.
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Theorem 3.8. (cf. [8].) Let M1, · · · ,Mn be quasi-continuous modules and
put M =M1 ⊕ · · · ⊕Mn. Then the following conditions are equivalent:

(1) M is extending with the finite internal exchange property,
(2) M is extending and the decomposition M = M1 ⊕ · · · ⊕ Mn is ex-

changeable,
(3) Mi is mono-Mj-ojective and essentially Mj-injective for i 6= j,
(4) Mi is weakly mono-Mj-ojective and essentially Mj-injective for i 6= j.

Proof. By [8, Theorem 2.15], (1) ⇔ (2) holds.
(1) ⇒ (3) holds by Theorems 3.2 and 3.3.
(3) ⇒ (4) is clear.
(4) ⇒ (2) : By Theorem 3.3 and Proposition 3.5, the statement holds for

n = 2.
Assume that the statement holds for n = k (k ≥ 2), and consider the

case n = k + 1 ; M = M1 ⊕ · · · ⊕Mk ⊕Mk+1. Let X be a submodule of
M and put M∗ = M1 ⊕ · · · ⊕Mk, X

∗ = M∗ ∩ X, Xk+1 = Mk+1 ∩X. By
assumption, there exists a decomposition M∗ = T ⊕M ′

1 ⊕ · · · ⊕M ′
k such

that X∗ ⊆e T and M ′
i ⊆ Mi (i = 1, · · · , k). As Mk+1 is extending, there

exists a decomposition Mk+1 = M ′
k+1 ⊕M ′′

k+1 with Xk+1 ⊆e M
′′
k+1. Put

M ′ =M ′
1 ⊕ · · · ⊕M ′

k ⊕M ′
k+1 and X ′ =M ′ ∩X. By Lemma 2.2, we see

X ⊇e X
∗ ⊕Xk+1 ⊕X ′ · · · (i).

Let p1 and p2 be the projections : M ′ → M ′
1 ⊕ · · · ⊕ M ′

k, M
′ → M ′

k+1,
respectively. As (M ′

1 ⊕ · · · ⊕M ′
k)∩X

′ =M ′
k+1 ∩X

′ = 0, the canonical map
f : p1(X

′) → p2(X
′) given by p1(x

′) → p2(x
′) is an isomorphism.

Since M ′
1 ⊕ · · · ⊕ M ′

k and M ′
k+1 are extending with the finite internal

exchange property, there exist decompositions M ′
1 ⊕ · · · ⊕ M ′

k = A ⊕ A′,
M ′

k+1 = B ⊕ B′ with p1(X
′) ⊆e A, p2(X

′) ⊆e B, respectively. By Proposi-
tions 3.5, 3.6, B is weakly mono-A-ojective. Hence there exist an essential
submodule Y of p1(X

′), decompositions A = A1 ⊕ A2, B = B1 ⊕ B2 and
monomorphisms g1 : A1 → B1, g2 : B2 → A2 with the condition (∗) for Y .
Thus we see

〈Y
f
→ f(Y )〉 ⊆e 〈A1

g1
→ B1〉 ⊕ 〈B2

g2
→ A2〉 and 〈Y

f
→ f(Y )〉 ⊆e X

′.

Put Z = T ⊕M ′′
k+1 ⊕ 〈A1

g1
→ B1〉 ⊕ 〈B2

g2
→ A2〉, A = A2 ⊕ A′ and Mk+1 =

B1 ⊕ B′. Let q1 and q2 be the projections : M = Z ⊕ A ⊕ Mk+1 → Z,
M → A⊕Mk+1, respectively. By (i), the natural map

ϕ : q1(X) → q2(X) via ϕ : q1(x) 7→ q2(x)

is a homomorphism with kerϕ ⊆e q1(X).
By Theorem 3.3 (1) ⇒ (5) and Proposition 1.1, A ⊕Mk+1 is essentially

Z-injective and hence there exists a homomorphism ϕ∗ : Z → A ⊕Mk+1
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with ϕ∗|q1(X) = ϕ. Thus we obtain

X = 〈q1(X)
ϕ
→ q2(X)〉 ⊆e 〈Z

ϕ∗

→ A⊕Mk+1〉

and

M = 〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕A⊕Mk+1.

Finally, we show that there exsits a submodule Mi of Mi (i = 1, · · · , k)

such that M = 〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕M1 ⊕ · · · ⊕Mk ⊕Mk+1. By A ⊆ M∗ =
M1 ⊕ · · · ⊕Mk,

M∗ = A⊕ (〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕Mk+1) ∩M
∗ · · · (ii).

Since the decomposition M∗ =M1 ⊕ · · · ⊕Mk is exchangeable, there exists
a submodule Mi of Mi (i = 1, · · · , k) such that

M∗ =M1 ⊕ · · · ⊕Mk ⊕ (〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕Mk+1) ∩M
∗ · · · (iii).

By (ii) and (iii), A = 〈M1 ⊕ · · · ⊕Mk → (〈Z
ϕ∗

→ A⊕Mk+1〉⊕Mk+1)∩M
∗〉.

Thus we see

M = 〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕A⊕Mk+1

= 〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕ 〈M1 ⊕ · · · ⊕Mk → 〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕Mk+1〉

⊕Mk+1

= 〈Z
ϕ∗

→ A⊕Mk+1〉 ⊕M1 ⊕ · · · ⊕Mk ⊕Mk+1.

ThereforeM is extending and the decompositionM =M1⊕· · ·⊕Mk⊕Mk+1

is exchangeable.
�
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