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Abstract. We show that the γ-vector of the order complex of any polytope is the
f -vector of a balanced simplicial complex. This is done by proving this statement
for a subclass of Stanley’s S-shellable CW-spheres which includes all polytopes.
The proof shows that certain parts of the cd-index, when specializing c = 1
and considering the resulted polynomial in d, are the f -polynomials of simplicial
complexes that can be colored with “few” colors. We conjecture that the cd-index
of a regular CW-sphere is itself the flag f -vector of a colored simplicial complex
in a certain sense.

1. Introduction

Let P be an (n−1)-dimensional regular CW-sphere (that is, a regular CW-complex
which is homeomorphic to an (n−1)-dimensional sphere). In face enumeration, one
of the most important combinatorial invariants of P is the cd-index. The cd-index
ΦP (c,d) of P is a non-commutative polynomial in the variables c and d that encodes
the flag f -vector of P . By the result of Stanley [St1] and Karu [Ka], it is known that
the cd-index ΦP (c,d) has non-negative integer coefficients. On the other hand, a
characterization of the possible cd-indices for regular CW-spheres, or other related
families, e.g. Gorenstien* posets, is still beyond reach. In this paper we take a step
in this direction and establish some non-trivial upper bounds, as we detail now.

If we substitute 1 for c in ΦP (c,d), we obtain a polynomial of the form

ΦP (1,d) = δ0 + δ1d+ · · ·+ δ⌊n
2
⌋d

⌊n
2
⌋,

where ⌊n
2
⌋ is the integer part of n

2
, such that each δi is a non-negative integer. In

other words, δi is the sum of coefficients of monomials in ΦP (c,d) for which d
appears i times.

Let ∆ be a (finite abstract) simplicial complex on the vertex set V . We say that
∆ is k-colored if there is a map c : V → [k] = {1, 2, . . . , k}, called a k-coloring map
of ∆, such that if {x, y} is an edge of ∆ then c(x) ̸= c(y). Let fi(∆) denote the
number of elements F ∈ ∆ having cardinality i + 1, where f−1(∆) = 1. The main
result of this paper is the following.

Theorem 1.1. Let P be an (n−1)-dimensional S*-shellable regular CW-sphere, and
let ΦP (1,d) = δ0 + δ1d+ · · ·+ δ⌊n

2
⌋d

⌊n
2
⌋. Then there exists an ⌊n

2
⌋-colored simplicial

complex ∆ such that

δi = fi−1(∆) for i = 0, 1, . . . , ⌊n
2
⌋.
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The precise definition of S*-shellability is given in Section 2. The most important
class of S*-shellable CW-spheres is the class of the boundary complexes of poly-
topes. By the Kruskal-Katona Theorem (see e.g. [St2, II, Theorem 2.1]), the above
theorem gives a certain upper bound on δi in terms of δi−1. Better upper bounds are
given by Frankl-Füredi-Kalai theorem which characterizes the f -vectors of k-colored
complexes [FFK].

The numbers δ0, δ1, δ2, . . . relate to the γ-vector (see Section 4 for the definition)
of the barycentric subdivision (order complex) of P , namely the simplicial complex
whose elements are the chains of nonempty cells in P ordered by inclusion. Indeed,
as an application of Theorem 1.1 we prove the following.

Theorem 1.2. Let P be an (n − 1)-dimensional S*-shellable regular CW-sphere
and let sd(P ) be the barycentric subdivision of P . Then there exists an ⌊n

2
⌋-colored

simplicial complex Γ such that

γi(sd(P )) = fi−1(Γ) for i = 0, 1, . . . , ⌊n
2
⌋.

Recall that an (n− 1)-dimensional simplicial complex is said to be balanced if it
is n-colored. If P is the boundary complex of an arbitrary convex n-dimensional
polytope, then δ⌊n

2
⌋ > 0 and we conclude the following.

Corollary 1.3. Let P be the boundary complex of an n-dimensional polytope. Then
the γ-vector of sd(P ) is the f -vector of a balanced simplicial complex.

The above corollary supports the conjecture of Nevo and Petersen [NP, Conjecture
6.3] which states that the γ-vector of a flag homology sphere is the f -vector of
a balanced simplicial complex. This conjecture was verified for the barycentric
subdivision of simplicial homology spheres (in this case all the cells are simplices)
in [NPT].

It would be natural to ask if the above theorems hold for all regular CW-spheres
(or more generally, Gorenstein* posets). We conjecture a stronger statement on the
cd-index, see Conjecture 4.3.

This paper is organized as follows: in Section 2 we recall some known results
on the cd-index and define S*-shellability, in Section 3 we prove our main theo-
rem, Theorem 1.1, in Section 4 we derive consequences for γ-vectors and present a
conjecture on the cd-index, Conjecture 4.3.

2. cd-index of S*-shellable CW-spheres

In this section we recall some known results on the cd-index.
Let P be a graded poset of rank n+1 with the minimal element 0̂ and the maximal

element 1̂. Let ρ denote the rank function of P . For S ⊂ [n] = {1, 2, . . . , n}, a chain
0̂ = σ0 < σ1 < σ2 < · · · < σk+1 = 1̂ of P is called an S-flag if {ρ(σ1), . . . , ρ(σk)} = S.
Let fS(P ) be the number of S-flags of P . Define hS(P ) by

hS(P ) =
∑
T⊂S

(−1)|S|−|T |fT (P ),

where |X| denotes the cardinality of a finite set X. The vectors (fS(P ) : S ⊂ [n])
and (hS(P ) : S ⊂ [n]) are called the flag f -vector and flag h-vector of P respectively.
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Now we recall the definition of the cd-index. For S ⊂ [n], we define a non-
commutative monomial uS = u1u2 · · ·un in variables a and b by ui = a if i ̸∈ S and
ui = b if i ∈ S. Let

ΨP (a,b) =
∑
S⊂[n]

hS(P )uS.

For a graded poset P , let sd(P ) be the order complex of P − {0̂, 1̂}. Thus

sd(P ) = {{σ1, σ2, . . . , σk} ⊂ P − {0̂, 1̂} : σ1 < σ2 < · · · < σk}.
We say that P is Gorenstein* if the simplicial complex sd(P ) is a homology sphere.
It is known that if P is Gorenstein* then ΨP (a,b) can be written as a polynomial
ΦP (c,d) in c = a+b and d = ab+ba [BK], and this non-commutative polynomial
ΦP (c,d) is called the cd-index of P . Moreover, by the celebrated results due to
Stanley [St1] (for convex polytopes) and Karu [Ka] (for Gorenstein* posets), the
coefficients of ΦP (c,d) are non-negative integers.

Next, we define S*-shellability of regular CW-spheres by slightly modifying the
definition of S-shellability introduced by Stanley [St1, Definition 2.1].

Let P be a regular CW-sphere (a regular CW-complex which is homeomorphic to
a sphere) and F(P ) its face poset. Then the order complex of F(P ) is a triangulation
of a sphere, so the poset F(P )∪ {0̂, 1̂} is Gorenstein*. We define the cd-index of P
by ΦP (c,d) = ΦF(P )∪{0̂,1̂}(c,d). For any cell σ of P , we write σ̄ for the closure of σ.

For an (n − 1)-dimensional regular CW-sphere P , let ΣP be the suspension of P ,
namely, ΣP is the n-dimensional regular CW-sphere obtained from P by attaching
two n-dimensional cells τ1 and τ2 such that ∂τ̄1 = ∂τ̄2 = P . Also, for an (n − 1)-
dimensional regular CW-ball P (a regular CW-complex which is homeomorphic to
an (n − 1)-dimensional ball), let P ′ be the (n − 1)-dimensional regular CW-sphere
which is obtained from P by adding an (n− 1)-dimensional cell τ so that ∂τ̄ = ∂P .

Definition 2.1. Let P be an (n− 1)-dimensional regular CW-sphere. We say that
P is S*-shellable if either P = {∅} or there is an order σ1, σ2, . . . , σr of the facets of
P such that the following conditions hold.

(a) ∂σ̄1 is S*-shellable.
(b) For 1 ≤ i ≤ r − 1, let

Ωi = σ̄1 ∪ σ̄2 ∪ · · · ∪ σ̄i

and for 2 ≤ i ≤ r − 1 let

Γi =
[
∂σ̄i \

(
∂σ̄i ∩ Ωi−1

)]
.

Then both Ωi and Γi are regular CW-balls of dimension (n− 1) and (n− 2)
respectively, and Γ′

i is S*-shellable with the first facet of the shelling being
the facet which is not in Γi.

Remark 2.2. The difference between the above definition and Stanley’s S-shellability
is that S-shellability only assume that P and Γ′

i are Eulerian and assume no con-
ditions on Ωi. However, S*-shellable regular CW-spheres are S-shellable, and the
boundary complex of convex polytopes are S*-shellable by the line shelling [BM].
We leave the verification of this fact to the readers.

The next recursive formula is due to Stanley [St1].
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Lemma 2.3 (Stanley). With the same notation as in Definition 2.1, for i =
1, 2, . . . , r − 2, one has

ΦΩ′
i+1

(c,d) = ΦΩ′
i
(c,d) +

{
ΦΓ′

i+1
(c,d)− ΦΣ(∂Γi+1)(c,d)

}
c+ Φ∂Γi+1

(c,d)d.

Since Ω′
r−1 = P the above formula gives a way to compute the cd-index of P

recursively.
Next, we recall a result of Ehrenborg and Karu proving that the cd-index increases

by taking subdivisions. Let P and Q be regular CW-complexes, and let ϕ : F(P ) →
F(Q) be a poset map. For a subcomplex Q′ = σ1 ∪ · · · ∪ σs ⊂ Q, where each σi is a
cell of Q, we write ϕ−1(Q′) = ϕ−1(σ1) ∪ · · · ∪ ϕ−1(σs).

Following [EK, Definition 2.6], for (n−1)-dimensional regular CW-spheres P and

P̂ , we say that P̂ is a subdivision of P if there is an order preserving surjective poset
map ϕ : F(P̂ ) → F(P ), satisfying that for any cell σ of P , ϕ−1(σ̄) is a homology
ball having the same dimension as σ and ϕ−1(∂σ̄) = ∂(ϕ−1(σ̄)).

The following result was proved in [EK, Theorem 1.5].

Lemma 2.4 (Ehrenborg-Karu). Let P and P̂ be (n− 1)-dimensional regular CW-

spheres. If P̂ is a subdivision of P then one has a coefficientwise inequality ΦP̂ (c,d) ≥
ΦP (c,d)

Back to S*-shellable regular CW-spheres, with the same notation as in Definition
2.1, Ω′

i is a subdivision of Σ(∂Ωi) and ∂Ωi is a subdivision of Σ(∂Γi+1). Indeed, for
the first statement, if τ1 and τ2 are the facets of Σ(∂Ωi) then define ϕ : F(Ω′

i) →
F(Σ(∂Ωi)) by

ϕ(σ) =

 σ, if σ ∈ ∂Ωi,
τ1, if σ is an interior face of Ωi,
τ2, if σ ̸∈ Ωi.

Similarly, for the second statement, if τ1 and τ2 are the facets of Σ(∂Γi+1) then define
ϕ : F(∂Ωi) → F(Σ(∂Γi+1)) by

ϕ(σ) =

 σ, if σ ∈ ∂Γi+1,
τ1, if σ ∈ σ̄i+1\∂Γi+1,
τ2, otherwise.

Since ΦΣP (c,d) = ΦP (c,d)c for any regular CW-sphere P (see [St1, Lemma 1.1]),
Lemma 2.4 shows

Lemma 2.5. With the same notation as in Definition 2.1, for i = 2, 3, . . . , r − 2,
one has ΦΩ′

i
(c,d) ≥ Φ∂Γi+1

(c,d)c2.

3. Proof of the main theorem

In this section, we prove Theorem 1.1.
For a homogeneous cd-polynomial Φ (i.e., a homogeneous polynomial of Z⟨c,d⟩

with deg c = 1 and degd = 2) of degree n, we define Φ0,Φ2, . . . ,Φn by

Φ = Φ0 + Φ2dc
n−2 + Φ3dc

n−3 + · · ·+ Φn−1dc+ Φnd

where Φ0 = αcn for some α ∈ Z and each Φk is a cd-polynomial of degree k − 2 for
k ≥ 2. Also, we write Φ≤k = Φ0 + Φ2dc

n−2 + · · ·+ Φkdc
n−k.
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Definition 3.1.

• A vector (δ0, δ1, . . . , δs) ∈ Zs+1 is said to be k-FFK if there is a k-colored
simplicial complex ∆ such that δi = fi−1(∆) for i = 0, 1, . . . , s. ({∅} is a
0-colored simplicial complex.) A homogeneous cd-polynomial Φ = Φ(c,d)
is said to be k-FFK if, when we write Φ(1,d) = δ0 + δ1d + · · · + δsd

s, the
vector (δ0, δ1, . . . , δs) is k-FFK.

• A homogeneous cd-polynomial Φ of degree n is said to be primitive if the
coefficient of cn in Φ is 1.

• Let Φ be a homogeneous cd-polynomial. A primitive homogeneous cd-
polynomial Ψ is said to be k-good for Φ if Ψ is k-FFK and Φ(1,d) ≥ Ψ(1,d).
Also, we say that a homogeneous cd-polynomial Ψ is k-good for Φ if it is
the sum of primitive homogeneous cd-polynomials that are k-good for Φ.

Next, we recall Frankl-Füredi-Kalai theorem [FFK], which characterizes all possi-

ble f -vectors of colored complexes. Let N(k)
i = {i+ jk : j ∈ Z≥0} for i = 1, 2, . . . , k

and

C(k) = {F ⊂ N : |F ∩ N(k)
i | ≤ 1 for i = 1, 2, . . . , k},

where N is the set of positive integers. Let >rev be the reverse lexicographic order
induced by 1 >rev 2 >rev · · · . Thus, for finite subsets F ⊂ N and G ⊂ N with
|F | = |G|, one has F >rev G if the largest integer in the symmetric difference
(F \G)∪ (G \ F ) is contained in G. A k-colored compressed complex is a simplicial
complex ∆ such that ∆ ⊂ C(k) and that, for every F ∈ ∆ and G ∈ C(k) with
|G| = |F | and G >rev F , one has G ∈ ∆. Since >rev is a total order on the set
of finite subsets of N having the same cardinality, k-colored compressed complex is
uniquely determined by its f -vector.

Theorem 3.2 (Frankl-Füredi-Kalai). A vector (δ0, δ1, . . . , δs) ∈ Zs+1 is k-FFK if
and only if there is a k-colored compressed complex ∆ such that fi−1(∆) = δi for
i = 0, 1, . . . , s.

We will use the following observation, which follows from [NPT, Lemma 3.1]:

Lemma 3.3. If Φ is a k-FFK homogeneous cd-polynomial of degree n, and if
Ψ′ and Ψ′′ are homogeneous cd-polynomials of degree n′ and n′′ respectively, where
n′, n′′ ≤ n− 2, which are k-good for Φ then

Φ +Ψ′dcn−n′−2 and Φ + Ψ′dcn−n′−2 +Ψ′′dcn−n′′−2

are (k + 1)-FFK.

Proof. For a simplicial complex Γ, we write f(Γ,d) = 1 + f0(Γ)d + f1(Γ)d
2 + · · · .

There are k-colored complexes ∆,∆(1), · · · ,∆(m), · · · ,∆(s) such that f(∆,d) =
Φ(1,d),

∑
1≤i≤m f(∆(i),d) = Ψ′(1,d),

∑
m+1≤i≤s f(∆

(i),d) = Ψ′′(1,d) and Φ(1, d) ≥
f(∆(i), d) for all 1 ≤ i ≤ s. By Frankl-Füredi-Kalai theorem, we may assume that
all these complexes are k-colored compressed. Then, since Φ(1,d) ≥ Ψ′(1,d) and
Φ(1,d) ≥ Ψ′′(1,d), each ∆(i) is a subcomplex of ∆. For i = 1, 2, . . . , s, let

Γ(i) = ∆
∪{

i∪
j=1

{F ∪ {vj} : F ∈ ∆(j)}

}
,
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where v1, . . . , vs are new vertices. Since each ∆(j) is a subcomplex of ∆, Γ(i) is
a simplicial complex. Also, f(Γ(m),d) = (Φ + Ψ′dcn−n′−2)(1,d) and f(Γ(s),d) =
(Φ + Ψ′dcn−n′−2 + Ψ′′dcn−n′′−2)(1,d). We claim that each Γ(i) is (k + 1)-colored.
Let V be the vertex set of ∆ and c : V → [k] a k-coloring map of ∆. Then the map
ĉ : V ∪ {v1, . . . , vi} → [k + 1] defined by ĉ(x) = c(x) if x ∈ V and ĉ(x) = k + 1 if
x ̸∈ V is a (k + 1)-coloring map of Γ(i). �

Let P be an (n−1)-dimensional S*-shellable regular CW-sphere with the shelling
σ1, . . . , σr. Keeping the notation in Definition 2.1, to simplify notations, we use the
following symbols.

Φ(i) = Φ(i)(c,d) = ΦΩ′
i
(c,d)

Φ = ΦP (c,d) = Φ(r−1)

Ψ(i) = ΦΓ′
i+1

(c,d)− ΦΣ(∂Γi+1)(c,d)

Ψ =
r−2∑
i=1

Ψ(i)

Π = Φ− Φ(1).

Thus Stanley’s recursive formula, Lemma 2.3, says

Φ(i+1) = Φ(i) +Ψ(i)c+ Φ∂Γi+1
(c,d)d

and

Π = Ψc+
r−2∑
i=1

Φ∂Γi+1
(c,d)d.

The last part of the following proposition is a restatement of Theorem 1.1.

Proposition 3.4. With notation as above, the following holds.

(1) For 2 ≤ k ≤ n, Ψ
(i)
k is ⌊k

2
− 1⌋-good for Φ

(i)
≤k−2 +Ψ

(i)
≤k−2c.

(2) For 2 ≤ k ≤ n, Πk is ⌊k
2
− 1⌋-good for Φ

(1)
≤k−2 +Π≤k−2.

(3) For 2 ≤ k ≤ n, Φk is ⌊k
2
− 1⌋-good for Φ≤k−2.

(4) For 0 ≤ k ≤ n, Φ≤k is ⌊k
2
⌋-FFK. In particular, the cd-index of P is ⌊n

2
⌋-

FFK.

Proof. The proof is by induction on dimension, where all statements clearly hold for
n = 0, 1. Suppose that all statements are true up to dimension n − 2. To simplify
notations, for a regular CW-sphere Q, we write ΦQ = ΦQ(c,d).

Proof of (1). By applying the induction hypothesis to Γ′
i+1 (use statement(2)),

each Ψ
(i)
k is ⌊k

2
− 1⌋-good for (ΦΣ(∂Γi+1))

(i)
≤k−2+Ψ

(i)
≤k−2. Thus, Ψ

(i)
k is ⌊k

2
− 1⌋-good for

(ΦΣ(∂Γi+1))
(i)
≤k−2c+Ψ

(i)
≤k−2c. By Lemma 2.5,

ΦΣ(∂Γi+1)c = Φ∂Γi+1
c2 ≤ ΦΩ′

i
= Φ(i).

Since (Υc)j = Υj for any homogeneous cd-polynomial Υ, Ψ
(i)
k is ⌊k

2
− 1⌋-good for

Φ
(i)
≤k−2 +Ψ

(i)
≤k−2c.
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Proof of (2). By the definition of Π,

Πk =
r−2∑
i=1

Ψ
(i)
k for k < n

and

Πn =
r−2∑
i=1

Φ∂Γi+1
.

By (1), each Ψ
(i)
k is ⌊k

2
− 1⌋-good for Φ

(i)
≤k−2 +Ψ

(i)
≤k−2c. Then since

Φ
(i)
≤k−2 +Ψ

(i)
≤k−2c ≤ Φ≤k−2 = Φ

(1)
≤k−2 +Π≤k−2,

Πk is ⌊k
2
−1⌋-good for Φ

(1)
≤k−2+Π≤k−2 for k < n. Also, each Φ∂Γi+1

is ⌊n
2
−1⌋-FFK by

the induction hypothesis (use (4)), and Φ∂Γi+1
c2 ≤ Φ(i) by Lemma 2.5. The latter

condition clearly says

Φ∂Γi+1
c2 ≤ Φ

(i)
≤n−2 ≤ Φ≤n−2 = Φ

(1)
≤n−2 +Π≤n−2.

Hence Πn is ⌊n
2
− 1⌋-good for Φ

(1)
≤n−2 +Π≤n−2.

Proof of (3). Observe that since Φ(1) = Φ∂σ̄1c,

Φk = Φ
(1)
k +Ψk for k < n

and

Φn = Πn.

We already proved that Φn = Πn is ⌊n
2
− 1⌋-good for Φ≤n−2 in the proof of (2).

Suppose k < n. Since Φ(1) = Φ∂σ̄1c, by the induction hypothesis (use (3)), Φ
(1)
k is

⌊k
2
− 1⌋-good for Φ

(1)
≤k−2. Since Φ

(1)
≤k−2 ≤ Φ≤k−2 and since we already proved that

Ψk = Πk is ⌊k
2
− 1⌋-good for Φ≤k−2 in the proof of (2), Φk is ⌊k

2
− 1⌋-good for Φ≤k−2.

Proof of (4). This statement easily follows from (3). For k = 0, 1, the statement
is obvious (as Φ≤0 = Φ≤1 = cn). Suppose that Φ≤2m+1 is m-FFK, where m ∈ Z≥0.
Then both Φ2m+2 and Φ2m+3 are m-good for Φ≤2m+1 by (3), and therefore Φ≤2m+2

and Φ≤2m+3 are (m+ 1)-FFK by Lemma 3.3. �

4. γ-vectors of polytopes and a conjecture on the cd-index

γ-vectors and the cd-index. Let ∆ be an (n−1)-dimensional simplicial complex.
Then the h-vector h(∆) = (h0, h1, . . . , hn) of ∆ is defined by the relation

n∑
i=0

hix
n−i =

n∑
i=0

fi−1(∆)(x− 1)n−i.

If ∆ is a simplicial sphere (that is, a triangulation of a sphere), or more generally a
homology sphere, then hi = hn−i for all i by the Dehn-Sommerville equations, and
in this case the γ-vector (γ0, γ1, . . . , γ⌊n

2
⌋) of ∆ is defined by the relation

n∑
i=0

hix
i =

⌊n
2
⌋∑

i=0

γix
i(1 + x)n−2i.
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It was conjectured by Gal [Ga] that if ∆ is a flag homology sphere then its γ-vector
is non-negative. Recently Nevo and Peterson [NP] further conjectured that the
γ-vector of a flag homology sphere is the f -vector of a balanced simplicial com-
plex. These conjectures are open in general, the latter conjecture was verified for
barycentric subdivisions of simplicial homology spheres [NPT], and Gal’s conjecture
is known to be true for barycentric subdivisions of regular CW-spheres by the fol-
lowing fact, combined with Karu’s result on the nonnegativity of the cd-index for
Gorenstien* posets:

Let P be an (n− 1)-dimensional regular CW-sphere. The barycentric subdivision
sd(P ) of P is the order complex of F(P ). Let (h0, h1, . . . , hn) and (γ0, γ1, . . . , γ⌊n

2
⌋)

be the h-vector and γ-vector of sd(P ), respectively. Then it is easy to see that
hi =

∑
S⊂[n], |S|=i hS(P ). Thus if ΦP (1,d) = δ0 + δ1d + δ2d

2 + · · · + δ⌊n
2
⌋d

⌊n
2
⌋, then

for all i ≥ 0,
γi = 2iδi.

Since δi is non-negative, we conclude that γi is also non-negative.
The next simple statement, combined with Theorem 1.1, proves Theorem 1.2.

Lemma 4.1. With the same notation as above, if (δ0, δ1, . . . , δ⌊n
2
⌋) is k-FFK then

(γ0, γ1, . . . , γ⌊n
2
⌋) is also k-FFK.

Proof. Let ∆ be a k-colored simplicial complex on the vertex set V with fi−1(∆) = δi
for all i ≥ 0 and let c : V → [k] be a k-coloring map of ∆. Consider a collection of
subsets of W = {xv : v ∈ V } ∪ {yv : v ∈ V }

∆̂ = {xG ∪ yF\G : F ∈ ∆, G ⊂ F},

where xH = {xv : v ∈ H} and yH = {yv : v ∈ H} for any H ⊂ V . Then ∆̂ is a

simplicial complex with fi−1(∆̂) = 2ifi−1(∆) = γi for all i. The map ĉ : W → [k],

ĉ(xv) = ĉ(yv) = c(v), shows that ∆̂ is k-colored. �
Proof of Corollary 1.3. By Theorem 1.2, in order to prove Corollary 1.3 it is enough
to show that δ⌊n

2
⌋(P ) > 0 where P is the boundary complex of an n-polytope.

Billera and Ehrenborg showed that the cd-index of n-polytopes is minimized (co-
efficientwise) by the n-simplex, denoted σn [BE]. Thus, it is enough to verify that
δ⌊n

2
⌋(σ

n) > 0. It is known that all the cd-coefficients of σn are positive (e.g., by
using the Ehrenborg-Readdy formula for the cd-index of a pyramid over a polytope
[ER, Theorem 5.2]). �

A conjecture on the cd-index. It would be natural to ask if Theorems 1.1 and 1.2
hold for all regular CW-spheres (or all Gorenstein* posets). We phrase a conjecture
on the cd-index, that, if true, immediately implies Theorem 1.1, as well as the entire
Proposition 3.4(4).

For an arbitrary cd-monomial w = cs0dcs1d · · ·dcsk of degree n (where 0 ≤ si for
all i and s0 + · · ·+ sk + 2k = n), let Fw be the following subset of [n− 1]:

Fw = {s0 + 1, s0 + s1 + 3, s0 + s1 + s2 + 5, . . . , s0 + · · ·+ sk−1 + 2k − 1}.
Note that Fw contains no two consecutive numbers. For example, Fcn = ∅, Fdk =
{1, 3, . . . , 2k−1} and Fcdk = {2, 4, . . . , 2k}. Let A be the set of subsets of [n−1] that
have no two consecutive numbers, and let B be the set of cd-monomials of degree n.
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Then w 7→ Fw is a bijection from B to A (as k = |Fw| and sk = n−2k−sk−1−· · ·−s0
we see that the inverse map exists).

Let ∆ be a k-colored simplicial complex with the vertex set V and a k-coloring
map c : V → [k]. For any subset S ⊂ [k], let fS(∆) = |{F ∈ ∆ : c(F ) = S}|. The
vector (fS(∆) : S ⊂ [k]) is called the flag f -vector of ∆. Note that the flag f -vector
of a poset P is equal to the flag f -vector of sd(P ) by the coloring map defined by
the rank function.

Definition 4.2. Let Φ =
∑

w aww be a homogeneous cd-polynomial of degree n
with w the cd-monomials and aw ∈ Z. For S ⊂ [n− 1], we define

αS(Φ) =

{
aw, if S = Fw for some w ∈ B
0, if S ̸∈ A.

Conjecture 4.3. Let P be an (n − 1)-dimensional regular CW-sphere (or more
generally, Gorenstein* poset of rank n + 1). Then there exists an (n − 1)-colored
simplicial complex ∆ such that fS(∆) = αS(ΦP ) for all S ⊂ [n− 1].

Thus the above conjecture states that the cd-index is itself the flag f -vector of
a colored complex. If the above conjecture is true then ΦP (1,d) = 1 + f0(∆)d +
· · ·+ f⌊n

2
⌋−1(∆)d⌊n

2
⌋. Although ∆ is (n− 1)-colored, this fact implies Theorem 1.1.

Indeed, since fS(∆) = αS(ΦP ) = 0 if S has consecutive numbers, if c : V → [n−1] is

an (n− 1)-coloring map of ∆ then the map ĉ : V → [⌊n
2
⌋] defined by ĉ(v) = ⌊ c(v)+1

2
⌋

is an ⌊n
2
⌋-coloring map of ∆.

The next result supports the conjecture in low dimension.

Proposition 4.4. Let P be a Gorenstein* poset of rank n+1. For all i, j ∈ [n− 1],

α{i}(ΦP )α{j}(ΦP ) ≥ α{i,j}(ΦP ).

Proof. Let (hS(P ) : S ⊂ [n]) be the flag h-vector of P . Let {i, i+ j} ⊂ [n− 1] with
j ≥ 2. What we must prove is α{i}(ΦP )α{i+j}(ΦP ) ≥ α{i,i+j}(ΦP ).

Observe that

h[i]∪{i+j+1,...,n}(P ) = α{i,i+j}(ΦP ) + α{i}(ΦP ) + α{i+j}(ΦP ) + α∅(ΦP ),

h[i](P ) = α{i}(ΦP ) + α∅(ΦP ),

h{i+j+1,...,n}(P ) = α{i+j}(ΦP ) + α∅(ΦP )

(as h[i]∪{i+j+1,...,n}(P ) is the coefficient of biajbn−i−j in ΨP (a,b), etc.). Since α∅ = 1,
it is enough to prove that

h[i](P )h{i+j+1,...,n}(P ) ≥ h[i]∪{i+j+1,...,n}(P ).

It follows from [St2, III, Theorem 4.6] that there is an n-colored simplicial complex
∆ with a coloring map c : V → [n] such that fS(∆) = hS(P ) for all S ⊂ [n], where
V is the vertex set of ∆. Let

∆S = {F ∈ ∆ : c(F ) = S}
for S ⊂ [n]. Then it is clear that

∆[i]∪{i+j+1,...,n} ⊂ {F ∪G : F ∈ ∆[i], G ∈ ∆{i+j+1,...,n}},
which implies the desired inequality. �

It is straightforward that the above proposition proves the next statement.
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Corollary 4.5. Conjecture 4.3 holds for n ≤ 5.

Non-existence of d-polynomials. For a Gorenstein* poset P , we call ΦP (1,d) the
d-polynomial of P . It is a challenging problem to classify all possible d-polynomials
of Gorenstein* posets, which give a complete characterization of all possible face
vectors of Gorenstein* order complexes since knowing d-polynomials is equivalent
to knowing γ-vectors. The problem is open even for the 3-dimensional case. To
study this problem, by virtue of Theorem 1.1, it is natural to ask which FFK vector
is realizable as the d-polynomial of a Gorenstein* poset. We show that not all
⌊n
2
⌋-FFK vectors are realizable as the d-polynomial of a Gorenstein* poset of rank

n+ 1.
First recall that the ordinal sum Q1 +Q2 of two disjoint posets Q1 and Q2 is the

poset whose elements are the union of elements in Q1 and Q2 and whose relations
are those in Q1 union those in Q2 union all q1 < q2 where q1 ∈ Q1 and q2 ∈ Q2.
For Gorenstein* posets Q1 and Q2, the poset Q1 ∗Q2 = (Q1 − {1̂}) + (Q2 − {0̂}) is
called the join of Q1 and Q2, and ΣQ1 = Q1 ∗ B2, where B2 is a Boolean algebra
of rank 2, is called the suspension of Q1. By [St1, Lemma 1.1], ΦQ1∗Q2(c,d) =
ΦQ1(c,d) · ΦQ2(c,d).

Proposition 4.6. Let P be a Gorenstein* poset of rank 5, and let

ΦP (c,d) = c4 + α{1}dc
2 + α{2}cdc+ α{3}c

2d+ α{1,3}d
2

be its cd-index. Suppose α{2} = 0. Then there are Gorenstein* posets P1 and P2 of
rank 3 such that P = P1 ∗ P2. In particular, α{1,3} = α{1}α{3}.

Proof. Let r denote the rank function r : P → {0, 1, . . . , 5} (r(0̂) = 0, r(1̂) = 5). Let
P1 := {F ∈ P : r(F ) ≤ 2} and P2 := {F ∈ P : r(F ) ≥ 3}.

As P is Gorenstien*, to show that P = P1+P2 it is enough to show that P2∪{0̂}
is Gorenstien* (as a Gorenstien* poset contains no proper subposet which is Goren-
stien* of the same rank, and each interval [F, 1̂] with r(F ) = 2 in P is Gorenstien*).
For this, it is enough to show that any rank 4 element in P covers exactly two rank
3 elements in P . Indeed, this guarantees that the dual poset to P2, denoted P ∗

2 , is
the face poset of a union of CW 1-spheres, and as P is Gorenstien* so is its dual P ∗,
hence P ∗

2 is Cohen-Macaulay since P ∗
2 is a rank selected poset [St2, III, Theorem

4.5], which implies that P ∗
2 is the face poset of one CW 1-sphere, i.e. P2 ∪ {0̂} is

Gorenstien*.
Let F be a rank 4 element of P . Then P is a subdivision of Σ([0̂, F ]) (Recalling

[EK, Definition 2.6], this is shown by the map ϕ : P → Σ([0̂, F ]), ϕ(σ) = σ if σ < F ,
ϕ(σ) = σ1 if σ and F are incomparable, and ϕ(F ) = σ2, where σ1, σ2 are the rank 4
elements in Σ([0̂, F ])). Thus, by Lemma 2.4, the coefficient of cdc in the cd-index
of Σ([0̂, F ]) is zero, hence the coefficient of the monomial cd in the cd-index of [0̂, F ]
is zero.

This fact implies, when expanding the cd-index of [0̂, F ] in terms of a,b, that
h{3}([0̂, F ]) equals the coefficient of c3, namely h{3}([0̂, F ]) = 1. Switching to the

flag f -vector of [0̂, F ] we get f{3}([0̂, F ]) = h∅([0̂, F ]) + h{3}([0̂, F ]) = 1 + 1 = 2.
Thus, F covers exactly two rank 3 elements in P . �
Example 4.7. Consider the 2-FFK vector (1, 6, 7). We claim that ΦP (1,d) ̸=
1+6d+7d2 for all Gorenstein* poset P of rank 5. Indeed, if ΦP (1,d) = 1+6d+7d2,
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then α{1,3} = 7. Then α{1} + α{3} = 6 and α{2} = 0 by Proposition 4.4, which
contradicts Proposition 4.6.

A similar argument shows that (1, 2a, a2 − 2), where a ≥ 3, is 2-FFK, but not
realizable as the d-polynomial of a Gorenstein* poset of rank 5.
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41, Birkhäuser, Boston, 1996.

Satoshi Murai, Department of Mathematical Science, Faculty of Science, Yam-
aguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan

E-mail address: murai@yamaguchi-u.ac.jp

Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva
84105, Israel

E-mail address: nevoe@math.bgu.ac.il


