# グラウンドアンカーのグラウト周面摩擦に関する実験的研究 - 自由長部周面摩擦が締付け効果に及ぼす影響-

Experimental study of the skin friction of grout in ground anchors : Impact of the skin friction of the free length portion on the tightening effects

平成 22年 9月

## 片山 直樹

## 山口大学大学院理工学研究科

## 目 次

## 第1章 序論

| 1. | 1  | 研究の背景と目的 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 1 |
|----|----|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1. | 2  | 本論文の構成・・ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 2 |
| 第1 | 章の | )参考文献    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

## 第2章 アンカー概論

| 2. | 1  | アンカー技術の変遷・・・・・・・・・・・・・・・・・・・・・・・・・ 5   |
|----|----|----------------------------------------|
| 2. | 2  | アンカーの基本構造と支持機構・・・・・・・・・・・・・・・・・・・・・・ 9 |
| 2. | 3  | 斜面対策としてのアンカー・・・・・・・・・・・・・・・・・・・・18     |
| 2. | 4  | アンカーの設計概要・・・・・・・・・・・・・・・・・・・・・・・・・・22  |
| 2. | 5  | アンカーの施工概要・・・・・・・・・・・・・・・・・・・・・・・・・・27  |
| 2. | 6  | アンカーにおける課題・・・・・・・・・・・・・・・・・・・・・・30     |
| 第2 | 章の | 参考文献                                   |

## 第3章 加圧注入の効果

| 3 | • | 1 | 1  | 既 | 説・ | •   | •  | • | • | • | •                      | •  | •  | •  | •  | • | •  | •  | •  | • | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 33 |
|---|---|---|----|---|----|-----|----|---|---|---|------------------------|----|----|----|----|---|----|----|----|---|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 3 | • | 2 |    | E | デル | 実   | 験  | • | • | • | •                      | •  | •  | •  | •  | • | •  | •  | •  | • | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 34 |
|   | 3 |   | 2. |   | 1  | モ   | デ  | ル | 実 | 験 | $\mathcal{O}^{\prime}$ | 斑  | 要  | •  | •  | • | •  | •  | •  | • | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 34 |
|   | 3 |   | 2. |   | 2  | モ   | デ  | ル | 実 | 験 | の                      | 方衫 | 去  | •  | •  | • | •  | •  | •  | • | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 36 |
|   | 3 |   | 2. |   | 3  | モ   | デ  | ル | 実 | 験 | の;                     | 結果 | 杲  | •  | •  | • | •  | •  | •  | • | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 39 |
| 3 |   | 3 |    | 考 | 察・ | •   | •  | • | • | • | •                      | •  | •  | •  | •  | • | •  | •  | •  | • | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 46 |
|   | 3 |   | 3. |   | 1  | 加   | 圧  | 注 | 入 | に | よ                      | る  | グ  | ラ  | ウ  | ト | の  | 注  | 入  | 過 | 程  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 46 |
|   | 3 |   | 3. |   | 2  | 加   | I圧 | 注 | 入 | に | よ                      | る  | グ  | ラ  | ウ  | ト | の  | 品  | 質  | 向 | Ŀ. | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 47 |
|   | 3 |   | 3. |   | 3  | 加   | 圧  | 注 | 入 | に | よ                      | 3  | τţ | 曽力 | 加. | メ | 力: | =; | ズ. | 4 | の  | 反訂 | ź |   |   |   | • | • | • | • | • | • | • | • | • | • | • | 47 |
| 3 | • | 4 |    | ŧ | とめ | • • | •  | • | • | • | •                      | •  | •  | •  | •  | • | •  | •  | •  | • | •  | •  |   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 50 |
| 第 | 3 | 章 | の  | 参 | 考文 | 勈   | 2  |   |   |   |                        |    |    |    |    |   |    |    |    |   |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |

## 第4章 アンカー実大実験

| 4 | 1   |   | 概詞 | 兑・      | •  | •  | • • | •  | •         | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 53 |
|---|-----|---|----|---------|----|----|-----|----|-----------|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 4 | 2   | 2 | 7: | ンナ      | 1- | 実  | 大≇  | 三彫 | <b>炙・</b> | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 55 |
|   | 4.  | 2 | •  | 1       | 7  | ン  | 力-  | -実 | ミナ        | 、実 | 験 | の | 概 | 要 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 55 |
|   | 4.  | 2 |    | 2       | 7  | ン  | 力-  | -実 | ミ大        | 、実 | 験 | の | 方 | 法 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 55 |
| 4 | . 3 | : | 実駒 | <b></b> | 課  | ع: | 考察  | ₹. | •         | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 59 |
|   | 4.  | 3 | •  | 1       | 地  | 盤  | 内音  | ߨ  | 50        | トず | み | 分 | 布 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 59 |

| 4  | • | 3.  | 2  | 5  | テン  | ド | ン  | 拘 | 束  | 具  | 鮋 | 力 | 分 | 布 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 63 |
|----|---|-----|----|----|-----|---|----|---|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 4  |   | 3.  | 3  | /  | グラ  | ウ | トI | 内 | の) | Ξŧ | 縮 | 力 | 分 | 布 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 63 |
| 4. | 4 | 0.0 | まと | め  | ••• | • | •  | • | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 65 |
| 第4 | 章 | の   | 家考 | 文都 | 猒   |   |    |   |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |

## 第5章 アンカー模型実験

| 5.1 | 概説・  | ••• | ••• | •  | ••• | •  | •             | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 68 |
|-----|------|-----|-----|----|-----|----|---------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------|
| 5.2 | アンカ  | ー模  | 型実  | 眽  | ••• | •  | •             | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 69 |
| 5.  | 2. 1 | アン  | カー  | -模 | 型実  | ミ験 | の             | 概 | 要 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 69 |
| 5.  | 2.2  | アン  | カー  | -模 | 型実  | ミ験 | $\mathcal{O}$ | 方 | 法 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 71 |
| 5.3 | 実験結  | 課と  | 考察  | ₹. | ••• | •  | •             | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 73 |
| 5.  | 3. 1 | 地盤  | 内応  | 动  | 分布  | ī. | •             | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 73 |
| 5.  | 3.2  | グラ  | ウト  | 、内 | の応  | 氻  | 分             | 布 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 79 |
| 5.4 | まとめ  |     | • • | •  | ••• | •  | •             | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • 81 |
| 第5章 | の参考文 | 献   |     |    |     |    |               |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |      |

## 第6章 数值実験

| 6. | 1  |   | 概 | 説・ | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 84 |
|----|----|---|---|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 6. | 2  |   | 数 | 値実 | 験  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 85 |
| (  | З. | 2 |   | 1  | 数  | 値  | 実 | 験 | の | 概 | 要 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 85 |
| (  | 3. | 2 |   | 2  | 再  | 現  | 解 | 析 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 85 |
| 6. | 3  |   | 実 | 験結 | 課  | :と | 考 | 察 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 89 |
| (  | 5. | 3 |   | 1  | 綿  | 付  | け | 力 | 伝 | 達 | 状 | 況 | の | 比 | 較 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 89 |
| (  | 5. | 3 |   | 2  | 自  | 由  | 長 | 部 | 地 | 盤 | の | 強 | 度 | の | 影 | 響 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 93 |
| 6. | 4  |   | ま | とめ | •  | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 96 |
| 第( | 5章 | の | 参 | 考文 | (献 | 1  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
|    |    |   |   |    |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |

| 謝辞 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 101 |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|

第7章 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・98

## 本論文における主要な記号一覧

#### (第2章)

| Fs     | :斜面安全率                         |
|--------|--------------------------------|
| с      | : すべり面粘着力 (kN/m <sup>2</sup> ) |
| l      | :分割片で切られたすべり面弧長(m)             |
| W      | :分割片の重量(kN/m)                  |
| и      | :間隙水圧(kN/m <sup>2</sup> )      |
| b      | :分割片の幅(m)                      |
| α      | :分割片で切られたすべり面角(度)              |
| $\phi$ | : すべり面せん断抵抗角(度)                |
| Т      | :アンカーカ(kN/m)                   |
| θ      | :アンカー傾角(度)                     |
| Tr     | :必要アンカー力(kN/m)                 |
| Fsp    | :計画安全率                         |
| Td     | :設計アンカーカ(kN)                   |

- *d*<sub>A</sub> :アンカー体径 (m)
- τ :周面摩擦抵抗(MN/m<sup>2</sup>)
- fs : アンカー自体の安全率

#### (第3章)

- $au_f$ :一面せん断試験における定圧せん断強さ(=摩擦応力)( $kN/m^2$ )
- $\sigma_v$ :一面せん断試験における垂直応力( $kN/m^2$ )
- $q_{\mu}$  :一軸圧縮強さ (MN/m<sup>2</sup>)
- $\rho_t$  : 湿潤密度 (g/cm<sup>3</sup>)
- w :含水比(%)
- c : 粘着力 (kN/m<sup>2</sup>)

(第4章)

- τ<sub>4</sub>:アンカー体周面摩擦抵抗
- $au_F$ :アンカー自由長部周面摩擦抵抗
- $T_{ug}$ :アンカーの極限引抜き力 (kN)
- *T<sub>vs</sub>* : テンドンの降伏点荷重(kN)
- *ε*<sub>x</sub>: :地盤内ひずみの水平成分
- ε, :地盤内ひずみの鉛直成分

(第5章)

- *E*<sub>50</sub> : 模型実験における地盤材の(割線)弾性係数(MN/m<sup>2</sup>)
- $\sigma_A$ :模型実験におけるアンカー体部のグラウト内応力(MN/m<sup>2</sup>)
- $\sigma_F$ :模型実験における自由長部のグラウト内応力 (MN/m<sup>2</sup>)
- *R<sub>F</sub>*:模型実験におけるアンカー周面摩擦の負担割合

(第6章)

- *E* : 数値実験における弾性係数(MN/m<sup>2</sup>)
- $\gamma_t$ : 単位体積重量 (kN/m<sup>3</sup>)
- v :数値実験におけるポアソン比
- K<sub>0</sub> : 数値実験における静止土圧係数 (MN/m<sup>2</sup>)
- $\sigma_{Z}$  :地盤内鉛直応力 ( $kN/m^{2}$ )
- $\tau_{XZ}$ :数値実験におけるアンカー周面要素のせん断応力 ( $kN/m^2$ )

I,

## 要旨

グラウンドアンカー(以下,アンカーという)は、地すべりや斜面崩壊により不安定化 した自然斜面や切土法面などの地盤自体の安定化や、地盤の上部または内部に建設される 構造物の安定化を図る目的で用いられ、我が国において導入されて以来、既に 50 年余りが 経過している.

地すべり対策におけるアンカーは、他の地すべり抑止工では得られない長所をもつため、 地すべり対策工として多くの設計・施工実績がある.しかしながら、アンカーが施工され た地すべり斜面がどのような挙動を示し、アンカーやすべり面にどのような力が作用する のかなど、未解明な部分が多く残されている状態であり、現状ではこのような不確定要素 を多く抱えたまま現場での工事が先行している状況といえる.

このように未解明部分が多いアンカーではあるが、最近では、有限要素法などの応力解 析を利用したアンカーの設計方法が試みられつつあり、適切な設計手法の確立が待たれる.

ここでアンカーの設計上,重要な要素として受圧板からの圧縮応力,すなわち締付け力 の伝達がある.これは,アンカーの2大効果である締付け効果を見込む上で重要な要素で あるが,実際にすべり面に対しどの程度作用しているかは明らかになっていない.

それに加え、アンカー自由長部にはグラウトの充填注入がなされるため、自由長部周面 においても摩擦が発現することは明らかである.このため、アンカー緊張時には自由長部 周面摩擦を介し、その周辺地盤内にはアンカーの緊張方向へ向かう(上向きの)応力が伝 達されていることが考えられ、その応力と受圧板からの締付け力が相殺する可能性が考え られる.その結果、締付け効果を発揮する上で必要な締付け力が、すべり面まで到達する ことを阻害している可能性が指摘される.

本研究は以上のことを背景とし、アンカーのグラウト周面摩擦に関する実験的な研究に より、アンカー体における加圧注入の効果を明らかにするとともに、アンカー自由長部の 周面摩擦の存在が受圧板からの締付け力へ及ぼす影響を評価したものである.

第1章および第2章では、研究の背景と目的とアンカーに関する基本的な事項をまとめ るとともに、アンカーにおける課題を示し、本論文の導入部とした.

第3章では,アンカー体になされるグラウトの加圧注入の効果について,一定の評価を

与えるために、均質な地盤を想定したモデル実験を行った.その結果、加圧注入ではグラ ウトの浸透過程は生じえないことが明らかとなったものの、その一方で、加圧注入による グラウトと地盤材との摩擦応力の増大が認められた.これに加え、加圧注入によるグラウ トの脱水が生じ、その影響でグラウトが高密度化および高強度化したことを確認したこと から、このことが加圧注入による摩擦抵抗増加の主要因であると結論付けた.

第4章では、自由長部周面摩擦の影響が受圧板の締付け力に及ぼす影響を評価するため に、アンカーの実大実験を行った.実験では、自由長部の充填注入を行った場合と行わな かった場合の2種類のアンカーを打設し、アンカー緊張時におけるテンドン拘束具、グラ ウト、地盤内部のひずみの測定を行った.その結果、自由長部周面摩擦が存在するアンカ ーについては、相対的に締付け力が低い傾向となることが示され、その要因としては、自 由長部周面摩擦を介して自由長部地盤に伝達される引張応力により、受圧板から伝達され る締付け力が相殺される影響である可能性を指摘した.

第5章では、第4章の結果を受け、より均質な条件下での実験により検証する必要があると考え、人工的な地盤に小規模なアンカーを打設した模型アンカーによる実験を行った. アンカー模型実験では、アンカーを無限大の直径をもつものとした 2 次元平面ひずみ問題 と考え、鋼製の実験土槽を用い、打設した模型アンカーの緊張時における地盤およびグラ ウトのひずみの測定し、比較検討を行った.その結果、自由長部周面摩擦が存在すること で、それを介してアンカー緊張力が周辺地盤を引上げようとする上向きの応力として伝達 され、この力と受圧板からの締付け力が相殺することで、締付け力がアンカー体設置地盤 との境界部(=すべり面)まで伝達することを阻害する可能性を指摘した.

第6章では、これまでの結果を受け、アンカーが施工された地盤内部には、受圧板、ア ンカー体、自由長部の各部から伝達される応力が相互に影響し、複雑な応力伝達がなされ るものと考えられたため、アンカー緊張時の地盤内応力状況をより詳細に把握することを 目的とし、有限要素法による数値実験を行った.数値実験として、まず模型実験について 再現解析を行い、アンカー緊張時の地盤内応力状態の比較を行った.また、地すべりのよ うに自由長部地盤がより軟質な場合を想定したモデルについても有限要素解析を行い、自 由長部周面摩擦の影響を考察した.

その結果,自由長部周面摩擦が存在することで,アンカー緊張時にはその周辺地盤に引 張応力が作用し,その影響により受圧板からの締付け力が深部へ伝達され難い状態となる ことが明らかとなった.また,自由長部周面摩擦がある場合,自由長部地盤の強度が低い ほど,深部への締付け力の伝達割合が低くなる傾向が示された.

第7章では、本研究における各種実験結果を総括し、自由長部周面摩擦が存在すること により、従来考えられていたよりもアンカーの締付け効果が低く見込まれるものと結論付 けた.

•

## Abstract

Ground anchors ("anchor") are used to stabilize grounds in the natural slopes or the cut earth slopes that were caused by landslides or slope failures, and to stabilize structures built on, or beneath the ground. The anchor has been used in Japan over 50 years, since its inception.

The anchor has advantages which other measures against landslides do not have and it has been designed or used for measures against landslides. Many details have not been discovered such as; how landslide slopes where the anchor is set behave and what force works on the anchor or the sliding surface. Currently, the anchor has been used on sites while these uncertainties have remained.

Although there are many undiscovered details in anchors, designing the anchor using stress analysis such as finite element methods, has been ongoing, and we have been waiting for improved designs and methods for more effective anchor use to be realized.

Compression stresses from a diaphragm, or transmission of tightening forces are important elements to designing the anchor. This is an important element in obtaining sufficient tightening, which is one of the two major purposes of the anchor; however, it has not been identified how the tightening effects work on the sliding surface.

In addition, grout is injected into the free length portion of the anchor and it is apparent that friction emerges on the skin of the free length portion. When tension is applied to the anchor, (upward) stress, toward the anchor tension, is probably transmitted into the surrounding areas via the skin friction of the free length portion, and the stress and tightening forces from the diaphragm are likely to be offset. Accordingly, it is possible that the tightening force required to exercise the tightening effect is obstructed from reaching to the sliding surface.

Using experimental study on the skin friction of the anchor grout, this study demonstrates the effects of pressurized injection of grout into the anchor body and evaluates the impact of the skin friction of the anchor free length portion on the tightening force from the diaphragm.

Chapter 1 and 2 summarize the background and purpose of this study and the basic components of the anchor, as well as presenting problems on the anchor. These are the introductory sections of this article.

In Chapter 3, model experiments were conducted where the homogeneous grounds were assumed in order to give a specific evaluation to the effects of pressurized injection of grout into the anchor body. The experiment demonstrated that grout did not penetrate by a pressurized injection. On the other hand, there was an increase in friction between grout by a pressurized injection and the ground material. In addition, there was dehydrating of the grout by a pressurized injection, leading to the grout gaining density and strength. We concluded that this would be the main factor in the increase of friction resistance by the pressurized injection. Chapter 4 explains the actual experiments of the anchor to evaluate the impact of the skin friction of the free length portion on the tightening force of the diaphragm. In these experiments, two types of anchors were examined, one where the grout was injected into the free length portion, and the other where the grout was not injected. Both were cast and strains in the tendon hampers, grout, and beneath the ground were measured while tension was applied. In the anchor where there was skin friction of the free length portion, the tightening force was relatively low. As a factor of the low tightening force, it was thought that the tightening force transmitted from the diaphragm would be offset due to tension stresses transmitted to the ground where the free length portion was set via the skin friction of the free length portion.

In accordance with the results from Chapter 4, demonstrations in experiments under more specific conditions appeared to be necessary, and experiments using model anchors set in artificial ground are explained in Chapter 5. We regarded the anchor as a two dimensional strain problem with infinite diameter in the anchor model experiment, the strain on the ground and the grout was measured and weighed when stress was applied to the set model anchor in the experimental steel earth tank. The existence of skin friction of the free length portion transmitted the anchor tensioning force as an upward stress which attempts to raise the surrounding area. Offset of this force and the tightening force from the diaphragm were very likely to obstruct the tightening force from reaching to the border (= sliding surface) with the ground in which the anchor body is set.

According to the results obtained so far, the stress transmitted from the diaphragm, the anchor body and the free length portion appeared to mutually impact and the stresses were intricately transmitted inside of the ground where the anchor was set; therefore, in Chapter 6, numerical experiments using the finite element method were performed to further obtain the stress status of the ground when tension was applied to the anchor. For the numerical experiment, reproduction analysis of the model experiment was performed and the stress status of the ground when tension was applied to the anchor was compared. The finite element method analysis was used on the model where the ground of the free length portion was set in softer soil, such as during landslides, and the impact on the skin friction of the free length portion was discussed.

It was demonstrated that tension stresses worked on the surrounding areas, due to the existence of skin friction of the free length portion when tension was applied to the anchor; this made it difficult for the tightening force from the diaphragm to be transmitted to the deeper portions. The tendency was also presented, that the transmission rate of the tightening force to the deeper portions was lower as the ground where the free length portion was placed was stronger, when there was skin friction of the free length portion.

In Chapter 7, results of the experiments in this study are summarized. We have concluded that the tightening effects of the anchor would be lower than we expected due to the skin friction of the free length portion.

## 第1章 序論

#### 1.1 研究の背景と目的

グラウンドアンカー(以下,アンカーという)は、地すべりや斜面崩壊により不安定化 した自然斜面や切土法面などの地盤自体の安定化や、地盤の上部または内部に建設される 構造物の安定化を図る目的で用いられ、1957年(昭和 32 年)に我が国において導入<sup>1)</sup>さ れて以来、既に 50 年余りが経過している.

特に、地すべり対策におけるアンカーは、他の地すべり抑止工では得られない長所をも つため、地すべり対策工として多くの設計・施工実績がある.しかしながら、アンカーが 施工された地すべり斜面がどのような挙動を示し、アンカーやすべり面にどのような力が 作用するのかなどについては、いまだ未解明な部分が多く残されている状態であり、現状 ではこのような不確定要素を多く抱えたまま、現場での工事が先行している状況といえる.

このため、アンカーの設計においても便宜的な手法が用いられている.一般的な設計手 法では、アンカーへの導入力がアンカーと交わるすべり面位置において集中荷重として作 用すると仮定しており、その力をすべり面角度から「締付け力」と「引き止め力」に分解 して与え、2次元極限平衡法により安定解析を行っている.

しかし、実際にはアンカーへの導入力は地表面に設置した受圧板からの圧縮応力として 土塊に伝達され深部のすべり面へと伝わっていくため、その力は分散して伝わることとな る<sup>2)</sup>. さらに、その作用位置もアンカー軸上ではない研究結果<sup>3)</sup>も示されており、アンカ ーによる応力伝達状況と解析における考え方の乖離が指摘される.

それに加え、アンカー自由長部にはグラウトの充填注入がなされるため、自由長部周面 においても摩擦抵抗が発現することは明らかである.このため、アンカー緊張時には自由 長部周面摩擦を介し、その周辺地盤内にはアンカーの緊張方向へ向かう(上向きの)応力 が伝達されていることが考えられ、その応力と受圧板からの圧縮応力が相殺する可能性が 考えられる.その結果、斜面対策におけるアンカーの1つの効果である「締付け効果」を 発揮する上で必要な締付け力が、自由長部周面摩擦の影響により、すべり面まで伝達する ことを阻害されている可能性が指摘される. また,アンカー支持機構を考える上で重要となるアンカー体周面摩擦抵抗についても, グラウトの加圧注入による摩擦抵抗の増加メカニズムをはじめ不明確な部分が多く残さ れており,自由長部周面摩擦との差異が示されるに至っていない.

このような現状を考慮し、本研究では地すべり等の斜面対策に供用されるアンカーを対 象とし、アンカーの基本構造や設計施工概要を踏まえた上で、まず、モデル地盤に打設し たグラウトについて、加圧の有無により異なる2パターンの供試体に対して一面せん断試 験を行い、その結果を比較検討することで摩擦応力に対する加圧注入の効果を評価する. また、新第三系泥岩地帯の実地盤に打設した、充填注入の有無による2種類の実大アンカ ーに対して、緊張時における周辺地盤およびアンカーのひずみ分布を測定し、アンカー周 辺の地盤内応力状況の比較により自由長部周面摩擦の影響を評価する.そして、これらの 評価と併せ、アンカー緊張時における周辺の地盤内応力状態を室内模型実験および有限要 素法による解析的なアプローチにより示し、自由長部周面摩擦がアンカーの締付け効果に 及ぼす影響を明らかにする.

#### 1.2 本論文の構成

以下に本論文における各章の構成を紹介する.本論文は本章を含めて7つの章からなる.

第2章では、これまでのアンカー技術の移り変わりを整理するとともに、アンカーの構造および斜面対策としてアンカーを用いる場合の一般的かつ基本的な事項をまとめる.また、現状で考えられるアンカーの課題についても触れ、本研究における問題提起を行う.

第3章では、アンカー体のグラウト注入時に行われる加圧注入による、アンカー体周面 摩擦抵抗への影響を評価する.ここでは均質な地盤状態を想定したモデル地盤に対し、グ ラウトを加圧もしくは無加圧で打設した供試体を使用し、地盤とグラウトの境界面におけ る一面せん断強さを測定し、比較検討した上で加圧注入の影響とそのメカニズムについて 言及する.

第4章と第5章では、自由長部周面摩擦の有無によるアンカー締付け力の違いを検討す る.まず第4章では、実地盤に打設した実大アンカーによる実大実験を行い、自由長部の 充填注入を行う場合と行わない場合について、アンカー緊張時における地盤のひずみを測 定する.ひずみ分布の比較から、自由長部周面摩擦の影響について考察する. 第5章では、人工地盤に打設したアンカーによる模型実験を行い、自由長部周面摩擦が ある場合とない場合の2パターンについて、アンカー緊張時における地盤のひずみを測定 し、比較検討する.

第6章では、第5章で行った模型実験を有限要素法による再現を試みる.解析は3次元 弾完全塑性有限要素解析とし、降伏規準には Mohr-Coulomb 式、塑性ポテンシャルには Drucker-Prager 式を用いた MC-DP モデルを採用する.地盤の材料定数を違えたパラメトリ ックスタディの結果も考慮し、地盤内の応力状態についての検討を行う.

最後に第7章では、各章で得られた知見を総括する.

なお、本論文では応力の圧縮側を正としている.また、第4章~第6章における各実験 は鉛直打設のアンカーによるもののため、本論文中においては「受圧板からの圧縮応力」 と「締付け力」を同等のものとして扱っている.

#### 第1章の参考文献

- 1) (社)土質工学会(1976): アースアンカー工法-付・土質工学会アースアンカー設計・施工基 準-, pp.1-3.
- 2) 山上拓男・山川治(1990):斜面安定工におけるアンカーカの新しい算定法,土と基礎, Vol.38, No.5, pp.51-56.
- 3) 蔡飛・鵜飼恵三(2003):アンカー工による斜面の補強効果-極限平衡法と弾塑性 FEM との比較,日本地すべり学会誌, Vol.40, No.4, pp.8-14.

## 第2章 アンカー概論

#### 2.1 アンカー技術の変遷

アンカーはヨーロッパで開発された工法であり、その歴史は古く、最初の実施は 20 世紀前半にさかのぼる<sup>1)</sup>. 世界でアンカーが最初に用いられたのは岩盤に対するもので あり、1934 年にアルジェリアの Ceurfas ダムにおいて、Andre Coyne が注入型アンカー を施工してプレストレスを与えたものと言われている<sup>2)</sup>.

我が国におけるアンカーの歴史としては、1950年代にヨーロッパからアンカー工法 の技術が導入され、1957年の藤原ダム(群馬県、利根川水系)の副ダムに用いられた プレストレストアンカーが最初である<sup>3)</sup>(図 2.1).その後、1960年代に入り仮設の土 留工に用いられ始め、同時期に鉄塔や橋梁の基礎の補強などへ用途が拡大・普及して いった.

1960年代後半には、斜面対策工としてアンカー工法が用いられるようになり、この 頃からアンカーの恒久的な利用への期待が高まっていった.我が国におけるアンカー の歴史として、この年代の段階としては「導入期」と表現できる.

一方,次の1970年代については、アンカー工法の「拡大期」であると表現できる. アンカー工法の用途は次第に拡大をみせ、ちょうど大型建築工事ブームの時期に合致 したこともあり、その施工実績は急速に高まっていった.

また,この頃に西ドイツから導入した高性能なロータリーパーカッション削孔機を導入し、その後国内で改良を行ったことで削孔技術が著しく向上し、アンカーの普及に 大きく貢献した.

1977年には、国内初のアンカーの基準となる「アースアンカー設計・施工基準(JSF 規格:D1-77)」が出土質工学会(現 出地盤工学会)において制定された.この基準作 成に取り組んだ当時は、西ドイツの DIN(Deutsche Industrei Norm)による基準や、FIP

(Fédération Internationale de la. Précontrainte:国際プレストレストコンクリート連合, 現 fib (Fédération Internationale du Béton:国際構造コンクリート連合))の指針が既にあ り、これらが非常に参考となっている.この国内基準の制定によって、アンカー工法 はその信頼性を高め、多くの技術者のアンカー工法への認識を高めた.

1980年代は、アンカーの多重防食機能や耐久性の向上に対する議論が高まってきた 年代であり、より高性能な防食機能が備わった高耐久性アンカー(以下、永久アンカ ーという)が要求されるようになった.この年代から、永久アンカーの本格的な開発 が始まったといえる.

1988年には国内のアンカー基準が「グラウンドアンカー設計・施工基準(JSF 規格: D1-88)」に改訂された.この基準は1977年の基準をベースとしつつも、国内で得られ た多くの知見が取り入れられ、永久アンカーの要求性能についても明確化したもので あった.特に永久アンカーは二重防食を原則とすることが規定されたことが、優れた 防食構造を持つアンカーの開発に大きく寄与した.また、この年代は建築分野での本 設アンカーの開発が行われた時期でもあり、5工法が財日本建築センターの評定を取得 した.このように、1980年代は国内のアンカー工法が飛躍的に進歩した年代であり、 いわば「成長期」であったといえる.

1990年代に入ると、材料技術の向上によりエポキシ塗装がされた PC 鋼材や連続繊維 補強材(炭素繊維 CFCC やアラミド繊維 AFRP など)がアンカー鋼材として使用可能 となったため、アンカーの構造を単純化することができるようになり、多種多様なア ンカーが開発された.このような背景から、この年代における旧建設省が制定した技 術審査証明を取得したアンカーは 20 工法以上にのぼった.また、施工技術の面でも、 用途の拡大や、我が国特有の複雑な地盤への適用など、厳しい施工条件における実績 の積み重ねから、施工技術がさらに進歩した年代でもある.

さらに、この年代の終わりである 1999 年には、1988 年の基準が「グラウンドアンカ ー設計・施工基準(JGS4101-2000)」に改訂された.この基準では、多種多様な防食構 造を持つアンカーを一律に規定することは実際的ではないとの議論から、防食を性能 規定とし、二重防食という用語を削除するなど、多様化したアンカーの実態にも考慮 する内容へと改善された.

この年代でもアンカー工法の市場規模は拡大をするが、2000年前後にそのピークを 迎える.したがって、この年代はアンカーの技術的、市場的な「成熟期」といえる.

一方で、その後の 2000 年代は「転換期」ともいえる.アンカーの市場規模がピーク を過ぎ下降線をたどる中で、これまで建設されたアンカーの維持管理の問題が新たな 技術的課題が提起されることとなる.

過去にも 1985 年の FIP 委員会で,S.Littlejohn がアンカー鋼材の腐食による損傷事例 を紹介したことが一つのきっかけとなり,防食の重要性が再認識されはじめ,その後 国内では既存アンカーの健全度調査を 1990 年頃から日本道路公団(現 NEXCO)が実 施し,その後も各関連団体や地方自治体などにおいて実態把握,耐久性評価と維持管 理の重要性が認識され始めていた.

そしてアンカーが建設され始め約 50 年が経過した 2000 年頃から,これまでのストックを活かすべく,既存アンカー補修補強,延命化の議論が行われ始め,その体系化が進んだ.

アンカーの基準としては,設計と施工の欧州統一基準化や ISO アンカー試験規格案 発効など国際標準化への流れが鮮明になってきた.今後,アンカーの国内基準である 地盤工学会基準も,維持管理,補修補強,国際標準化の動向も視野に入れた検討が求 められている.



図 2.1 藤原ダムの副ダムに用いられたプレストレストアンカー4)

-7-

| 表 2.1 国内におけるアンカー技術の歴史と基準類の変遷 " |
|--------------------------------|
|--------------------------------|

| 年代                 | 主要事項                                                                                                                                                                                                                                                                                                                                                                                                                                            | 段階  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1957 年~<br>1960 年代 | <ul> <li>・藤原ダム副ダムで始めてアンカーを採用(1957)</li> <li>・土留め工事における仮設アンカーの実施(1964)</li> <li>・大迫ダムの地すべり対策で実施(1968)</li> <li>・第7回国際土質基礎工学会議(メキシコ市)で日本から1編発表<br/>(1969)</li> </ul>                                                                                                                                                                                                                                                                              | 導入期 |
| 1970 年代            | <ul> <li>・ 西ドイツからロータリーパーカッション削孔機の導入(1972)</li> <li>・ 西ドイツ(DIN)で仮設アンカー基準が制定(1972)</li> <li>・ FIPで永久・仮設アンカーの指針が制定(1975)</li> <li>・ 国産ロータリーパーカッション削孔機の開発(1975)</li> <li>・ 西ドイツ(DIN)で永久アンカー基準が制定(1976)</li> <li>・ 土質工学会基準「アースアンカー設計・施工基準」(JSF 規格:<br/>D1-77)の制定(1977)</li> <li>・ 第9回国際土質基礎工学会議(東京)で日本から1編発表(1977)</li> </ul>                                                                                                                        | 拡大期 |
| 1980年代             | <ul> <li>・ 永久アンカー(カプセル型)の開発(1980~)</li> <li>・ FIP より腐食破断アンカーの報告(1985)</li> <li>・ 日本道路協会「道路土工ーのり面工・斜面安定工指針」制定(1986)</li> <li>・ 建築本設地盤アンカーの審査証明取得(1986)</li> <li>・ 土質工学会基準「グラウンドアンカー設計・施工基準」(JSF 規格:<br/>D1-88)の改訂(1988)</li> </ul>                                                                                                                                                                                                               | 成長期 |
| 1990 年代            | <ul> <li>・ 土木系アンカーの技術審査証明取得(1990~)</li> <li>・ 摩擦圧縮型アンカーの開発(1990~)</li> <li>・ 永久アンカー(エポキシ塗装)の開発(1990~)</li> <li>・ 日本建築学会「建築地盤アンカー設計施工指針・同解説」制定(1991)</li> <li>・ 日本道路公団「グラウンドアンカー工設計指針」制定(1992)</li> <li>・ 連続繊維補強材アンカーの審査証明取得(1994)</li> <li>・ グラウンドアンカー技術協会「グラウンドアンカー工法設計施工指針」の発刊(1996)</li> <li>・ 日本道路協会「道路土工ーのり面工・斜面安定工指針」改訂(1999)</li> <li>・ 地盤工学会基準「グラウンドアンカー設計・施工基準」(JGS4101-2000)の改訂(1999)</li> <li>・ 欧州統一施工規格(EN1537)の制定(1999)</li> </ul> | 成熟期 |
| 2000 年代            | <ul> <li>・ 日本アンカー協会「グラウンドアンカー施工のための手引書」の<br/>発刊(2003)</li> <li>・ prEN ISO 22477-5 (ISO アンカー試験規格案)発効(2005)</li> <li>・ 地盤工学会基準改訂委員会発足(2006)</li> <li>・ 地盤工学会主催「グラウンドアンカー国際フォーラム」の開催<br/>(2006)</li> <li>・ 英国土木学会主催「グラウンドアンカー国際会議」(ロンドン)で<br/>日本から 14 編発表</li> <li>・ fib Commission 9 TG9.12 (fib アンカー基準委員会)発足(2006)</li> <li>・ グラウンドアンカー維持管理マニュアル出版(2008)</li> </ul>                                                                              | 転換期 |

#### 2.2 アンカーの基本構造と支持機構

(1) アンカーの基本構造

アンカーは、図 2.2 に示すような基本要素からなる. 受圧板などの構造物に設ける「ア ンカー頭部」と、地盤内にグラウトにより造成する「アンカー体」を、「引張り部」で 連結し、多くの場合プレストレスをかけることで構造物やその下位の地盤を安定化さ せる.

アンカー体は、通常セメント系の充填材である「グラウト(Grout)」と、PC 鋼より 線や PC 鋼棒などで組み立てられた引張り材の「テンドン(Tendon)」によって構成さ れ、地盤との周面摩擦抵抗もしくは支圧抵抗によって固定端として機能する.

引張り部は、アンカー頭部からの緊張力をアンカー体に伝達する部分である. この 引張り部は、アンカー体から連続するテンドンと、テンドン自由長部とグラウト間の 付着による摩擦抵抗が発生しないようにし、テンドンの弾性機能を確保するための「シ ース (Sheath)」で構成される.

アンカー頭部は、テンドンを固定するための「定着 具」、定着具に発生する大きな支圧荷重を分散させる ための鋼製の「支圧板」、および対象構造物の表面に 対してテンドンの軸方向を垂直に保つための「台座」 によって構成され、テンドンに発生している引張り力 を受圧板などの構造物へ確実に伝達させる部分である.



図 2.2 アンカーの基本要素 <sup>6)</sup>



図 2.3 アンカー各部分の名称 7)

#### (2) アンカー規格および材料

アンカーを打設するボーリング孔径, すなわちアンカーの断面は, 特に上限あるいは 下限は設けられていないが直径 90mm~165mm とする場合が多く, その全長は 30m 以 内とすることが一般的である.また, アンカー体長については 3m 以上 10m 以下を標 準とすることが, 健地盤工学会が定める設計・施工基準に示されている.アンカー体 長の下限値については, 地盤の不均質性を考慮した安全側への配慮によるものであり, 上限値については, これまでの研究事例からアンカー体長 10m 以上ではほとんど周面 摩擦抵抗が増加しなくなる結果を踏まえてのものである.

アンカーを構成する主要部材であるテンドンは,近年では PC 鋼より線を使用するアンカーが多く開発されており,図 2.4 に示すような構造をとることが一般的である.

PC 鋼より線には, エポキシ樹脂等の塗膜で被覆され防錆・防食性能が確保されている. アンカー体では, この PC 鋼より線と注入するグラウトとが直接付着し, さらには グラウトと地盤に摩擦抵抗が発現することで, アンカーの固定端として機能する. な お, アンカーの種類によっては, 円筒状の非腐食性鋼材による「拘束具」がテンドン のアンカー体部に取り付けられ, 緊張力が拘束具を介してより効率的にグラウトに伝 達されるものもある.

また,アンカー自由長部においては PC 鋼より線と,注入するグラウトとが付着する ことを防ぐためのシースが被せられている.シースには,施工時に損傷しない程度の 耐磨耗性や強度,施工後の有害な物質に対する耐久性および止水性が要求され,ポリ エチレン等の合成樹脂が多く用いられている.シースと PC 鋼より線との間には,グリ ス等の潤滑材が充填されており,自由長部におけるテンドンとシース間の摩擦損失が 発生しない構造となっている.



#### (3) アンカーの種類

アンカーは、供用期間、材料、頭部定着方式、定着地盤の支持方法、アンカー体の形 状などによって表 2.2 のように分類され、現場条件に最も適合したものを選定する.



表 2.2 アンカーの分類<sup>8)</sup>

#### (4) アンカーの支持機構

アンカー工法ではアンカー体の支持機構が要であり,アンカーの性能を保証するため に、その支持機構に様々な工夫がなされている.表 2.3 に主なアンカーの支持機構を示 す.

最も一般的なアンカーは、アンカー体と地盤との間に発現する摩擦抵抗によってアン カーの支持力を得る方式の「摩擦型」であり、その中でもアンカー体内に発生する応 力状態により「摩擦引張型」と「摩擦圧縮型」の2タイプに大別される.

摩擦引張型は,アンカー体部においてテンドンとグラウトが全面的に付着するために, アンカー緊張時におけるアンカー体のグラウト内部には,主に引張り応力が発生する ものである(図 2.5).引張り応力が発生することで,アンカー体にクラックが発生し やすい状態となり,防食性能の維持管理上好ましくないとの考えから,摩擦圧縮型の アンカーが開発された.



図 2.5 摩擦引張型アンカーの基本的な構造例と各部の名称<sup>9)</sup>

摩擦圧縮型は、アンカー先端部(最深部)のテンドン拘束具(耐荷体)を介してアン カー体グラウトに圧縮応力が発生するタイプのもので、アンカー体でのクラック発生 を抑えたものである(図 2.6). また、摩擦圧縮型と同じ発想で、圧縮応力をアンカー 体に分散させ負担を軽減させた「圧縮分散型」のアンカーも開発された.



図 2.6 摩擦圧縮型アンカーの基本的な構造例と各部の名称<sup>9)</sup>

なお,抵抗応力のタイプが異なるアンカーの抵抗特性を調べた研究報告<sup>10)</sup>によると, 引張型でも圧縮型でもアンカー体部のクラック発生は避けられないとされ,防食性能 の維持にはエポキシ塗装等により防食性能を有する PC 鋼材を用いるなど,防食材料を 効果的に組み合わせることが望ましいと考えられている.

一方,摩擦型の支持方式では支持力が得られないような風化地盤や軟弱地盤にも対応 させるために,「拡孔支圧型」あるいは「拡孔型」のアンカーが開発された.

これら以外にも,我が国の国土に脆弱な地質・土質からなる地盤および斜面が広く分 布している背景もあり,他国にはない多様な支持方式のアンカーを有している.しか し,アンカーの支持方式の違いによるアンカーの特性に関する研究報告は少なく,地 盤条件に応じた効果的なアンカーの選定を行うには,今後一層の技術的知見の蓄積が 必要と考えられる.

概要図 応力分布 工法名 支持機構 テンドン自由長 VSL永久アンカー工法 SHS永久アンカー工法 KTB引張SCアンカー工法 EGSアンカー工法 フロテックアンカー工法 スーパーフロテックアンカー工法 EHD永久アンカー工法 NMグラウンドアンカー工法 アラミドFRPグラウンドアンカー 工法 . アンカー体長 摩擦引張 Ð ⇒ IJ レフミド・FRFソフランション・ 工法 CFRPグラウンドアンカー工法 自由長部とアンカー体 部の境界から引張応 地山とアンカー体の周面摩擦抵抗に よって引抜き抵抗力を得る 力を地盤に伝達する テンドン自由長 6 アンカー体長 SEEE永久グラウンドアンカー 11111111 工法(A型) 摩擦圧縮 133 SEEE永久グラウンドアンカー 工法(U型) 111 SuperMCアンカー工法 アンカー体部の先端から引張応力を地盤に伝 地山とアンカー体の周面摩擦抵抗に よって引抜き抵抗力を得る 達する テンドン自由長 . . アンカー体長 KTB永久アンカー工法 (荷重分散型) 圧縮分散 --アンカー体部(耐荷体) の先端から引張応力を 地盤に伝達する V 地山とアンカー体の周面摩擦抵抗に よって引抜き抵抗力を得る テンドン自由長 アンカー体長 SSL永久アンカー工法 1  $\Rightarrow$ 拡孔支圧型永久アンカー工法 P型 拡孔支圧 185 E SSL永久アンカーエ法M型 拡孔支圧型永久アンカーエ法 M型 100 アンカー体部(耐荷体) の先端から引張応力を 拡径部の支圧抵抗によって引抜き抵 抗力を得る 地盤に伝達する 拡径部上面での支圧 アンカー体長 アンカー自由長 抵抗と周面摩擦抵抗 により引抜抵抗力を得 る  $\Rightarrow \Rightarrow \Rightarrow$ ÎÎ 1 拡孔型 スプリッツアンカー工法 ⇒ Ĵ Ĵ --3 

表 2.3 主なアンカーの支持機構 <sup>11)</sup>

### (5) アンカーの用途

アンカーは、地中のアンカー体を固定端とし、テンドンに導入したプレストレスの反 カをアンカー頭部で地盤もしくは構造物に作用させることができる唯一の工法である ため、その適用は広範囲に及ぶ.アンカーの使用目的と用途の例を以下にまとめる<sup>2)</sup>.



図 2.7 アンカーの使用目的と用途の例(1)







推進工法反力用



ダムの安定



杭載荷試験反力用



既設擁壁の補強



トンネルの補強



防災および景観の保全



地下発電所壁面の補強







-17-

#### 2.3 斜面対策としてのアンカー

#### (1) 斜面対策工法の分類とアンカーの特徴

斜面で発生する土砂災害の形態としては、その規模や運動形態により「地すべり」や 「崩壊」、「土石流」、「落石」など様々なものに分類されるが、このうちアンカーが対 策工法としてよく検討される災害形態は「地すべり」と「崩壊」である.

地すべりは斜度 5~20°程度の緩斜面において、ゆっくりと斜面が活動するものをいい、その規模は比較的大きく、移動土塊も原形を残したまま動くものが多い.一方、 崩壊は一般には斜度 20°以上の急斜面において、急激に斜面が崩れるものをいい、規 模は比較的小さいが、移動土塊の原形を留めない程その動きは激しい(表 2.4).

|                             | 地すべり                        | 崩壊                                                                                          |
|-----------------------------|-----------------------------|---------------------------------------------------------------------------------------------|
| ① 地 質                       | 特定の地質または地質構造の               | 地質との関連は地すべりに比                                                                               |
|                             | 所に多く発生する                    | へて少ない<br>主として地山中の不連続面(表                                                                     |
| ②土質                         | 主として粘性土をすべり面と<br>  して滑動する   | 土と下層の境界面であること                                                                               |
|                             |                             | が多い)を境として滑落する                                                                               |
| 3 # #                       | 5°~20°の緩傾斜面に多く発生            | 20°以上の急傾斜地に多く発生                                                                             |
|                             | つ場合が多い                      | する                                                                                          |
| ④ 活動状況                      | 継続性,再発性                     | 突発性                                                                                         |
| <ol> <li>6. 移動速度</li> </ol> | 0.01~10mm/日のものが多く,          | 10mm/日以上で速度は極めて大                                                                            |
|                             | <u>一般に速度は小さい</u>            | きい                                                                                          |
| 6 土 塊                       | 土塊の乱れは少なく、原形を保              | 土塊は攪乱される                                                                                    |
|                             | ちつつ動く場合が多い                  |                                                                                             |
| ⑦誘因                         | 地下水による影響が大きい                | 降雨,特に降雨強度に影響され<br>  z                                                                       |
|                             |                             | □<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□<br>□ |
| ⑧ 厚さ,規模                     | <ul> <li>で規模が大きい</li> </ul> | さい                                                                                          |
|                             | 発生前にキレツの発生,陥没,              |                                                                                             |
| ⑨ 徴 候                       | 隆起,地下水の変動などを生ず              | 徴候の発生が少なく, 突発的に<br>  過速してしまる                                                                |
|                             | る                           |                                                                                             |

表 2.4 地すべりと崩壊の特性(区分)<sup>12)</sup>

これらの斜面災害を防止するための対策工法には、その誘因となる地下水の排除や土 塊バランスの調整などを行う抑制工と、外力を加えることで強制的に斜面の動きを止 める抑止工に大別される.一例として、地すべり防止工に用いられる防止工法の分類 を図 2.10 に示す.

このうち、抑止工としては、アンカー工の他に杭工およびシャフト工が一般的に用い られている.これらの抑止工は、基本的には地すべり等による移動土塊の滑動に抵抗 する待受け型の工法となるが、アンカー工のみが移動土塊に対し能動的に外力を導入 できる工法である.このためアンカー工は、緊急性が高く早期に効果の発揮が望まれ る場合等に有効な工法といえる.



図 2.10 地すべり防止工の分類<sup>13)</sup>

斜面対策におけるアンカー工には次のような長所が挙げられる.

①. 比較的小断面の部材を用いて大きな抑止力が得られる.

②. プレストレスを導入することで、移動土塊の変位をコントロールできる.

③. 抑止効果に方向性がある.

一方で、次のような短所を挙げることができる.

- 不均質な地盤に比較的大きな力を作用させるため、定着に関する安全率を高め にする必要があり、不経済となる場合がある.
- 予想以上の外力によるアンカーの局部的破壊が、周辺のアンカーの破壊に連鎖 する危険性がある.
- 3. 現時点で実用上は大きな問題となっていないが、アンカーの時間依存性挙動な ど耐久性の問題に関して不明な部分がある.
- (2) アンカーの抑止効果

アンカーには、一般に次の2つの抑止効果があるとされている.

 ①. 締付け効果 ・・・ プレストレスをかけ,滑落の危険のある移動土塊を押さえつ けて安定化させるものであり,すべり面に対する垂直力を増 大させ,せん断抵抗を増大させる効果を図ったものである.
 従来より,主に斜面崩壊の安定化の用途として用いられてき た.ただし,プレストレスをかけたときに,移動土塊に圧密 や圧縮変形が少ないという条件が必要となる.また,すべり 面深度が深い場合には,この効果の期待は難しいといえる.
 このため,中~小規模の岩盤地すべりや切土法面の安定に利 用される場合が多い.



図 2.11 締付け効果を期待する場合 9)

 ②. 引止め効果 ・・・ 移動土塊の滑動力に対し、テンドンの引張り強さで抵抗し、 滑動力を減少させ、移動土塊を引止める.地すべり対策とし ては、この効果を期待して設計することが多い.この場合、 杭工などの待受け対策同様、移動層が動き出して初めてアン カーの効果が発揮されることになるが、予めある程度のプレ ストレスをかけておくことで、移動層の変位量が少ない段階 で抑止効果をあげることができる点で、他の抑止工とは大き く異なる.

すべり面 地表面 すべり面  $T \cdot \cos(a + \theta)$ SA  $+\theta$ Ja  $T \cdot \sin(\alpha + \theta)$ (拡大図)

図 2.12 引止め効果を期待する場合<sup>9)</sup>

#### 2. 4 アンカーの設計概要

(1) アンカーの設計フロー

地すべり等斜面対策に用いるアンカーの設計は,一般に図 2.13 に示すフローに従っ て行われる.



図 2.13 一般的なアンカー設計のフロー<sup>8)</sup>

斜面安定解析により,安定上必要な抑止力が算定される.これを考慮し,また,現場 等の条件を勘案し各種対策工法が検討される.アンカーの適用にあたっては,前項で 述べたように,締付け効果と引止め効果のどちらか,または両方を見込むのかを検討 する.最近では,経済性の観点から,締付け効果と引止め効果の両方を考慮する場合 が多くなっている.

アンカーの適用が決定された段階から、アンカー設計のための作業が開始される.

まず,設計作業に先立ってアンカー引抜き試験や土質試験等により地盤定数が決定される.

次に、アンカーの利用用途や定着地盤(アンカー体設置地盤)の位置、近隣の状況等 を考慮し、アンカーの配置、アンカーの傾角等を決定する.これにより、斜面安定解 析により単位幅あたりの必要抑止力が決定しているので、アンカー1本あたりの設計ア ンカーカを求めることができる.

続いて、アンカー体の設計、アンカー長の決定という手順で設計は進められる.アン カー長の決定にあたっては、一般に地盤工学会基準に示される最低長以上を確保する ように留意する.アンカー自由長においては 4m 以上、アンカー体長は 3m 以上 10m 以 下を標準とする<sup>14)</sup>.なお、アンカー体の土被り厚については最小 5m が標準であるた め、これも考慮してアンカー長を決定しなければならない(図 2.14).



図 2.14 アンカー体の最小土被り厚<sup>14)</sup>

さらに,アンカー体設置地盤については,想定するすべり面外の安定地盤とすること は当然であるが,定着地盤の性状やアンカー体の配置などに十分注意して決定する必 要がある.

その後,アンカーの設計としては、テンドンの決定、アンカー頭部および受圧板の決 定という手順を経て完了する.

以上の設計手順の中でも、アンカーの設計荷重の決定およびアンカー体の設計が、ア ンカーの設計において重要となる部分といえるため、以下に詳しく述べる.

#### (2) 斜面安定解析における必要アンカーカの算出

地すべり等に斜面対策としてアンカーを用いる場合,一般には二次元極限平衡法による安定計算がなされる.この時の極限平衡法の式としては,斜面安定計算式として提唱されている様々な式があるが,最も基本的な式としてフェレニウス法によった場合の計算式を以下に示す<sup>9)</sup>.なお,式2.1の分子の第3項におけるΣは,アンカーがすべり面と交わる分割片のみの総和を表わす.

$$Fs = \frac{\sum c \cdot l + \sum (W - u \cdot b) \cos \alpha \cdot \tan \phi + \sum T \{\cos(\alpha + \theta) + \sin(\alpha + \theta) \tan \phi\}}{\sum W \cdot \sin \alpha} \quad \cdots \quad (\exists 2.1)$$

ここに,

- Fs :斜面安全率
- *c* : すべり面粘着力 (kN/m<sup>2</sup>)
- l :分割片で切られたすべり面弧長(m)
- W :分割片の重量(kN/m)
- *u* :間隙水圧(kN/m<sup>2</sup>)
- *b* :分割片の幅(m)
- α :分割片で切られたすべり面角(度)
- T :アンカーカ (kN/m)
- *θ* : アンカー傾角(度)



図 2.15 アンカーによる斜面安定概念図<sup>9)</sup>

一般には、安定化させる地すべり等斜面の計画安全率を定め、必要アンカー力を式 2.2 のように求める.

$$Tr = \frac{Fsp \cdot \sum W \cdot \sin \alpha - \left\{\sum c \cdot l + \sum (W - u \cdot b) \cos \alpha \cdot \tan \phi\right\}}{\sum \left\{\cos(\alpha + \theta) + \sin(\alpha + \theta) \tan \phi\right\}} \quad \cdot \quad \cdot \quad ( \not \exists 2.2)$$

*Tr* :必要アンカーカ(kN/m) *Fsp*:計画安全率 なお,式2.2 は図2.16 に示すように,アンカーの2つの効果である「締付け効果」と 「引止め効果」の両方が発揮されるとした式である.最近では,経済的観点から両方 の効果を見込んでアンカーを設計することが多く,一般に用いられる式といえる.た だし,状況によってはどちらか一方の効果のみを重点的に考慮し,必要アンカーカを 算出することもある.



図 2.16 アンカーの 2 つの機能(効果)<sup>9)</sup>

次に,式2.2により算出した単位幅あたりの必要アンカーカから,アンカーの配置を 考慮して,アンカー1本に必要なアンカーカ(=設計アンカーカ *Td*)およびそれに見 合ったアンカー規格を決定する.

#### (3) アンカー体の設計

アンカーの設計において最も重要となる部分が,アンカー体の設計である. 机上設計 段階では,事前にアンカー引抜き試験が実施されることが少ないため,調査結果より 明らかとなった地質・土質状態を考慮し,地盤工学会基準に示される表 2.5 から極限周 面摩擦抵抗を決定し,必要なアンカー体長を設計する場合が多い.

その後,アンカーの本工事に先立ち,試験アンカーの打設が行われ,アンカー引抜き 試験が実施される.これにより,所定の緊張力に耐えられるだけの周面摩擦抵抗が発 揮されているかが確認される.机上設計段階に想定したアンカー力に達せず引抜けた 場合は,極限周面摩擦抵抗の見直しがなされ,アンカー体長やアンカー径の再設計が 行われる.
| 地   | 盤の種類 |     | 摩擦抵抗(MN/m²)            |
|-----|------|-----|------------------------|
|     | 硬    | 岩   | 1.5 - 2.5              |
| 岩盤  | 軟    | 軟 岩 |                        |
|     | 風    | 風化岩 |                        |
|     | 土    | 土 丹 |                        |
| 砂礫  |      | 10  | 0.1 ~0.2               |
|     |      | 20  | $0.17 \sim 0.25$       |
|     | N値   | 30  | $0.25 \sim 0.35$       |
|     |      | 40  | $0.35 \sim 0.45$       |
|     |      | 50  | 0.45~0.7               |
| 砂   |      | 10  | 0.1 ~0.14              |
|     |      | 20  | 0.18~0.22              |
|     | N値   | 30  | $0.23 \sim 0.27$       |
|     |      | 40  | $0.29 \sim 0.35$       |
|     |      | 50  | 0.3 ~0.4               |
| 粘性土 |      |     | <u>1.0c</u><br>(cは粘着力) |

表 2.5 アンカーの極限周面摩擦抵抗<sup>14)</sup>

アンカー体長(la)は式 2.3 により算出する.

$$la = fs \frac{Td}{\pi \cdot d_A \cdot \tau} \quad \cdot \quad \cdot \quad ( \not \exists \ 2.3)$$

$$z \subset lz,$$

τ :周面摩擦抵抗(MN/m<sup>2</sup>)

fs : アンカー自体の安全率(表 2.6)

表 2.6 アンカー自体の安全率<sup>14)</sup>

|        |       | 安全率 f,  |
|--------|-------|---------|
| 仮設アン   | ノカー   | 1.5     |
| 永久アンカー | (常時)  | 2.5     |
|        | (地震時) | 1.5~2.0 |

# 2.5 アンカーの施工概要

アンカーの施工は、一般に図 2.17 に示すフローに従って行われる.また、参考として一般的に行われるロータリーパーカッション式削孔機による施工概要(二重管削孔 方式)を図 2.18 に示す.



図 2.17 一般的なアンカーの施工フロー<sup>14)</sup>

現地の地質土質状況に適した削孔機を選定し,削孔を行う.アンカー挿入孔が掘り上 がったら,テンドンを挿入し,孔内にグラウトの注入を行う.まず,孔内に残る掘削 水を排水し,グラウトと入れ換えるための置換注入を行う.置換注入は,排水や排気 を円滑に行うため,アンカー最深部から実施する.

その後はアンカー体部に対する加圧注入を行う.加圧注入は、アンカー体部のケーシ ングを引き上げ裸孔状態とし、ケーシング上端部からグラウトポンプにより圧力をか けることで行う.図 2.19 にケーシング加圧による加圧注入の概要を示す.この他、パ ッカー加圧による方法もあるが、一般的にはケーシング加圧による場合が多い.パッ カー加圧は被圧水がある施工条件や上向き打設のアンカーなどに採用されている.

グラウトの注入完了後は、所定の期間養生を行い、品質確認試験により必要なアンカ ー力が発揮できることを確認し、緊張および定着がなされる.

その後,アンカー自由長部の空隙を充填させ,自由長部テンドンの防食機能の増加お よび,孔壁周囲の地盤の緩み防止を目的としたグラウトの充填注入がなされる.地盤 工学会基準の施工フロー(図 2.17)には,緊張・定着後に充填注入を行う流れとなる が,一般的には定着後に充填注入を行うことが困難である場合が多く,加圧注入の後, 一連の流れで充填注入を行う場合がほとんどである.



図 2.18 一般的なアンカーの施工概要<sup>15)</sup>



ii) ドリルパイプを加圧所定位置まで引き上げ、加圧ヘッドを取り付ける。



iii) アンカー体部へ加圧注入を行う。アンカー体部が長い場合には2~3m毎に加圧注入 を繰り返す。



図 2.19 加圧注入(ケーシング加圧)の概要<sup>7)</sup>

# 2.6 アンカーにおける課題

前項までに示したように、アンカーの歴史は古く、その設計および施工方法について、 ー応は確立されている状況である.しかしながら、アンカーにはいまだ解明されてい ない部分が多く残されており、斜面対策としての必要アンカーカの計算においても便 宜的な方法によっているのが現状といえる.アンカー設計上の課題としては、アンカ ーのもつ機能的効果、初期緊張力の問題、アンカー工の配置、多段アンカー工の効果、 定着部の支持機構に関するものなど、種々の課題があるが、次に挙げる2点について は、斜面対策としてのアンカーの効果を考える上で基本的かつ重要な部分であり、早 急に解明すべき課題と考えられるため、本研究における課題とした.

#### (1) 自由長部における周面摩擦の影響

アンカー体には加圧注入が、自由長部には充填注入がなされるため、アンカー全長 にわたり一連のグラウトの柱体が形成される.このため、アンカー全長にわたって地 盤との間に周面摩擦抵抗が発現することは明らかである.

このため、アンカー緊張時には自由長部周面摩擦を介し、その周辺地盤には上向き の応力が伝達されていることが考えられ、その応力と受圧板からの圧縮応力が干渉す る可能性が考えられる.その結果、締付け効果を発揮する上で必要な締付け力がすべ り面まで到達することを阻害されている恐れを有している.

#### (2) 加圧注入の効果

アンカーにおける一方の固定端として支持力を発揮するアンカー体は,基本的にグラウトを加圧注入し,地盤との摩擦抵抗(=摩擦応力)を向上させることとされている<sup>7)</sup>. これは一般的に,加圧注入によりグラウトの浸透が生じ,アンカー体径が拡大,すなわちアンカー体周面積の増大に伴い摩擦応力が増大すると考えられている<sup>14)</sup>.

しかし、加圧注入によるグラウトの注入形態や、それに伴う摩擦応力の変化について は、既往研究においても明らかにされておらず、いまだ不明確な部分が多く残されて いる.

また、上記(1)における、アンカー緊張時の地盤内応力状況を評価する上で、自由

長部とアンカー体における周面摩擦抵抗の違いを知る意義は大きい.

# 第2章の参考文献

- 1) Ground Anchorages and Anchored Structures in Service (2007) : Proceedings of international conference in London, S.Littlejohn
- 2) (社地盤工学会(2005): グラウンドアンカー設計・施工例 第一回改訂版, pp.1-7.
- 3) (社)土質工学会(1976):アースアンカー工法-付・土質工学会アースアンカー設計・施工 基準-, pp.1-3.
- 4) 川崎秀明・木戸俊朗・大町達夫(2007):ダム用アンカー技術の現状および海外事例,ダ ム工学, Vol.17, No.4, pp.282-294.
- 5) 山田浩 (1990): グラウンドアンカー工法の技術の変遷, 土と基礎, Vol.54, No.10, pp.18 -20.
- 6) グラウンドアンカー技術協会(1996): グラウンドアンカー工法設計施工指針, 21p.
- 7) (社)日本アンカー協会(2003): グラウンドアンカー施工のための手引書, 22p, 40p, 153p.
- 8) 中村浩之(2005):抑止工による地すべり防止対策, 164p., 177p.
- 9) \(\(\mathcal{B}\) 日本道路協会(2009):道路土工 切土工·斜面安定工指針(平成 21 年度版), pp.289-293.
- 10)橋本功・林一郎(1997): グラウンドアンカーの利用と設計(土木),基礎工, Vol.25, No.7, pp.14-19.
- 11)山田浩(2008): グラウンドアンカー工法技術の進歩とその歴史(その1) -構造と施工 技術-, 斜面防災技術, Vol.35, No.2, 52p.
- 12)山田剛二・渡正亮・小橋澄治(1971):地すべり・斜面崩壊の実態と対策
- 13)国土交通省砂防部・(細土木研究所(2008):地すべり防止技術指針及び同解説,58p.
- 14) (拙) 地盤工学会 (2000): 地盤工学会基準 グラウンドアンカー設計・施工基準, 同解説, pp.99

-100, 113, 116-117, 130p.

15)(社)日本アンカー協会(2004):グラウンドアンカー標準施工マニュアル, 3p.

# 第3章 加圧注入の効果

### 3.1 概説

アンカーの施工上,アンカー体注入では一般に加圧注入が行われている.加圧注入は, 削孔の影響などによる孔壁の緩みを防止するとともに,アンカー体グラウトと周面地 盤との接触面における摩擦応力(以下, τとする)を増加させる目的で行われる<sup>1)</sup>.ま た,礫質土や砂質土などの間隙が多い地盤では,加圧注入によりグラウトを地盤中に 浸透させ,アンカー体径の肥大効果による τの増加も期待されている<sup>2)</sup>.

しかしながら、グラウトの浸透など注入形態の不確かさなどから、加圧注入の効果に ついて疑問視される場合もあるように<sup>3)</sup>、加圧注入によるグラウトの注入形態や、それ に伴うτの変化については、いまだ不明確な部分が多く残されている.

薬液注入の分野では、加圧注入による薬液の注入形態として、大別すると浸透注入と 割裂注入の 2 つの概念がある.アンカーのグラウトとして一般的に使用される水セメ ント比 W/C=50%前後のセメントミルクでは、粘土層などの間隙比が小さな地盤への浸 透注入は不可能とされ、主に割裂注入の形態をとるとされている<sup>4)</sup>.ただし、一般的な アンカーでは、加圧力を高め地盤に割裂を生じさせ、その亀裂にグラウトを注入する ことは一般に行われていない<sup>5)~7)</sup>.

セメントミルクなどの懸濁液型注入材料の浸透性を評価する指標の一つであるグラ ウタビリティ比(土粒子の10%粒径 D<sub>10</sub>/注入材の95%粒径 G<sub>95</sub>)からの判断では,普 通セメントを使った場合,浸透注入が可能となる D<sub>10</sub>は0.56mm 以上となることから<sup>4)</sup>, 細粒分を多く含み均質かつ密な状態の自然地盤に対しては加圧注入によるグラウトの 浸透は起こり難いといえる.

また, グラウトの注入挙動に関する研究<sup>8),9)</sup>によると, 均質地盤においては W/C=350% 以下のセメントミルクでは, 間隙閉塞の理論モデル<sup>10)</sup> における表面ろ層モデル(濁質 粒子が間隙内に浸入できず表面に蓄積されるモデル)の状態となり, グラウトの浸透 は非常に困難であることが示されている.

以上のように、アンカーの加圧注入によるグラウトの浸透は困難であるといえ、これ

に伴うアンカー体径の変化に起因した τの増加は生じ難いといえる.

一方で、グラウトの加圧力および加圧時間と r の関係に関する研究結果<sup>11)</sup>では、加 圧注入による r の増加は、加圧によりアンカー体周面地盤が改良される影響であると結 論づけており、加圧注入の効果および r への影響については議論の余地が残されている ように思われる.

自然地盤における加圧注入の効果は、地盤の不均質性に左右される要素を多く含むために、アンカー打設現場の地質・土質条件や削孔条件の影響を強く受ける. このため、 加圧注入とτの関係性について明らかにすることは容易ではない.

これまでの自然地盤におけるアンカーに関する既往研究および調査は,現場条件の違いや地盤の不均質性の影響を受けているといえ,まだ加圧注入の有効性およびてへの影響について普遍的な関係性を見出すには至っていない.

そこで、本章では不均質性を排除した均質なモデル地盤について、グラウトの打設条件を変えた供試体を作製し、地盤材とグラウト接触面のτを一面せん断試験により測定した結果を比較した.さらに、その試験結果をもとに、加圧注入がグラウトやその注入過程に及ぼす効果ならびにτの増加メカニズムについて考察する.

### 3.2 モデル実験

#### 3.2.1 モデル実験の概要

実際のアンカー引抜き時には、多様なせん断破壊面が生じるため、アンカー体周面に 発現するτに対する一定の評価を行い難い.よって本研究では、この様なせん断破壊面 の影響を極力抑えるために、任意の面におけるせん断が可能である一面せん断試験に よりグラウトと地盤材間のせん断強さを測定した.

なお,既往研究<sup>12),13)</sup>では一面せん断試験により砂や粘性土などの地盤材料と,鋼材 やコンクリートなどの構造物材料間のせん断強さを測定し,材料間の摩擦係数として 評価したものもみられる.したがって,本研究では測定されたせん断強さを,グラウ トと地盤材間で発現する摩擦応力として評価する.

また,既往研究により模型アンカーの3次元円筒形モデルと2次元的平面モデルでは,

引抜き量と引抜き抵抗力の関係に同様の傾向が認められている<sup>14)</sup>. したがって,本研 究では 3 次元的なアンカー体と周面地盤間のせん断問題を, 簡便な平面的せん断問題 に近似できるものとした(図 3.1).



図 3.1 モデル実験概念図

試験は, 直径 6cm, 高さ 6cm の円筒状のモデル地盤の上に, セメントミルクによる グラウトを打設した供試体を作製し, モデル地盤とグラウトの接触面に対して一面せ ん断試験を実施し, せん断強さを求めた.

試験に用いた地盤材は、砂地盤、砂礫地盤、粘土地盤を想定した3種類の均質材料とした.各地盤材の粒度特性および物理特性をそれぞれ図3.2、表3.1に示す.

また, グラウトの打設方法は, 加圧する場合としない場合の2種類とし, それぞれの 試験結果を比較することで加圧注入がτに及ぼす影響を評価した.



表 3.1 地盤材の物理特性

|                                     | 砂地盤                  | 砂礫地盤                 | 粘土地盤                 |
|-------------------------------------|----------------------|----------------------|----------------------|
| エ学的分類(JGS0051)                      | S                    | GS                   | CLS                  |
| 土粒子密度 $\rho_s$ (g/cm <sup>3</sup> ) | 2.689                | 2.645                | 2.599                |
| 湿潤密度 $\rho_i$ (g/cm <sup>3</sup> )  | 1.70                 | 1.73                 | 1.88                 |
| 含水比(%)                              | 15.7                 | 12.7                 | 23.0                 |
| 間隙比                                 | 0.83                 | 0.72                 | 0.70                 |
| 透水係数(cm/s)                          | $5.1 \times 10^{-3}$ | $1.4 \times 10^{-3}$ | $1.0 \times 10^{-6}$ |

# 3. 2. 2 モデル実験の方法

### (1)実験供試体の作製

内径 6cm の円筒状である専用型枠下側の底部に,排水性・排気性を確保するために 厚さ 1cm のポーラスストーンを敷き,その上に地盤材を密に詰めて作製した.

砂地盤は,鳥取砂丘砂(平均粒径 D<sub>50</sub>=0.288mm)を水洗いしたものを専用型枠に入れ,水を加えながら締め固め,均質な密地盤を作製した.

砂礫地盤は、砂地盤で使用した鳥取砂丘砂に粒径 φ2~4.75mm に調整した花崗岩の 細礫を質量比で1:1の割合でよく混ぜて均質化し (*D*<sub>50</sub>=2.335mm),砂地盤同様に水締 めして密な状態とした.

粘土地盤は、島根県産来待砂岩の粉体に加水して作った粘土(D<sub>50</sub>=0.009mm)を用いた.粘土を型枠に木製ランマー(直径 1cm)で突き固めながら充填し、十分密な状態となるようにして地盤を作製した.

モデル地盤を作製した後,専用型枠上側を取り付け,上端部開口部からグラウト(早 強セメント W/C=50%, Pロートによるフロー値 15±3 秒)を流し込み,加圧する場合と しない場合で2種類作製した.

グラウトを加圧する場合は、グラウトを流し込んだ後に、電動エアーポンプを型枠 上端開口部に接続し、空気圧を加えることによりグラウトの加圧注入を再現した.加 圧力は地盤の種類によらず 200 kN/m<sup>2</sup>とし、圧力保持時間については1分間とした.グ ラウトは、打設後完全に硬化する前に、専用型枠上側を外し、厚さ 1cm となるように 上部をカットして整形した(図 3.3).



図 3.3 供試体作製方法

# (2) 一面せん断試験

試験供試体のグラウトを3日間養生した後,一面せん断試験(JGS0561)を行った. 専用型枠から取り出した供試体は,一面せん断試験機にセットするために,モデル地 盤側を1cmの厚さにカットし,供試体全体の厚さを2cmに整形した.

ー面せん断試験は全ての地盤材において定圧試験によるものとし、垂直応力  $\sigma_v$ を 50 ~400kN/m<sup>2</sup> 間で変化させて試験を行った. 圧密過程で変位量が十分落ち着いた後、せん断変位速度を 0.2mm/min でせん断を行い、定圧せん断強さ(以下、 $_{T}$ とする)を測定した.



写真 3.1 使用した一面せん断試験機



写真3.2 一面せん断試験後の供試体

# 3.2.3 モデル実験の結果

## (1) 地盤材のせん断強度特性

モデル地盤自体のせん断強度特性を把握するために,それぞれの地盤材についても一面せん断試験を行った.得られた Tf とそれらに対する近似直線を図 3.4 に示す.

なお,砂地盤については粘着力が認められた結果となったが,これは供試体の含水比が 16%程度の含水状態であったため,見かけの粘着力が発現した影響と考えられる.

また, 砂礫地盤については一面せん断試験における一般的に許容される最大粒径である 0.85mm を超える材料を含むため, 地盤材としての <sub>び</sub>が大きい傾向となっていること に留意されたい.



図 3.4 地盤材のせん断強度特性

### (2)砂地盤の場合

砂地盤の供試体における一面せん断試験の結果を図 3.5 にまとめる.

得られた vicはばらつきが認められたが,全体的にはグラウトを加圧した場合の方が 大きい viが発現する結果となった.特にその傾向は oiが低圧時ほど顕著に現れており,  $\sigma_v=50$ kN/m<sup>2</sup>時における  $\tau_f$ の平均値は、加圧供試体が無加圧供試体の 1.49 倍であった.  $\tau_f$ のばらつきの程度は、加圧供試体の方が大きい傾向が認められ、最もばらつきが大きかった  $\sigma_v=100$ kN/m<sup>2</sup>時の標準偏差は 54.6 であった.

また,一部の加圧供試体(図3.5の▲)において,他のデータと比べ高い<sub>び</sub>が発現した.これらの供試体については,試験後のせん断面がやや下に凸になっていたことが確認された(写真3.3).これはグラウトと地盤材間の付着性が向上したため,せん断破壊面が地盤材内に形成され,正のダイレイタンシーが生じて高い<sub>び</sub>が発現したものと 推測される.

このようにせん断面が地盤材内に形成されたものについては、正確にはグラウトと 地盤材間の摩擦応力を示さないが、少なくとも得られた ryよりも高い摩擦応力がグラウ トと地盤材間で発現しているものと予測される.したがって、本研究においてはこれ ら地盤材内にせん断面が生じた試験結果についても加圧供試体の ryとして評価した.

なお, せん断面が地盤材内に形成されたものを除けば <sub>6</sub>のばらつきは小さいといえる ことから, データのばらつきは地盤材内に形成されたせん断面の不均一性に起因した ものと推測される.



図 3.5 砂地盤における摩擦応力と垂直応力の関係

試験後,供試体の地盤材部分にフェノールフタレイン溶液を吹付け,グラウトの浸 透状況を確認したが,加圧の有無にかかわらずグラウトの浸透は認められなかった. しかし,加圧を行った供試体については,加圧後のグラウトはかなり粘性の高い状態 を呈しており,加圧による脱水現象が認められた.



写真 3.3 試験後のせん断面(砂地盤 ov=100kN/m<sup>2</sup>)

## (3) 砂礫地盤の場合

砂礫地盤における一面せん断試験の  $\tau_f$ を図 3.6 にまとめる. なお,砂礫地盤では,いずれの供試体においても高い  $\tau_f$ が発現したため,使用した一面せん断試験機の荷重計の許容量の関係から,  $\sigma_r = 200 \text{kN/m}^2$ より大きい垂直応力での試験は実施できなかった.

砂礫地盤における試験結果では、グラウトの加圧と無加圧による $_{Y}$ の差異が明瞭に表 れ、全ての $\sigma_v$ 条件下において、加圧した場合の $_{T}$ の方が高い結果が示された.砂地盤 の結果と同様に、 $\sigma_v$ が低圧時ほどその傾向が顕著に表れ、 $\sigma_v$ =50kN/m<sup>2</sup>時においては加 圧供試体の $_{T}$ が無加圧供試体の 1.53 倍であった.また、加圧後のグラウトは著しく脱 水された状態にあり、グラウトのみで自立が可能な半固体状を示した(写真 3.4).

フェノールフタレイン溶液により加圧注入によるグラウトの浸透状況を調べたとこ

ろ、グラウトとの接触部から 2cm 程度内部までが赤く染まり、アルカリ分が浸透した 状況であることが示された(写真 3.5).しかし、試験後に加圧注入を行った供試体を 崩し、地盤材内部のグラウト浸透状況を確認したところ、硬質な状態のグラウトは接 触面から 2mm 程度内部までの範囲の、礫の突出による表面的な地盤材の凹凸を充填す る程度であった.

それより内部の地盤材に認められたフェノールフタレイン溶液の反応は、微量のセ メント粒子が浸透した影響と考えられ、*τ*<sub>f</sub>に与えた影響は低いものと推察される.

なお、無加圧注入による供試体においても、地盤材の表面的な凹凸はグラウトによ り充填されており、目視レベルでは加圧供試体と同様な接触面の状態であることを確 認した.



図 3.6 砂礫地盤における摩擦応力と垂直応力の関係



写真 3.4 加圧後のグラウト脱水(砂礫地盤)



写真 3.5 加圧後のアルカリ浸透(砂礫地盤)

### (4)粘土地盤の場合

粘土地盤における一面せん断試験の  $\tau_f$ を図 3.7 にまとめる. 全体的には砂地盤に比べ  $\tau_f$ のばらつきの程度は小さいが、グラウトの加圧と無加圧による  $\tau_f$ の差異が不明瞭な結 果といえる. 今回の試験結果では、 $\sigma_v$ が 200kN/m<sup>2</sup>よりも低い場合には加圧による  $\tau_f$ の 増加傾向がわずかに認められたものの、それ以上の  $\sigma_v$ 条件下となると加圧条件に関わ らず  $\tau_f$ のばらつきが大きくなり一意の傾向が認められない結果となった. このような高 い  $\sigma_v$ 条件下における  $\tau_f$ のばらつきは、圧密過程において供試体の粘土に塑性変形が生 じ、グラウトと粘土の付着性が損なわれた影響である可能性が考えられる.

一面せん断試験後の供試体地盤材部分にフェノールフタレイン溶液を吹付けたが, アルカリ分の浸透は認められなかった.また,加圧供試体の加圧後のグラウトは,他 の地盤材ほどではないが若干の脱水が確認できた.



図 3.7 粘土地盤における摩擦応力と垂直応力の関係

### (5) グラウトの一軸圧縮強さの違い

加圧注入の供試体においてグラウトの脱水が認められ,特に砂地盤,砂礫地盤での 脱水が著しくみられた.この脱水作用がグラウトの強度に及ぼす影響をみるために, 供試体を作製し一軸圧縮試験(JISA1216)を行った.

供試体は、グラウト(早強セメント W/C=50%、P ロートによるフロー値 18 秒)を、 砂の地盤材を詰めた専用型枠に加圧注入し脱水させたものと、脱水させないものをプ ラスチックモールド(直径 5cm、高さ 10cm)に入れ、それぞれ 4 個ずつ供試体を作製 し、2 日養生後に一軸圧縮試験を行った.試験結果を図 3.8 に示す.

ー軸圧縮試験の結果、無加圧グラウトの一軸圧縮強さ  $q_u$ は平均  $q_u$ =18.57MN/m<sup>2</sup>に対し、加圧グラウトは平均  $q_u$ =31.99MN/m<sup>2</sup>と 1.72 倍強度が高い結果となった.また、加圧し脱水させたグラウトの方が  $q_u$ の個体差が小さいことが認められた.

試験供試体の湿潤密度 $\rho_t$ および含水比wの平均値は, 無加圧グラウトが $\rho_t$ =1.778g/cm<sup>3</sup>, w=28.2%に対し,加圧グラウトは $\rho_t$ =1.929g/cm<sup>3</sup>, w=19.7%であり,加圧グラウトの方が 密実な状態であることが示された.

これらのことから,加圧注入により脱水したグラウトは密実化し,それに伴う強度の増加および発現強度の安定が図れるものと判断される.



図 3.8 グラウトの一軸圧縮試験結果

### 3.3 考察

# 3.3.1 加圧注入によるグラウトの注入過程

均質地盤に対するセメントベースのグラウトの注入過程は、セメント粒子の輸送過 程、地盤間隙へのセメント粒子の充填過程および充填されたグラウト材の硬化過程か ら成り立っているとされる<sup>15)</sup>.なお、本文ではセメント粒子の輸送過程をグラウトの 浸透過程と同義として扱うものとする.

上記の過程のうち浸透過程については、セメントミルクなどの懸濁液型注入材料は、 前述のとおり均質な地盤内に浸透するためには W/C=350%以上でなければ浸透は困難 であることから、一般的なアンカーにおける W/C=50%前後のグラウトでは浸透は生じ 難いと考えられる.

今回の試験結果では、砂地盤および粘土地盤による加圧供試体については、グラウトの浸透は全く認められなかった.これはグラウトが W/C=50%であったため、表面ろ層状態となりグラウトの浸透が生じなかったものと判断される.一方、砂礫地盤による加圧供試体についてはフェノールフタレイン溶液の反応から、わずかにセメントのアルカリ分の浸透が認められたが、固化体を形成するほどのセメント量は浸透しておらず、グラウトが浸透したとは言い難い.

これらの結果から、加圧注入によるグラウトの注入過程を考えると、アンカー定着 層とされるような密実な自然地盤であり、かつ、均質な状態の地盤においては、グラ ウトの浸透過程は発生しないものと推定される.すなわち、アンカーエにおけるグラ ウトの加圧注入では、グラウトの浸透によるアンカー体径の肥大効果や、それに伴っ たτの増加は期待できないものと判断される.

既往研究におけるアンカー体の掘り出し結果<sup>16)~18)</sup>においても,比較的密な土丹層や 砂層では加圧注入によるアンカー体径が削孔径と同等もしくは 1.1 倍程度であった報 告もあり,今回の試験結果と調和的であることから,上記の解釈が自然地盤の均質部 においては当てはまるものといえよう.

一方,砂礫地盤についてはアンカー体径の肥大効果が著しい報告が多くみられる. 掘り出し後のアンカー体の状態<sup>19</sup>,から判断すると,加圧注入によるグラウトの浸透に よるアンカー体径の肥大ではなく,削孔の影響などにより生じた孔壁の凹凸にグラウ トが充填された結果と考えられる.

これらのことから、自然地盤におけるグラウトの加圧による注入過程としては、浸透過程はなく、孔壁から連続する亀裂や間隙などへの充填過程がそのほとんどであると推定される.

# 3.3.2 加圧注入によるグラウトの品質向上

加圧注入し脱水が生じたグラウトについて、2日養生後の一軸圧縮強さを測定したと ころ、無加圧状態で打設したグラウトと比して平均値で約1.7倍高い値を示した.これ は、コンクリートの加圧養生と同じく、グラウトに含まれる余分な水分を加圧注入に より強制的に搾り出すことでグラウトの密度を高め、高強度化したためと考えられる.

このことから、グラウトの加圧注入は、注入過程の最後である硬化過程に対しても 良好な影響を及ぼすことが確認された.すなわち、加圧注入を行うことで、より密実 なアンカー体造成に寄与できるものと考えられ、これにより水密性や耐ブリージング 性の向上を図ることができ、養生後のアンカー体周面の付着力低下を抑制する効果を もつものと判断される.

また,脱水させたグラウトの一軸圧縮強さの方が値のばらつきが少ない傾向が認め られたことから,加圧注入を行うことでアンカー体のグラウトの品質を安定させる効 果もあるものと思われる.

ただし、これらの効果は加圧注入によりグラウトの脱水が行われる場合のみ期待で きるため、粘土や亀裂をあまり含まない岩盤など、透水性の低い地盤に対しては効果 的ではないといえよう.

# 3.3.3 加圧注入による r 増加メカニズムの仮説

アンカー体周面に発現する r は、グラウトと地盤の付着力、地盤自体の強度、接触面 の面積およびその形状に大きく影響を受けると考えられる.

今回の試験結果では、加圧によるグラウトの浸透が認められなかったことから、加圧

の有無によるグラウトと地盤材間の接触面積およびその形状に差はなかったものと判断できる.また,地盤材の作製方法も同一であったことから地盤材の強度差もない. したがって,今回の試験で認められた tf の差は,グラウトと地盤の付着力の差である可能性が示唆される.

砂および砂礫の地盤材を用いた試験結果には、加圧の有無により  $\tau_f$ に有意な差異が認められ、特に低  $\sigma_v$ 時の差が顕著であった.また、図 3.5~3.7 に示した  $\tau_f - \sigma_v$ 関係から、  $\tau_f$ をクーロンの破壊規準 ( $\tau = c + \sigma \tan \phi$ )により粘着力 cとせん断抵抗角  $\phi$ に分解した 結果、全ての地盤材において加圧供試体の c 値が 1.5 倍以上大きい値となることが確認 された(表 3.2).

垂直応力の大小に依存しない強度定数である c 値は、 グラウトと地盤材の付着力の大きさをそのまま反映していると判断される.このことからも、加圧注入の影響により グラウトと地盤の付着力が強化され、その結果 ryが増加したものと推定される.

なお、砂礫地盤においては、図 3.6 のグラフからわかるように、加圧供試体の結果を 近似する直線の傾きが無加圧供試体と比べ緩くなる結果となった.このことは、つま り *φ*が低下したことを示すと解釈される.このような結果となった要因については明 らかでないが、加圧注入によりグラウトと砂礫地盤との接触面の状態が変化した可能 性が考えられる.

このように、加圧供試体の付着力が増加した要因としては、試験結果に有意な差異が 認められた砂地盤および砂礫地盤において、顕著にみられたグラウトの脱水現象が考 えられる.砂地盤におけるグラウトの加圧・脱水に伴う含水比の変化とグラウトの $q_u$ および $\rho_t$ , せん断面の  $\tau_f(\sigma_v=50$ kN/m<sup>2</sup>時の平均値) および cの関係を図 3.9 にまとめる.

| 地盤材 | 加圧状況  | c (kN/m <sup>2</sup> ) |
|-----|-------|------------------------|
| Th  | 加圧    | 75.9                   |
| 119 | 無 加 圧 | 41.5                   |
| 砂礫  | 加圧    | 410.0                  |
|     | 無 加 圧 | 193.2                  |
| 粘土  | 加圧    | 77.6                   |
|     | 無 加 圧 | 46.7                   |

表 3.2  $\tau_f - \sigma_v$ 関係に基づく c 値



図 3.9 グラウトの含水比と  $q_u$ , c,  $\tau_f$ ,  $\rho_t$ の関係(砂地盤)

図 3.9 より,加圧による脱水が行われたグラウトは,その密度が増加し,それに伴い 一軸圧縮強さも増していることが読み取れる.また,グラウトと地盤間の付着力と評 価される c 値も脱水に伴う強度増加が認められ,同様な傾向であることが示されている. これらの傾向から,脱水により高密度化および高強度化したグラウトは地盤との付着 力が増加し,その結果 y も増加したものと判断される.したがって,グラウトの脱水現 象と y の増加には良好な関係性が認められた結果といえる.

以上のことから、均質地盤におけるグラウトの加圧注入による τの増加メカニズムは、 グラウトの浸透による効果はなく、グラウトの脱水現象に起因する強度増加に伴った 付着力増加による部分が大きいと考えられる.

### 3.4 まとめ

本章では砂・砂礫・粘土の3種類のモデル地盤に対し、グラウトを加圧もしくは無 加圧の状態で打設した供試体を作製し、それらについて一面せん断試験を行い、発現 する摩擦応力の違いなどから加圧注入の効果および r 増加メカニズムについて考察し た.その結果、以下の知見が得られた.

- (1) 今回の試験における地盤材全てにおいて、グラウトの加圧による浸透注入が認められなかったことから、自然地盤の均質部における加圧注入ではグラウトの浸透過程は生じ得ず、亀裂など地盤に存在する空隙への充填過程が大半を占めるものと考えられる。
- (2) 加圧注入によるグラウトの浸透過程は認められなかったものの、砂地盤と砂礫地 盤の低い垂直応力時(σ,=50kN/m<sup>2</sup>)において、加圧供試体の方が約 1.5 倍高い τ<sub>f</sub> の差が認められたことなどから、加圧注入によりグラウトと地盤材接触面におけ る付着力が増加したことが示された.
- (3) また、加圧注入により tfに有意な差異が認められた砂地盤と砂礫地盤については、 加圧に伴うグラウトの脱水現象が顕著にみられ、砂地盤については脱水による密 実化の影響で、グラウトの強度が約 1.7 倍増加したことが確認された.
- (4) 加圧注入によりグラウトの脱水が効果的であれば、密実なアンカー体が造成され、 水密性や耐ブリージング性の向上が図れ、養生後のアンカー体周面の付着力低下 を抑制する効果があるものと判断される.
- (5) 上記(1)~(4)より、均質地盤における加圧注入による r 増加のメカニズムは、 グラウトの脱水現象に伴う密実化および強度増加に起因する付着力の増加が主要 因であるものと考えられる。

# 第3章の参考文献

- 1) (社)日本アンカー協会(2003): グラウンドアンカー施工のための手引書, 22p, 150p.
- 2) (社)地盤工学会 (2000): グラウンドアンカー設計・施工基準,同解説 (JGS4101-2000), 116p.
- 3) (社)地盤工学会(1997): グラウンドアンカー工法の調査・設計から施工まで、9p.
- 4) 最新地盤注入工法技術総覧編集委員会(1997):最新地盤注入工法技術総覧,産業技術サ ービスセンター, pp.40-43, pp.104-107.
- 5) (社) 土質工学会(1976): アース・アンカー工法-付・土質工学会アースアンカー設計・施工基準-, 210p.
- 6) 建設産業調査会(1987):土木・建築技術者のための最新建築基礎・地盤設計施工便覧, 1003p.
- 7) グラウンドアンカー技術協会編(1996): グラウンドアンカー工法設計施工指針, 森北出版, 33p.
- 8) 古賀誠・島田英樹・松井紀久男(2001):均質地盤に対するグラウト材の一次元注入解析 ーグラウチングにおけるグラウト材の浸透挙動に関する研究(第1報)-,資源と素材, Vol.117, pp.209-214.
- 9) 古賀誠・島田英樹・松井紀久男(2002):グラウト材の模擬地盤への注入実験とろ過理論 を導入した注入解析の適用性-グラウチングにおけるグラウト材の浸透挙動に関する研 究(第2報)-,資源と素材, Vol.118, pp.29-35.
- 10)伊藤次郎(1976):数学モデル, 丸善出版, pp.15-17.
- 11)筒井通剛・山崎淳一・富山哲次・原郁正・稲村利男(1992):永久地盤アンカー工法の研究(その16.グラウト加圧力・加圧時間とアンカー耐力の関係),日本建築学会大会(北陸)学術講演梗概集,pp.1343-1344.
- 12)Potyondy, J.G. (1961) : Skin Friction between Various Soils and Construction Materials, Geotechnique, Vol.11, No.4, pp.339-353.
- 13)新城俊也・小宮康明・永吉功治・国吉真文(2004):砂と鋼材の摩擦特性に及ぼす粒径と 粗度の影響,琉球大学農学部学術報告,第 51 号, pp.101-106.
- 14)林鍾鉄・龍岡文夫・宮崎啓一(1990):砂地盤内の剛な鉛直アンカーの引抜き抵抗メカニ ズム,土と基礎, Vol.38, No.5, pp.33-38.

15)古賀誠・笹岡孝司・島田英樹・久保田士郎・松井紀久男(2000):破砕性岩盤へのグラウ

ト注入に関する基礎的研究,第21回西日本岩盤工学シンポジウム論文集,pp.161-166. 16)有山峰夫・平野栄・根本恒(1990): 圧縮型本設地盤アンカー工法に関する研究(その1)

-アンカーの構造概要および掘り出し結果-,第 25 回土質工学会研究発表講演集, pp.1541-1542.

17)小林勝巳・西村憲義・森本敏幸(1990): 圧縮型本設地盤アンカー工法に関する研究(その2) - 引抜き試験-,第25回土質工学会研究発表講演集,pp.1543-1546.

18)栗原和夫・斉藤顕次・小林康之・田村昌仁(1992): グラウト圧によるアンカー体周面地 盤の加圧状況, 土木学会論文集, No.453, pp.145-154.

19)大屋準三(1990): PTC 本設地盤アンカー工法,土と基礎, Vol.38, No.5, pp.9-14(口 絵写真-1).

# 第4章 アンカー実大実験

### 4.1 概説

斜面対策としてのアンカーは、大別してアンカー頭部、引張り部(自由長部)、アン カー体部の3つの基本要素に分けられる.このうち自由長部には、防食機能の増加と 孔壁周辺地盤の緩み防止を主な目的としたグラウトの充填注入が行われる<sup>1)</sup>.これによ り、アンカー体部と自由長部には一連のグラウトによる柱体が形成され、アンカー全 長にわたり周面が地盤と付着することになる.

一般的な施工では、アンカー体部でのグラウトの加圧注入と自由長部での充填注入 は連続的に行われるため、アンカー頭部の緊張時にはアンカー体のみならず自由長部 においても周面摩擦抵抗が発現することは明らかである.

一方,アンカー体の周面摩擦抵抗(以下, $\tau_A$ とする)を最終的に決定する際に引抜き 試験を行うが,この場合,自由長部のグラウトの充填注入は実施しない<sup>1)</sup>.このため, アンカー設計時には,引抜き試験結果による $\tau_A$ から必要なアンカー体長・径が決定さ れ,自由長部に発現する周面摩擦抵抗(以下, $\tau_F$ とする)は設計上考慮されていないの が現状である.

しかしながら、実際的には τ<sub>F</sub> がアンカー緊張力に対し抵抗力として働いていること は十分に考えられることから、τ<sub>F</sub>はアンカー引抜けに対する安全率的な役割を担ってお り、引抜け事故が予防されている可能性もある.

自由長部周面に発現する τ<sub>F</sub> は,周辺地盤の状態にもよるが,決して小さくはないこ とがこれまでの研究によって報告されている.アンカー打設地盤の周辺を掘削し,ア ンカーへの影響を調査した研究<sup>2)</sup>によると,アンカー体部を完全に露出させた場合で も,完全な引抜けには至らず,緊張力の約半分(39.2t)を τ<sub>F</sub> が負担していることが示 されている.また,アンカーの引張材であるテンドンからグラウトへの応力伝達機構 に関する研究<sup>3)</sup>では,自由長部グラウト内に大きな圧縮ひずみが発生していることか ら,自由長部周面にも比較的高い周面摩擦抵抗が発現していることが示されている.

一方,アンカー引抜き時の周面摩擦抵抗に関する模型実験<sup>4)</sup>においても,自由長部

でもアンカー体部と同じように周面摩擦抵抗が発現していることが確認されている.

これらのアンカーの実大実験および模型実験により,自由長部にも周面摩擦抵抗が 発現することや,その負担割合が比較的大きいことが明らかにされている.

ここで、受圧板に比較的近い自由長部においても周面摩擦抵抗が発現することによ る、アンカー機能上の問題点が指摘される.アンカー緊張時の地盤内部には、周面摩 擦抵抗を介して周辺地盤に伝達される上向きの応力と、受圧板から伝達される下向き の応力が発生する.このとき、受圧板に近い位置、すなわち自由長部において τ<sub>F</sub> によ る上向きの応力伝達が周辺地盤になされた場合、受圧板からの締付け力が地盤深部へ 伝達されるのを阻害される恐れがある.

また, *t*<sub>F</sub>の存在により,受圧板の締付け力を期待する上で必要な,周辺地盤の適正な 変位が生じ難くなる可能性も考えられる.つまり,受圧板の締付けに伴う地盤の変位 が *t*<sub>F</sub>により妨げられ,締付け力はアンカーグラウトを下に押し込む作用に変換される 可能性が示唆される.これは,基礎杭の周辺地盤沈下に伴うネガティブフリクション と同じメカニズムの問題と考えられる.

しかしながら、このような  $\tau_F$  がアンカーの効果に及ぼす影響についてはほとんど注 目されておらず、現状ではアンカーの設計にも考慮されていない.現行のアンカー設 計では、アンカーカの 100%がすべり面に作用する前提に立ち、「締付け効果」と「引 止め効果」の 2 つの概念が考慮されている.しかし、受圧板から伝達されるアンカー 力は、地盤内部で分散し、すべり面へ伝わる応力度が減少することは明らかであり、 設計思想と実際現象の乖離が指摘されている<sup>5)</sup>.このため、最近では模型実験や有限要 素法(以下、FEM とする)などを利用した数値実験による研究<sup>6)~8)</sup>がなされている が、これらにおいても  $\tau_F$ の影響を考慮したものは認められない.

そこで第4章と第5章においては、TFが締付け力に及ぼす影響を評価することを目的 とし、実地盤に打設した実大アンカー(第4章)と、2種類のモデル地盤を対象とした 模型アンカー(第5章)について、自由長部に周面摩擦抵抗がある場合と無い場合の2 種類のアンカーを緊張した際の地盤内部のひずみ分布を測定し、応力伝達状況を比較 した. さらに、続く第6章では FEM による数値実験も行い、これらの実験結果から、 TFがアンカーの地すべり抑止効果の一つである締付け効果へ及ぼす影響を考察する.

# 4.2 アンカー実大実験

# 4.2.1 アンカー実大実験の概要

アンカー実大実験では、自由長部にグラウトの充填注入を行うものと、行わないものの2 種類の実大アンカーを地盤に打設し、アンカー緊張時のテンドン拘束具、グラウト、地盤内部のひずみ測定を行った.図4.1 に実験概要図を示す.

実験地は,新第三系の泥岩が分布する地区であり,同質岩による盛土(N=4~10程度) が上位を 5m 程度覆っている箇所である.また,泥岩層は上位 5m 程度までは風化帯 (N=20~40程度)である.泥岩は全体的に塊状無層理な状態であり,概ね均質な地盤 状態である.

なお、地表面から GL-10m 付近より現れる泥岩新鮮部(N $\geq$ 50)においてアンカー引 抜き試験を行った結果、 $\tau_A$  =0.50MN/m<sup>2</sup>の結果を得た.

### 4.2.2 アンカー実大実験の方法

### (1) アンカーの打設

アンカーの打設方向は鉛直下向きとし、充填注入の有無により2種類のアンカーを打 設した.以下、充填注入を行わず  $\tau_F$ が無いアンカーを Case-1、充填注入を行い  $\tau_F$ があ るアンカーを Case-2 とする.

実験に供するアンカーは、摩擦圧縮型アンカー(SEEE 永久グラウンドアンカー工法 タイブルアンカーF70UA)とし、アンカー自由長 10.0m、アンカー体長 3.0m とした.

削孔はロータリーパーカッション式削孔機を使用し、削孔径 φ 115mm とした. 削孔 後,入念な孔内洗浄を行い、テンドン挿入およびグラウト(普通セメント W/C=50%)の注入を行った.

アンカー体部にはケーシング加圧による加圧注入(200kN/m<sup>2</sup>)を行った.より確実な アンカー体造成のために、アンカー体長 3.0m に対し、1.5m 毎に 2回に分けて加圧注入 を行っている.その後、充填注入を行い、Case-1のアンカーについてはラッパ管使用 長期保護材(NETIS 登録番号 No.CG-030013)によりグラウトを排出し、自由長部に周



図 4.1 アンカー実大実験概要図

面摩擦抵抗が生じない構造とした.

なお,このアンカーの極限引抜き力(*T<sub>ug</sub>*)は541.7 kN,テンドンの降伏点荷重(*T<sub>ys</sub>*)は 608 kN である.

### (2) ひずみゲージの設置

地盤内部のひずみ測定は、地すべり調査で一般的に用いられるパイプ式ひずみ計(測 商技研製 P401SL)を用い、アンカーの緊張に伴う地盤の水平方向へのひずみを測定し た.また、ひずみゲージを貼付した塩化ビニル板(長さ 100mm 幅 30mm 厚さ 3mm)を パイプ式ひずみ計に取り付け、地盤の鉛直方向のひずみも測定できる構造とした.

観測孔の周囲はベントナイトを配合した貧配合のセメントミルク(一軸圧縮強さ  $q_u$  = 1MN/m<sup>2</sup>)で充填し、周囲の地盤との力学的強度の連続性をもたせるように努めた.

アンカーには、テンドン拘束具に4箇所ひずみゲージを貼付し、拘束具の軸ひずみを 測定した.また、アンカー体および自由長部のグラウト充填部分にはモールドゲージ を配置し、グラウト内に発生するひずみを測定した.

各ひずみゲージの設置位置については前出図 4.1 および図 4.2 に示し,設置箇所の詳 細を図 4.2 に示す.

#### (3) 実験方法

打設した 2 種類のアンカーについて多サイクル確認試験を行い,各荷重段階におけるアンカーおよび周辺地盤に設置したひずみゲージのひずみを測定した.

多サイクル確認試験は初期荷重を 50kN とし,計画最大荷重である 500kN までを 6 サ イクルとした.各サイクルでの新規荷重は 100kN, 160kN, 230kN, 310kN, 400kN, 500kN である.

荷重保持時間は新規荷重段階で10分間,履歴荷重段階で2分間を標準とし,ひずみの測定は,各荷重段階における荷重保持時間の開始と終わりで測定した.ただし,結 果比較に用いるひずみは,各サイクルにおける新規荷重10分保持後の値を用いている.



図 4.2 ひずみゲージ設置箇所詳細図

# 4.3 実験結果と考察

# 4.3.1 地盤内部のひずみ分布

各載荷段階における地盤内部のひずみ分布状況を図 4.3 および図 4.4 に示す. 図 4.3 はパイプ式ひずみ計に貼付したひずみゲージから測定した地盤応力の水平成分による ひずみ (以下, *ε<sub>x</sub>*とする)を示し,図 4.4 は塩化ビニル板に貼付したひずみゲージから 測定した地盤応力の鉛直成分によるひずみ (以下, *ε<sub>z</sub>*とする)を示したものである. な お, *ε<sub>x</sub>*はアンカーを基準軸とし,外側へ向かう方向を圧縮方向,内側へ向かう方向を引 張方向とした.

### (1) ひずみの水平成分 ε<sub>x</sub>

Case-1 では全体的に地表面付近で荷重増加に伴うひずみの累積増加が認められた. 観 測孔 P-1, P-2 において,ひずみゲージ S13 が圧縮方向に最も大きく,その下位の S12 がそれに次いで大きい値を示しており,受圧板の締付けによる地盤内部応力の側方向 への伝達が伺える性状を示している.

また, P-1 ではアンカー体直近の S2~S4 において, S4 をピークとした引張方向への ひずみの累積が認められる.これはアンカー体の引抜き抵抗が τ<sub>A</sub> を介して周辺地盤に 生じ,発生した引張応力による弾性的な地盤挙動を捉えたものと考えられ,既往研究<sup>9)</sup> による摩擦圧縮型アンカーのアンカー体周辺地盤の応力状態と調和的な結果である.

Case-2 でも、地表面付近での圧縮方向へのひずみの累積が顕著であり、Case-1 と同様 な応力状況下にあることが伺える. なお、P-5 の S13 では 500kN 載荷時にひずみ方向が 反転している現象がみられるが、地盤もしくは観測孔充填材の局所的な破壊に伴う応 力開放の影響と考えられる.

地盤の不均質性を考慮すると単純には比較できないが、ひずみ量としては Case-1 の 方が全体的に大きく、比較的低い荷重段階で深部までひずみが到達していることから 判断すると、Case-1 の方が高い締付け力を発揮していると考えられる.

### (2) ひずみの鉛直成分 ε<sub>z</sub>

Case-1 では、アンカー直近の観測孔 P-1 において、全体にわたって顕著なひずみの変



図 4.3 地盤の水平ひずみ分布

化が認められた.低荷重段階においては、S12~S13 に下向きの応力状態を示すひずみの累積が認められるが、荷重段階が 230kN を越えた辺りから、ひずみの累積方向が反転する現象がみられる.一方で、その下位の S9~S10 では一貫して下向きの応力状態を示すひずみの累積を示している.

前述した *ε*<sub>x</sub>のひずみ分布を考慮すると, S12~S13 にみられたひずみ方向の反転は, 受圧板による締付け力の増加に伴い地表付近でパイプが水平方向に大きく変形し,そ の影響でパイプに設置した塩化ビニル板も追従して変形したことが要因と推察される. なお, P-1 の S11 については荷重段階に関わらずひずみが測定されず, ゲージに不具合 があったものと考えられる.

また,アンカー体周辺地盤のひずみゲージでは,P-1のS2とS5で上向き,S3とS4 で下向きの応力状態を示すひずみが測定された.地盤が弾性状態である場合,アンカ 一体の上方への変位に伴い,周辺地盤にはτ<sub>4</sub>を介して上向きの応力が発生する.この ことを考慮すると,S3とS4のひずみは別の要因が影響した可能性が考えられる.

前述の *ε*<sub>x</sub>のひずみ分布から, S2~S4 においては載荷に伴う引張ひずみが測定されて おり,地盤とともにひずみ計がアンカー側に引張られた状況にあることが考えられた. このため, S3~S4 においても地表付近同様,水平方向の変位に影響を受けた可能性が 考えられる.

ただし, S5 についてはアンカー体上端部よりも上に位置しているため,アンカー体からの上向きの応力による地盤のひずみを捉えたものと考えられる.

一方 Case-2 では、全体的にあまりひずみが認められない結果となった.最もひずみ が表れた P-5 においては、地表面下 2m までの範囲に顕著なひずみが認められたが、 Case-1 とは異なりアンカー体周辺においてはひずみが認められない.なお、P-5 の S13 のひずみ累積方向が上向きとなっていることについては、Case-1 と同じく、地表付近 のパイプの変形が影響している可能性が考えられる.

以上の結果から、Case-1 では地表面下 5m 付近まで受圧板から下向きの圧縮応力が伝達され、また、アンカー体周辺では τ<sub>4</sub>を介した引張応力が作用していると判断される. また、アンカー体上端部よりやや上部の周辺地盤については、アンカー体から伝達された上向きの圧縮応力が作用していると判断される.

一方, Case-2 では地表面下 3m 付近まで受圧板から下向きの圧縮応力が伝達されてい


図 4.4 地盤の鉛直ひずみ分布

るが、その大きさは Case-1 よりも小さいと考えられる.また、それ以深の地盤に大きなひずみが分布しないことから、アンカー周面から地盤へ伝達される応力は小さいことが示された.

# 4.3.2 テンドン拘束具軸力分布

テンドン拘束具のひずみから換算した軸力分布を図 4.5 に示す. なお, 拘束具の弾性 係数は *E*=2.07×10<sup>5</sup>N/mm<sup>2</sup> を用いた.

いずれのケースも先端部で大きな圧縮力が発生しており,摩擦圧縮型アンカーの性状 を表している.ケースによる軸力分布の差は極めて少なく,アンカー緊張時における 拘束具からアンカー体への応力伝達状況は同等であったことを示している.



図 4.5 テンドン拘束具軸力分布

# 4.3.3 グラウト内の圧縮力分布

アンカー体および自由長部におけるグラウトに設置したモールドゲージからは全て において圧縮側のひずみが測定された.ひずみから換算した圧縮力の分布を図 4.6 に示 す.なお,モールドゲージの弾性係数は *E*=2.35×10<sup>4</sup>N/mm<sup>2</sup>を用いた. アンカー体におけるグラウト内の圧縮力は,載荷荷重 400kN までは Case-1 の方が相 対的に高いものの,荷重増加に伴う圧縮力の増加割合においては Case-2 の方が大きい 傾向にあり,最大荷重である 500kN 載荷時では Case-2 の方が高い圧縮力を示す結果と なった.

また, Case-2 の自由長部中央のモールドゲージ M5 に着目すると, アンカー体とは対 照的に, 低い荷重段階から比較的大きな圧縮力が発生しており, 160kN 載荷時にはアン カー体グラウトと同等の圧縮力が発生しているが, そこで圧縮力の増加は頭打ちとな っている.

これらのことから、Case-2 の周面摩擦抵抗は、低い荷重段階では τ<sub>F</sub>が負担する摩擦 抵抗が大きい傾向にあり、載荷荷重の増加に伴い摩擦抵抗の負担割合が深部ほど大き くなった状況を示すものと考えられる.すなわち、荷重段階が上がるに従い、周面摩 擦抵抗の主要な発現位置が浅部から深部へと遷移する性状であったといえる.

なお、低い荷重段階から M5 で大きな圧縮力が働いた要因としては、この深度付近が 盛土層との境界付近であることを考慮すると、ルーズな盛土からの側圧を受け摩擦抵 抗が大きくなった影響が考えられる.



図 4.6 グラウト圧縮力分布

#### 4.4 まとめ

本章では、自由長部にグラウトの充填注入を行うものと、行わないものの 2 種類の 実大アンカーを地盤に打設し、アンカー緊張時のテンドン拘束具、グラウトおよび地 盤内部のひずみ測定を行い、結果を比較した.その結果、以下の知見が得られた.

- (1) 地盤内部のひずみ分布の比較から,地表付近のひずみに関しては, τ<sub>F</sub>の無い Case-1 のアンカーについて,地表面下 5m 付近までの範囲で受圧板からの締付け力による と考えられるひずみが比較的顕著に検出された.一方, τ<sub>F</sub>がある Case-2 のアンカ ーは,地表面下 3m 付近までの範囲でひずみが確認できたものの,その大きさは相 対的に小さい特徴が認められた.
- (2) アンカー体深度付近の地盤内部のひずみの分布から,アンカー緊張に伴いアンカ ー側へ引張られるひずみが検出されたが,これは地盤の弾性的な挙動を捉えたも のと考えられた.このことから,アンカー緊張時には,アンカー体周辺の地盤は 緊張する方向に追随しようとするため,その内部には主に引張応力が作用するも のと判断される.したがって,グラウトと地盤が付着している周辺地盤内には, アンカー緊張に伴い,主として引張応力が作用するものと考えられ,τ<sub>F</sub>があるアン カーについては,その全長にわたり,周辺地盤に引張応力が作用している可能性 が指摘される.
- (3) テンドン拘束具における軸力の比較からは、*τ<sub>F</sub>*の有無による差異がほとんど認められなかった.このことから、*τ<sub>F</sub>*の存在がテンドン拘束具からグラウトへ伝える応力 状態に影響を与えないといえる.
- (4) グラウト内の圧縮力分布より、Case-2 においては低荷重段階に τ<sub>F</sub>が負担する摩擦 抵抗の割合が大きく、荷重段階が上がるに従い τ<sub>A</sub> が負担する割合が増大する傾向 が認められた.したがって、アンカー緊張力が比較的低荷重である場合などにお いては、τ<sub>F</sub>を介して自由長部地盤に引張応力が相対的に大きく作用するものと推定

される.

(5) 上記(1)~(4)より、TFが存在するアンカーについては、相対的に締付け力が低い傾向となるものと考えられる.この要因としては、TFを介して自由長部地盤に伝達される引張応力が、受圧板から伝達される締付け力(圧縮応力)を相殺する影響である可能性が指摘される.

## 第4章の参考文献

- 1) \( 1) \( 1) 地盤工学会 (2000): グラウンドアンカー設計・施工基準, 同解説 (JGS4101-2000), pp.143-144, 154-155.
- 2) 土井茂樹・黒坂誠・筒井道剛・吉田直弘(1992):永久地盤アンカー工法の研究(その20.アンカー定着部付近の掘削とアンカー耐力との関係),日本建築学会大会学術講演梗概集(北陸), pp.1351-1352.
- 3) 佐藤守・宮崎祐助・境野典夫・滝口健一・吉田直弘・長谷川昌弘(1992):永久地盤アン カー工法の研究(その 21. 応力伝達機構),日本建築学会大会学術講演梗概集(北陸), pp.1353-1354.
- 4) 桑島正樹・西川純一・日下部祐基(1995):アンカー引抜き時の周面摩擦抵抗に関する模型実験,開発土木研究所月報, No.501, pp.2-10.
- 5) 山上拓男・山川治(1990): 斜面安定工におけるアンカーカの新しい算定法,土と基礎, Vol.38, No.5, pp.51-56.
- 6) 蔡飛・鵜飼恵三(2003): アンカーエによる斜面の補強効果-極限平衡法と弾塑性 FEM との比較,日本地すべり学会誌, Vol.40, No.4, pp.8-14.
- 7)田中尚・石井靖雄・藤澤和範・森下淳(2006):模型実験の再現によるアンカー工弾塑性
  3次元 FEM 解析モデルの検討,土木技術資料, Vol.48, No.4, pp. 64-69.
- 8) 石田孝司・藤澤和範・田中尚・倉岡千郎・太田敬一(2008): 遠心載荷模型実験の FEM 再現解析によるグラウンドアンカーエの締付け効果の検討,第47回日本地すべり学会研 究発表会講演集, pp.233-236.
- 9) 瀬崎茂・小瀧辰人・峯谷正・浜野浩幹(2005):アンカー形式による支持機構と支持力の 違い,第44回日本地すべり学会研究発表会講演集,pp.271-274.

# 第5章 アンカー模型実験

#### 5.1 概説

第4章におけるアンカー実大実験の結果から、*τ<sub>F</sub>*が存在するアンカーについては相対 的にその締付け力が低い傾向となることが確認された.この要因としては、自由長部 へ充填注入を行ったアンカーでは、低荷重時から*τ<sub>F</sub>*が負担する摩擦抵抗の割合が高い ことから、*τ<sub>F</sub>*を介して自由長部周辺地盤に作用した引張応力と、受圧板からの締付け力 (圧縮応力)が相殺し、締付け力の深部への伝達を妨げた可能性が考えられる.

しかし、この結果は地盤の不均質性などによる影響も含まれていることも考えられる ことから、より均質な条件下での実験により検証する必要があると考え、人工的な地 盤に小規模なアンカーを打設した模型アンカーによる実験を行うこととした.

アンカーに関する模型実験は、これまで特に 1970~80 年代にかけていくつか行われ ている.これらの実験の多くは、アンカーの引抜き抵抗や引抜け時の地盤破壊線の推 定や、荷重と変位量の推定に関するものである.

例えば、勝見らによる研究<sup>1)~3)</sup>では、引抜き抵抗力の算定に際し、最も重要となる 極限時の地盤の破壊形状(すべり面)を決定するために模型実験が行われているが、 これらの実験では砂中に埋設したプレート型アンカー(一部は摩擦+支圧型支持方式) の引抜き実験であり、現在主流となっている摩擦型アンカーによる地盤の破壊形状と は大きく異なるものと考えられる。

一方,松本による研究<sup>4)</sup>では,実際に共用されるような摩擦型アンカーを縮小した 円筒型の模型アンカーを砂地盤に打設しており,また,加圧注入を表現するために膨 張材(アルミニウム粉)をグラウトに混入させるなど,より実際の事象に近づける工 夫がなされている.この研究結果では,アンカー引抜け時の地盤表面の亀裂分布から 地盤破壊の影響範囲を推定し,そこから地盤内部の破壊面の形状の推定を行っている.

しかしながら、これらの研究結果では、地盤の破壊形状に主眼を置いており、斜面対 策として用いる上で重要となる受圧板の締付け力に関しては全く触れていない.この ため、いずれの研究においても受圧板を設置しておらず、受圧板の影響も含めた地盤 内応力について触れた研究結果はみられない.このため、本研究におけるアンカー模 型実験の意義は大きいものと考える.

## 5.2 アンカー模型実験

## 5.2.1 アンカー模型実験の概要

アンカー模型実験は、アンカーを無限大の直径をもつものとした2次元平面ひずみ問題と考え、高さ 600mm、幅 550mm、奥行き 100mm の鋼製の実験土槽を用いて行った. なお既往研究により、模型アンカーの3次元円筒形モデルと2次元的平面ひずみモデルでは、引抜き量と引抜き抵抗力の関係に同様の傾向が認められている<sup>5)</sup>.したがって、本研究では3次元的なアンカーが周辺地盤に及ぼす影響を、簡便な平面的ひずみ問題として近似的に評価できるものとした.

模型実験は、島根県産来待砂岩粉体と普通セメントを主体とした人工地盤に打設した アンカーを引張り、その時のアンカーおよび地盤内部のひずみを測定することで実験 を行った. 地盤内部のひずみ測定は、地盤材打設時に埋設した 3 本のひずみ計にて行 った. 図 5.1 にアンカー模型実験の概要を示す.

実験に供した地盤材は、全体的に均質な1層モデルと、アンカー体設置地盤の強度が 高い2層モデルの2種類とし、それぞれのモデル地盤で自由長部周面摩擦がある場合 とない場合で2種類、計4種類の実験を行っている、実験ケースの一覧を表5.1に示す.

| ケース名    | 自由長部<br>周面摩擦 | 地盤材<br>層構成 | 荷重ステップ<br>(kN) | 極限引抜き力<br>(kN) |  |
|---------|--------------|------------|----------------|----------------|--|
| Case-11 |              |            | 0.98           | 18.64          |  |
| Case-12 | +=1          | 1 層        | 0.49           | 12.75          |  |
| Case-13 |              |            | 0.49           | 15.21          |  |
| Case-14 |              | 2層         | 0.49           | 22.07          |  |
| Case-21 |              |            | 0.98           | 29.43          |  |
| Case-22 | = 11         | 1層         | 0.49           | 25.51          |  |
| Case-23 | 1 00 1/      |            | 0.49           | 29.92          |  |
| Case-24 |              | 2層         | 0.49           | 31.88          |  |

表 5.1 模型実験ケース一覧表



図 5.1 アンカー実大実験概要図

# 5. 2. 2 アンカー模型実験の方法

## (1) ひずみ計の作製

ひずみ計は,長さ 620mm の塩化ビニル製角パイプ(断面寸法 40×30mm)の内部に 三軸ひずみゲージを貼付したものを用いた.

ひずみゲージは,深度方向に 75mm 間隔で貼付し,1本あたり8箇所のひずみゲージ を貼り付けた.ひずみ計は,ゲージコードをパイプ内に通した内管型とし,充填する 地盤材に疎密が生じ難い構造とした.

ひずみ計内部にはシリコン材を充填し,角パイプのねじれに対する剛性を高め,全体的に均一な挙動をするようにした.また,ひずみ計の表面には,#80のサンドペーパーで十分な粗面加工を施し,地盤材との付着性・連続性を高めるように努めた.

#### (2) 模型地盤の作製

実験土槽の内面には、シリコングリスを塗布し、その上に厚さ 0.1mm のフィルムを かぶせ、地盤材と土槽内面との摩擦を極力低くする構造とした. これにより、アンカ ーの緊張力や受圧板の締付け力などと比べ、土槽内面との境界で発生する摩擦力は十 分小さいものと考えられる. このため、本研究では土槽内面の摩擦は考慮していない.

土槽内部にひずみ計を 3 箇所に設置し,また,アンカー打設箇所にはボイド管として角パイプ(長さ 620mm,幅 50mm,奥行き 100mm)を設置し,地盤材を打設した.

地盤材は,島根県産来待砂岩粉体と普通セメントおよび水を質量比3:2:2で配合し た貧配合ソイルセメントを用いた.ただし,2層モデルのアンカー体設置地盤について は,普通セメントに代わり早強セメントを用い,強度が強い地盤条件を想定したモデ ルとしている.また,養生後の体積収縮を抑え,ひずみ計と地盤材との密着性を保つ ために膨張材(太平洋マテリアル製ハイパーエクスパン)を添加している.

なお、地盤材に来待砂岩粉体を混合させることで、軟岩に近い強度をもち、均質か つ等方的な性質の人工軟岩が、少ない単位水量で作製できることから、ブリージング の発生を大幅に抑えることができ、良好な人工地盤を作製することができる.

地盤材打設1日後に、アンカー打設箇所のボイド管を抜き、アンカーを打設し3日 間養生した.このため、地盤材の養生日数は4日としている. テストピースによる要素試験より、1 層モデルの地盤材は一軸圧縮強さ  $q_u$ =6MN/m<sup>2</sup>、 弾性係数  $E_{50}$ =500MN/m<sup>2</sup> 程度であり、2 層モデルのアンカー体設置地盤については  $q_u$ =10MN/m<sup>2</sup>、 $E_{50}$ =600MN/m<sup>2</sup>程度であった.

## (3) アンカーの打設

アンカーテンドンとして、 \$\phi 8mm のステンレス製ネジ材を 2 本用いた. テンドンの 先端には\$\phi 26mm の支圧板および M8 ナットを取り付けており、摩擦圧縮型アンカーと 同様な構造とした. また、支圧板より上部のテンドンにはポリプロピレン製のシース 材を被せグラウトとの付着を防ぎ、アンカー頭部での緊張力がテンドン先端部まで直 接届く構造としている.

2本のテンドンの間には、モールドゲージを深度方向に 75mm 間隔で計 8 箇所に設置 し、アンカー緊張時におけるグラウト内のひずみ測定も行った.

グラウトは一般的なアンカーと同じく普通セメントを用い,水セメント比は 50%とした.また付着性向上のため,地盤材と同様に膨張材を添加した.なお,通常のアンカーではアンカー体部にグラウトの加圧注入を行うが,本模型実験では加圧注入は行っていない.

自由長部周面摩擦を除去するケースについては,自由長部の地盤材内壁にシリコング リスを塗布し,さらに厚さ 0.1mm のフィルムをかぶせた上でグラウトの打設を行った. 図 5.2 に模型アンカーの構造を示す.

## (4) 実験方法

模型実験は、1 サイクルの引抜き試験とした.荷重段階は、1 段階につき 0.49kN もし くは 0.98kN とし、アンカーの引抜けが確認できるまで単調載荷を行った.また、各荷 重段階における荷重保持時間は 2 分間を標準とし、ひずみの測定は、各荷重保持時間 経過後に測定した.



図 5.2 模型アンカーの構造

5.3 実験結果と考察

# 5.3.1 地盤内応力分布

(1)1層モデル

1 層モデルの模型実験は、 $\tau_F$ の有無により各 3 回ずつ、計 6 回の実験を行った. 表 4.2.1 に示した実験ケースのうち、代表として Case-13 と Case-23 について、地盤内部の最大 主応力分布を図 5.3 に示す. なお、ひずみ計 P-1 については、地盤内部の応力分布に対 称性があるものと考え、アンカーを中心軸とし位置の反転を行っている.

地盤内応力は,設置した各ひずみゲージから導かれた最大主ひずみに,地盤材の弾性 係数 *E*<sub>50</sub> を乗じ応力としたものであり,測定点間は平均により補完している.なお,応 力算出にあたり,ひずみ計は地盤材に対し十分軟らかい強度であるため,埋設したひ ずみ計は周囲の地盤と同じ挙動をするものと考え,地盤材の *E*<sub>50</sub> を用いた. 図 5.3 より,各ケースの地盤内応力分布を比較すると,地盤内の応力分布は,初期の 荷重段階から,各ケースで地盤内に発生する応力状況に大きな差異が認められる結果 となった. Case-13 については,低荷重段階から比較的大きな圧縮応力がアンカー周辺 に作用している状況が認められ,荷重段階が上がるに従い,その特徴が顕著にみられ るようになった. 圧縮応力の作用範囲が受圧板直下からアンカー体上端付近までのア ンカー周辺であることと,その主応力方向から判断すると,受圧板の締付けによる下 向きの応力と,アンカー体の引抜き抵抗に伴う上向きの応力により,その間の地盤が 圧縮された状態を表しているものと考えられる.

一方,アンカー体設置地盤においては,主に引張応力が働いていることが認められる. このことは,アンカー体周面は地盤と十分に付着しており,アンカーへの導入力が地 盤に伝達され,その抵抗力としての引張応力が地盤に作用している状況を示している.

アンカーから最も離れたひずみ計 P-3 の中段部(ひずみゲージ S4~S6)には圧縮応 力が集中しており、その上下には引張応力が分布する特徴が認められた. これらの応 力の境界線は、受圧板およびアンカー体それぞれに起因する応力の伝播範囲を示すも のと考えられ、概ね45度の広がりであることがわかる. この圧縮と引張の応力状態の 境界部は、地盤破壊の危険性が高いせん断帯が形成されつつある部分と考えられる. ただし、今回の模型実験においては、いずれのケースでも地盤破壊は認められず、ア ンカーと地盤との摩擦切れにより実験を終えている.

対照的に Case-23 は、低荷重段階における地盤内の応力変化が小さく、15kN 程度の 荷重から地盤内の応力変化が明瞭に認められた.載荷荷重 14.7kN 時の応力分布は、受 圧板直下付近とアンカー体付近にやや高い圧縮応力が作用しているが、その大きさは Case-13 よりもかなり小さいことがわかる.

アンカー引抜け直前の 29.4kN 載荷時には、アンカー体下端付近に高い圧縮応力が認 められたが、その主応力方向が水平に近いことから、局所的な地盤破壊に伴った応力 方向の変化が現れたものと考えられる.

なお,ひずみ計 P-2 などで受圧板直下よりもその下位の応力が高くなっている場合が 認められたが,これはひずみ計上端部は地盤材との付着長が短いために付着性が悪く, 地盤のひずみがひずみ計に伝達され難かったことによるものと考えられる.

以上のように、1層モデルでのアンカー模型実験の結果から、TFが無いアンカーにつ

いては、アンカー緊張に伴う地盤内応力の状態から、受圧板による下向きの圧縮応力 に加え、アンカー体から伝達される上向きの圧縮応力が作用し、その間の地盤が圧縮 される状態となることが示された.

これに対し、*τ<sub>F</sub>があるアンカー*については、アンカー緊張に伴う地盤内応力の変化が 比較的少ない特徴がみられ、受圧板からの締付け力が地盤深部まで効果的に伝達され ていない状況が示された.





#### (2)2層モデル

アンカー体設置地盤と自由長部地盤との間に強度差がある場合の地盤内応力分布を 調べるために、2層モデルによるアンカー模型実験を行った. 図 5.4 に、Case-14 と Case-24 における地盤内部の最大主応力分布を示す. なお、極限引抜き力  $T_{ug}$ については、Case-14 では  $T_{ug}$ =22.1kN と 1 層モデルの 1.2~1.7 倍、Case-24 では  $T_{ug}$ =31.9kN と 1 層モデルの 1.1~1.3 倍であり、 $\tau_F$ が無いケースの方が  $T_{ug}$ の増大が著しかった.

Case-14 の地盤内応力分布からは、1 層モデル同様、低荷重段階からアンカー周辺に 圧縮応力が作用している状況が観察され、載荷荷重の増加に伴い、その強さおよび作 用範囲が広がる傾向が認められた.また、1 層モデルと同様に、圧縮応力の作用範囲の 外側には引張応力が作用しており、周辺地盤がアンカー体の引上げに抵抗している応 力状況であることが伺える.ただし、Case-13 と比較すると、引張応力の大きさが小さ く、作用範囲も狭い特徴がみられることから、アンカー体設置地盤の強度が上がった ことによる影響を表していると考えられる.

したがって、アンカー体から伝達される上向きの応力が、Case-13 よりも低減されて いるものと考えられる.このため、自由長部地盤には受圧板からの締付け力が優勢に 作用し、その結果、ひずみ計 P-2 の最大主応力方向が全体的に鉛直方向となったものと 考えられる.また、このことからも、Case-13 において自由長部地盤で発生した圧縮応 力は、アンカー体から伝達された上向きの応力の影響を強く受けていたものと判断で きる.

Case-24 については,載荷荷重 15kN 程度までは,地盤内の応力変化が小さく,1層モ デルと同様の傾向が認められた.しかし,載荷荷重 19kN あたりから2層の地盤材の層 境界付近における引張応力の発生が認められ,地盤材が層境界で分断されつつある状 況を示している.これは,τ<sub>F</sub>の影響により,自由長部地盤が引上げられている状況であ ると考えられ,受圧板から下向きに伝達される応力が,層境界(地すべりの場合はす べり面)に対し,締付け力として有効に作用していないことを表している.

このことから,地盤内に地層境界やすべり面などの力学的不連続面が存在する場合, τ<sub>F</sub>の影響により,アンカーの緊張力が不連続面で地盤を分断する力として作用し,効果 的な締付け力の伝達がなされない可能性が示唆される.



図 5.4 地盤内部の最大主応力分布(2層モデル)

# 5.3.2 グラウト内の応力分布

図 5.5 に、1 層モデル、2 層モデルの各代表ケースにおける、荷重段階ごとのグラウト内部の応力分布を示す. なお、図の応力は、モールドゲージにより得られたひずみに、グラウトの弾性係数 E<sub>50</sub>を乗じ応力としたものであり、圧縮側を正とする.

全体的に、アンカー体下端部の圧縮応力が高く、摩擦圧縮型アンカーの特徴が認め られた. Case-13 および Case-14 は、自由長部の圧縮応力がほぼゼロであることから τ<sub>F</sub> が発現しておらず、一方、自由長部にも圧縮応力が作用する Case-23 および Case-24 で は τ<sub>F</sub>が発現していることがわかる.なお、今回の模型実験で行った全てのケースにお いて、載荷荷重の増加に伴った各深度での応力増加割合はほぼ一定であり、荷重段階 による周面摩擦抵抗の負担割合の深度遷移は認められなかった.

本模型実験におけるアンカー表面積は深度によらず一定であることから, グラウト内 に発生する圧縮応力と周面摩擦抵抗は比例関係にあると考えることができる.このた め、 $\tau_F$ があるケースについて、アンカー全体の周面摩擦抵抗に対する $\tau_F$ の摩擦負担割 合(以下、 $R_F$ とする)を、グラウト内の応力状態から間接的に求めることができる.

ここで,自由長部におけるグラウト内応力を $\sigma_F$ ,アンカー体部のものを $\sigma_A$ とすると, 摩擦負担割合  $R_F$ は式 5.1 によって導かれる.

$$R_F = \frac{\sum \sigma_F}{\sum \sigma_F + \sum \sigma_A} \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad ( \not \exists \ 5.1 )$$

1 層モデルである Case-23 は、 $\sigma_A$ に対して  $\sigma_F$ が比較的大きいことから、 $\tau_F$ の摩擦負担 割合は  $R_F$ =0.48 と高く、アンカー体とほぼ同じ割合となることがわかる. 一方、2 層モ デルである Case-24 は、 $R_F$ =0.26 と大幅に低下する. これは、図 5.5 に示すとおり Case-23 と Case-24 で  $\sigma_F$ に大きな差異が認められず  $\tau_F$ も同等であったと考えられることから、 アンカー体設置地盤の高強度化に伴った  $\tau_A$ の増大が大きく影響した結果といえる.

これらの比較により、アンカー体設置地盤と自由長部地盤の強度差が R<sub>F</sub>に大きな影響を及ぼすことが示された.したがって岩盤斜面のように、地盤の強度差があまり無い地盤条件に打設されたアンカーにおいては、R<sub>F</sub>が大きくなることが予想され、T<sub>F</sub>を

考慮したアンカーの設計を行う必要があると考えられる.

ただし、本模型実験ではアンカー体への加圧注入を行っていない.一般的に、加圧注入により τ<sub>4</sub>が増大することがわかっており、本研究における第3章では、均質な地盤においては加圧注入によるグラウトの高強度化により、τ<sub>4</sub>が概ね1.5倍となることを示した<sup>6</sup>.

このことを考慮し、今回の模型実験結果における  $\sigma_A$ を 1.5 倍として  $R_F$ を再計算する と、Case-23 では  $R_F$ =0.38、Case-24 では  $R_F$ =0.19 となり、その割合は減るものの、厳密 に  $T_{ug}$ を決定する上では決して無視できない割合であると考えられる。特に自由長部が 長いアンカーの場合は、その影響を大きく受けることが予想され、より正確な  $T_{ug}$ の算 出および経済的なアンカーの設計においては、 $\tau_F$ を考慮する必要があると考えられる。



図 5.5 グラウト内部の応力分布

#### 5.4 まとめ

本章では、アンカーを2次元平面問題とした模型実験を行った.人工的な地盤材に、 τ<sub>F</sub>がある場合と無い場合の2種類のアンカーを打設し、アンカー緊張時における地盤内 部およびグラウトのひずみを測定し、各部での応力分布の比較を行った.その結果、 以下の知見が得られた.

- (1) 地盤全体が均質な1層モデルでは, rFが無いアンカーを緊張した場合の地盤内応力 分布から,自由長部地盤が受圧板からの締付け力だけでなく,アンカー体から伝 達される上向きの圧縮応力も加わり,上下方向から圧縮される性状にあることが 示された.
- (2) 一方, τ<sub>F</sub>があるアンカーについては, アンカー緊張時の地盤内応力の変化に乏しく,
  受圧板からの締付け力が地盤深部まで効果的に伝達され難い性状であることが示された.
- (3) また,アンカー体設置地盤の強度を増加させた2層モデルにおいては,τ<sub>F</sub>があるア ンカーでは,地盤材の層境界で上下に分断される応力が働いていることが確認さ れた.これは,τ<sub>F</sub>の影響により自由長部地盤が引上げられている状況を示したもの であり,このため,受圧板からの締付け力が,本来作用させるべき層境界まで伝 達されていない状況を示している.
- (4) グラウト内の応力分布からは、tFが負担する摩擦抵抗の割合が、1層モデルではtA とほぼ同じであり、2層モデルではtAの約半分であることが示された.これらの比較から、アンカー体設置地盤と自由長部地盤の強度差がtFの負担する摩擦抵抗に大きく影響するといえる.これはつまり、岩盤斜面のような地盤強度の差があまり無いような条件下では、tFが負担する摩擦抵抗の割合が大きいことを示し、上記
   (3)を考慮すると、受圧板からの締付け力が、作用させるべき部分にまで伝達され難いことを示唆する.

(5) 上記(1)~(4)より, tFが存在することで,アンカー緊張力がtFを介して自由長部地 盤内に引上げようとする上向きの応力を作用させ,この応力と受圧板からの締付 け力が相殺することで,締付け力がアンカー体設置地盤との境界部(=すべり面) まで伝達され難いメカニズムが働くものと推察される.

# 第5章の参考文献

- 1) 勝見雅・藤村尚(1977): アース・アンカーの引抜き抵抗に関する模型実験的研究, 鳥取 大学工学部研究報告, 第8巻, pp.177-185.
- 2)勝見雅・西原晃(1980):アース・アンカーの引抜き抵抗に関する基礎的研究,土木学会 論文報告集,第 276 号, pp.65-76.
- 3) 勝見雅・木山英郎・藤村尚・岩成敬介(1981):深いアースアンカーの引抜き抵抗について, 鳥取大学工学部研究報告, 第12巻, pp.179-187.
- 4) 松本進(1978): アースアンカーに関する実験的研究, 鹿児島大学工学部研究報告, 第 20 号, pp.109-115.
- 5) 林鍾鉄・龍岡文夫・宮崎啓一(1990):砂地盤内の剛な鉛直アンカーの引抜き抵抗メカニ ズム,土と基礎, Vol.38, No.5, pp.33-38.
- 6) 片山直樹 (2009): アンカー体摩擦応力に対するグラウト加圧注入の効果,日本地すべり 学会誌, Vol.45, No.5, pp.26-32.

# 第6章 数值実験

#### 6.1 概説

第4章および第5章の各種アンカー実験の結果, *t*<sub>F</sub>が存在することで自由長部地盤に 上向きの応力が伝達されるため,受圧板からの締付け力が,本来作用させるべきアン カー体設置地盤まで伝達され難い状況となることが確認された.

また,アンカー模型実験結果(第5章)からは,<sub>F</sub>が無いケースにおいて,アンカー 体上端部付近から地盤へ伝達される上向きの応力の存在が明らかとなり,この影響も あり自由長部地盤に高い圧縮力が作用していることも確認された.

このため、アンカーが施工された地盤内部には、受圧板、アンカー体、自由長部の各 部から伝達される応力が相互に影響し、複雑な応力伝達がなされるものと考えられる.

そこで本章では、アンカー緊張時の地盤内応力状況をより詳細に把握することを目的 とし、有限要素法(以下, FEM と略)による数値実験を行う.

なお,アンカーに関する過去の FEM 解析事例は少なく,最近になって FEM を利用 したアンカーの研究がなされつつある.

これまでの主な研究事例としては、吉松ら<sup>1)</sup> によるアンカー工の抑止効果に関する 検討、東ら<sup>2)</sup>の摩擦圧縮型アンカーのアンカー体定着時の挙動についての FEM 解析、 蔡ら<sup>3)</sup> によるアンカー工で補強された斜面におけるせん断強度低減法を組み込んだ三 次元弾塑性 FEM 解析等の事例、田中ら<sup>4)</sup> による模型実験を再現するための弾塑性三 次元 FEM 解析のモデル検討などがある.

これらの研究事例から, FEM がアンカーおよび地盤挙動の解析に非常に有効である ことが示されており, 今後 FEM は斜面安定解析を含めた, より実際的なアンカーの設 計手法の確立に大きく寄与されるものと考えられる.

## 6.2 数值実験

# 6.2.1 数値実験の概要

アンカー模型実験結果から, τ<sub>F</sub>が無いケースの方が自由長部地盤に高い圧縮応力が作 用することが明らかとなった.ただし,この圧縮応力は受圧板からの締付け力に加え, アンカー体から伝達される上向きの応力が作用した結果,自由長部地盤が上下からの 圧縮を受けた影響である可能性が考えられる.

一方, *t<sub>F</sub>*があるケースについては,周辺地盤の応力変化が小さく,受圧板からの締付 け力も地盤深部まで伝達されていない状況が確認された.

このような各ケースにおける地盤内応力伝達状況を詳細に把握し, その伝達機構の違いを検討するために, FEM による数値実験を行った.

数値実験として、まず1層モデルでの模型実験について再現解析を行い、モデルの妥当性を検討した後、受圧板中央直下における地盤の鉛直応力分布に加え、アンカー周 面要素のせん断応力分布から、アンカー緊張時の地盤内応力状況の比較を行った.また、地すべりのように自由長部地盤がより軟質な場合を想定したモデルについても FEM 解析を行い、τ<sub>F</sub>の影響を考察した.

## 6.2.2 再現解析

(1)解析モデル

模型実験はアンカーを中心に左右対称で、奥行方向へも対称性をもつことから、解析 モデルはアンカーを中心とした模型実験の半分の領域(半空間)とし、奥行き方向へ は 1/10 のモデル化を行った. 有限要素メッシュを図 6.1 に示す.

解析は、3次元弾完全塑性有限要素解析とし、有限要素は20節点6面体アイソパラ メトリック要素を用い、積分点(Gauss 点)が8点の減退積分要素とした.また、構成 則は、降伏規準をMohr-Coulomb式、塑性ポテンシャルをDrucher-Prager式としたMC-DP モデルとした.

地盤材,アンカー,受圧板を構成する各要素は,全てソリッド要素としている.地盤

とアンカー間には摩擦切れが生じるため、本来はジョイント要素を用いることが望ま しいが、今回は簡単のため、周面要素として通常のソリッド要素を薄く配置すること で摩擦切れを表現した<sup>5)</sup>.ただし本数値実験では、アンカーが摩擦切れを生じた時点ま での地盤内応力分布を調べることに主眼を置いているため、要素タイプの違いによる 影響はほとんどないものと考えられる.

境界条件は,側面については各側面と直交する方向への変位を拘束し,底面につい ては鉛直上方への変位のみを許す条件とした.載荷荷重は,アンカー下端に上向きの 荷重として与え,その反力を受圧板表面に下向きの等分布荷重として与えた.1ステッ プ当りの載荷荷重は,0.6kNとした.

解析ケースは模型実験と同じく  $\tau_F$ の有無により 2 パターンとし、 $\tau_F$ が無い場合を Case-1A、 $\tau_F$ がある場合を Case-2A とする.



図 6.1 有限要素メッシュ

## (2) 材料定数の決定

各要素の材料定数を表 6.1 に示す. 地盤材の弾性係数 E および粘着力 c, 単位体積重量  $y_t$  については、模型実験時に測定した要素試験の値を参考に決定した. また、ポア ソン比 v は 0.3 とし、静止土圧係数  $K_0$  については式 6.1 より求めた <sup>6)</sup>.

 $K_0 = \frac{\nu}{1 - \nu} \qquad ( \vec{\mathfrak{x}} \ 6.1 )$ 

アンカーおよび受圧板の破壊は考えず, E および c は十分高い値とした.また,自由 長部およびアンカー体周面要素については,模型実験におけるグラウトの一軸圧縮強 さ qu に加え,測定したグラウト内の応力分布を参考に,数種の E および c を与え,要 素毎に最も再現性の高い値を採用した. Case-1A における自由長部周面要素については, E および c を極めて小さい値としている.

なお、本研究における FEM 解析では、内部摩擦角およびダイレイタンシー角は考慮 していない.

| 材料名             | E (MN/m <sup>2</sup> )         | v   | $\frac{c}{(\mathrm{kN/m}^2)}$   | $\frac{\gamma_t}{(kN/m^3)}$ | $K_{\prime\prime}$ |
|-----------------|--------------------------------|-----|---------------------------------|-----------------------------|--------------------|
| 地盤              | 500                            | 0.3 | 3000                            | 18.0                        | 0.43               |
| 周面要素(自由長部)      | 10~20*1                        | 0.3 | 200~400 <sup>*1</sup>           | 18.0                        | 0.43               |
| 周面要素<br>(アンカー体) | 15 <b>~</b> 100 <sup>**1</sup> | 0.3 | 300 <b>~</b> 2000 <sup>*1</sup> | 18.0                        | 0.43               |
| アンカー            | Large                          | 0.2 | Large                           | 23.0                        | 0.25               |
| 受圧板             | Large                          | 0.2 | Large                           | 79.0                        | 0.25               |

表 6.1 材料定数一覧

※1:要素試験結果および模型実験におけるグラウト内の応力分布を参考に、要素毎に最も再現性の高い値を採用した.

# (3) 再現解析の結果

再現解析の結果, Case-1Aの極限引抜き力は *T<sub>ug</sub>*=22.2kN, Case-2A は *T<sub>ug</sub>*=33.5kN となり, 概ね模型実験結果に近い *T<sub>ug</sub>*を示す結果が得られた.

図 6.2 に, FEM 解析による 15.6kN 載荷時における地盤内部の最大主応力分布を示す. 最大主応力の分布には,図 6.3 に再掲する模型実験結果と同様な傾向が認められ,全体 的な再現性は良好と考えられる.



図 6.2 FEM 解析による地盤内部の最大主応力分布(荷重:15.6kN)



図 6.3 模型実験による地盤内部の最大主応力分布(荷重:14.7kN)

局所的な再現性を検討するために,受圧板下部地盤における鉛直応力の比較を行った. 図 6.4 および図 6.5 に,模型実験でのひずみ計 P-1 の各ひずみゲージ位置における,載 荷荷重に伴う鉛直応力 σ<sub>2</sub>の応力経路を示す.

τ<sub>F</sub>の有無に関わらず,全体的には高い再現性が認められる結果といえる.ただし,τ<sub>F</sub> があるケースの S8 に関しては模型実験結果から大きく乖離しており,S7 についてもや や再現性が低い結果となった.これらの部分にみられた結果の乖離については,前述 のように模型実験において,ひずみ計上端部の地盤材との付着長の短さが影響したこ とに加え,アンカーからτ<sub>F</sub>を介した上向きの応力が加わり,地盤材が上下からの強い 圧縮を受けた影響で,ひずみ計上端部が地盤材との付着性が損なわれ,地盤のひずみ が過小に計測された可能性が考えられる.このため,Case-1A での再現性の高さを考慮 すると,模型実験においても解析結果と同等の応力が発生していたものと判断される.

以上より,全体的には良好な再現性であるといえるため,本モデルを用い, tr が地盤 に伝達される締付け力に及ぼす影響を考察する.

# 6.3 実験結果と考察

## 6.3.1 締付け力伝達状況の比較

図 6.6 に、載荷荷重 15.6kN 時における、各ケースでの受圧板中央直下の鉛直応力 σ<sub>Z</sub> と、アンカー周面要素のせん断応力 τ<sub>XZ</sub>の深度分布を示す.また、鉛直応力の基準値と して、アンカー体への載荷は行わず、受圧板の締付けのみを考慮した場合の解析値も 示す.基準値の解析は、アンカーおよび周面要素を地盤材に置換えて解析を行ったも のである.

解析結果より、 $\sigma_Z$ が地盤内に伝達される大きさは、基準値よりも Case-1A で高く Case-2A で低い傾向が示された.

Case-1A では、地盤材表面から GL-22.2cm までは  $\sigma_Z$ が基準値より 6~19%程度高い値 で分布するが、それ以深では徐々に応力値が高くなり、GL-37.8cm では基準値より 45% 高い値となるピークが認められた.



図 6.4 地盤内鉛直応力経路(TFが無い場合)



図 6.5 地盤内鉛直応力経路(TFがある場合)

-91-

アンカー周面要素の  $\tau_{XZ}$ の分布より, GL-45.0cm 以深にせん断応力が高く発現していることから,主として GL-45.0cm 以浅における周辺地盤には,アンカー体から上向きの圧縮応力が伝達されたものと考えられ,この応力の影響で GL-37.8cm をピークとした  $\sigma_Z$ の増加が生じたものと考えられる.

この  $\sigma_z$ のピークよりも深部については、深度に伴う急激な応力低下が認められた. 一方、この部分はアンカー周面要素の  $\tau_{XZ}$ が高く発現している深度でもあることから、 アンカー体の引上げに対する反力としての引張応力が、 $\tau_A$ を介して周辺地盤に伝達され ている部分と考えられる.したがって、この  $\sigma_Z$ の低下は、地盤に発生した引張応力と 干渉したことによる応力の相殺が生じた影響と考えられる.

Case-2A については、地盤材表面から深部に向かう  $\sigma_z$ の低下量が Case-1A よりも大きく、GL-30.6cm では基準値より約 38%の低下が認められた。それ以深は、基準値と同じ傾向の応力の深度分布を示すが、GL-45.0cm から再び急激な応力低下を示す傾向がみられた。

地盤材表面付近における  $\sigma_Z$ の低下は、GL-8~10cm 付近に高い  $\tau_{XZ}$ が発現しているこ とから、その周辺地盤にはアンカー緊張に伴い、 $\tau_F$ を介した引張応力が作用していたも のと推察され、応力の相殺が生じた影響により Case-1A よりも大きく  $\sigma_Z$ の低下が生じ たものと考えられる.

また, GL-45.0cm 以深での  $\sigma_Z$ の低下は, Case-1A と同様,  $\tau_A$  を介し周辺地盤に発生した引張応力と干渉し,応力の相殺が生じた影響と考えられる.

以上の解析結果から、受圧板から地盤に伝達される鉛直応力は、アンカーの周面摩 擦抵抗を介して発生した地盤の引張応力領域では、応力の相殺により低下する傾向に あることが示された.すなわち、 $\tau_F$ や  $\tau_A$ により周辺地盤に引張応力が発生している地 盤領域においては、受圧板からの  $\sigma_Z$ は効果的に伝達され難いことを意味する.

したがって,自由長部周面摩擦が発現するアンカーについては,すべり面などの地 盤深部における締付け効果が低減されるものと考えられる.



図 6.6 鉛直応力とせん断応力の深度分布(荷重:15.6kN)

## 6.3.2 自由長部地盤の強度の影響

アンカーを対策工として用いる地すべり等の斜面では、不安定層である自由長部地盤 の方が、アンカー体設置地盤と比較して軟質な場合がほとんどである.このため、自 由長部地盤の弾性係数 *E* および粘着力 *c* を低減させたケースについても数値実験を行 い、自由長部地盤の強度が与える影響について調べた.

解析モデルは、再現解析を行ったモデルを基本とし、自由長部地盤の $E \ge 0.2$  倍および 0.5 倍に低減させたケースについて、 $\tau_F$ がある場合と無い場合、それぞれについて FEM 解析を行った.

なお,弾性領域であれば E と c は比例関係にあると考えられることから,ここでは E に比例させて c の低減を行っている.その他の材料定数および諸条件については,再現 解析モデルと同じとした.また,結果の比較は,載荷荷重 15.6kN 時とした.

図 6.7 に,解析結果による受圧板中央直下の oz の深度分布を示す.また,アンカー体

への載荷は行わず,受圧板の締付けのみを考慮した場合の鉛直応力を基準値とし,基 準値に対する σ<sub>2</sub>の増減割合の深度分布を図 6.8 に示す.

図 6.7 に示す σ<sub>Z</sub>の分布から, τ<sub>F</sub>の有無に関わらず,自由長部地盤の強度が高いケース ほど,深部への応力伝達度が高い傾向がみられた.

また,図 6.8 に示す  $\sigma_Z$ の増減割合からは、 $\tau_F$ が無い場合は、GL-20cm 付近でいずれ のケースについても一旦基準値の約 20%増の値となった後、深部に向かい応力値が増 大する傾向が認められた.深部での  $\sigma_Z$ の増大は、アンカー体から  $\tau_A$ を介し伝達される 上向きの応力の影響と考えられることから、地盤内部で下向きに作用する締付け力と しては、いずれのケースでも基準値より 20%程度高いものと推察される.

一方,  $\tau_F$ がある場合は, 深部に向かい  $\sigma_Z$ の低下量が大きい傾向が認められた.特に, 地盤強度が低い場合ほどその傾向が著しいことがわかる.  $\sigma_Z$ の増減割合からも, 地盤 強度が低いケースほど応力の低下割合が著しく,  $E \ge 0.2$  倍としたケースの地盤境界部 では,  $\sigma_Z$ が基準値から 53%低下していることがわかる.

これらの数値実験の結果から, *w*が無い場合については,自由長部地盤の強度に関わらず,地盤深部への締付け力の伝達状況には大きな差が無いことが示された.

一方 *τ<sub>F</sub>* がある場合,自由長部地盤の強度が低いほど,締付け力の低下量が深部ほど 大きい傾向にあることが示された.

なお,これらの影響は,アンカーを平面ひずみ問題として扱ったため,周面摩擦の 有無の影響が大きく表れた可能性が高く,今後3次元モデルを用いた解析結果との比 較検討が必要と考える.



図 6.7 鉛直応力の深度分布(荷重:15.6kN)



図 6.8 鉛直応力増減割合の深度分布(荷重:15.6kN)

# 6.4 まとめ

本章では、アンカー模型実験(第5章)を FEM で再現解析を行い、τ<sub>F</sub>の有無による 締付け力伝達状況の比較を行った.また、パラメトリックスタディとして、自由長部 地盤が軟質な場合を想定したケースについても FEM 解析を行い、τ<sub>F</sub>の影響について調 べた.その結果、以下の知見が得られた.

- (1) *τ<sub>F</sub>*が無いケースについては、アンカー体から上向きの圧縮応力が自由長部地盤に伝達されたことが確認され、アンカー模型実験結果と一致する結果といえる.これにより、自由長部の *τ<sub>F</sub>*が無い場合のアンカーにおいては、その緊張時には受圧板による下向きの締付け力と、アンカー体からの上向きの応力により、自由長部地盤が圧縮される性状となることが示された.
- (2) 一方, *t<sub>F</sub>*があるケースにおいては, *t<sub>F</sub>*介して自由長部地盤内に引張応力が作用して おり,それが受圧板からの締付け力と干渉することで応力の相殺が生じ,締付け 力の深度に伴う低下が認められた.
- (3) 自由長部地盤の強度を低下させたケースにおける FEM 解析結果の比較から, τ<sub>F</sub>が 無いケースでは,自由長部地盤の強度によらず,同程度の締付け力が深部に伝達 していたのに対し, τ<sub>F</sub>があるケースでは,自由長部地盤の強度が低いほど,締付け 力の低下量が深部ほど大きくなる傾向であることが示された.

# 第6章の参考文献

- 1) 吉松弘之・中山守人(1993):離散化モデル解析によるアンカー工抑止効果,地すべり, Vol.30, No.1, pp.36-44.
- 2) 東康治・加藤邦雄(1998):周面摩擦・圧縮型永久アンカーの定着時挙動について,平成 10年度地すべり学会シンポジウム「地すべりに関わるモデル解析と実際」, pp.74-80.
- 3) 蔡飛・鵜飼恵三(2003): アンカーエによる斜面補強効果-極限平衡法と弾塑性 FEM の 比較,日本地すべり学会誌, Vol.40, No.4, pp.8-14.
- 4)田中尚・石井靖雄・藤澤和範・森下淳(2006):模型実験の再現によるアンカー工弾塑性
  3次元 FEM 解析モデルの検討,土木技術資料, Vol.48, No.4, pp.64-69.
- 5) 若井明彦・鵜飼恵三(1995):単杭の水平載荷挙動に関する模型実験と解析,土木学会論 文集,No.517,Ⅲ-31, pp.159-168.
- 6) (社)地盤工学会(2003): 弾塑性有限要素法をつかう, 51p.
## 第7章 結論

本研究は、アンカーにおける課題として(1)自由長部における周面摩擦の影響と、 (2)加圧注入の効果を挙げ、それらを解明するために実験的研究を行ったものであ る.本論文の結論として、第3章~第6章のまとめを整理し、以下に述べる.

第3章では、アンカー体になされるグラウトの加圧注入の効果について、一定の評価 を与えるために、均質な地盤を想定したモデル実験を行った.

その結果,加圧注入ではグラウトの浸透過程は生じえないことが明らかとなったものの,その一方で,加圧注入によるグラウトと地盤材との摩擦応力の増大が認められた.

このことに加え、加圧注入によるグラウトの脱水が生じ、その影響でグラウトが高密 度化および高強度化したことを確認したことから、このことが加圧注入による摩擦抵 抗増加の主要因であると結論付けた.

第4章では,自由長部周面摩擦の影響が受圧板の締付け力に及ぼす影響を評価するために,アンカーの実大実験を行った.実験では,自由長部の充填注入を行った場合と 行わなかった場合の2種類のアンカーを打設し,アンカー緊張時におけるテンドン拘 束具,グラウトおよび地盤内部のひずみの測定を行った.

その結果,自由長部周面摩擦が存在するアンカーについては,相対的に締付け力が低い傾向となるものと考えられ,その要因としては,自由長部周面摩擦を介して自由長部地盤に伝達される引張応力が,受圧板から伝達される締付け力と干渉し相殺する影響である可能性を指摘した.

第5章では,第4章の結果を受け,より均質な条件下での実験により検証する必要が あると考え,人工的な地盤に小規模なアンカーを打設した模型アンカーによる実験を 行った.アンカー模型実験は,アンカーを無限大の直径をもつものとした2次元平面 ひずみ問題と考え,高さ600mm,幅550mm,奥行き100mmの鋼製の実験土槽を用い, 打設した模型アンカーの緊張時における地盤およびグラウトのひずみの測定し,比較 検討を行った.

その結果,自由長部周面摩擦が存在することで,それを介してアンカー緊張力が周辺 地盤を引上げようとする上向きの応力として伝達され,この応力と受圧板からの締付 け力が干渉し相殺する影響で,締付け力がアンカー体設置地盤との境界部(=すべり 面)まで伝達することを阻害する可能性を指摘した.

第6章では、これまでの結果を受け、アンカーが施工された地盤内部には、受圧板、 アンカー体、自由長部の各部から伝達される応力が相互に影響し、複雑な応力伝達が なされるものと考えられたため、アンカー緊張時の地盤内応力状況をより詳細に把握 することを目的とし、FEM による数値実験を行った.

数値実験として,まず1層モデルでの模型実験について再現解析を行い,アンカー緊 張時の地盤内応力状況の比較を行った.また,地すべりのように自由長部地盤がより 軟質な場合を想定したモデルについても FEM 解析を行い,自由長部周面摩擦の影響を 考察した.

その結果,自由長部周面摩擦があることで,アンカー緊張時にはその周辺地盤に引張 応力が作用し,受圧板からの締付け力が深部へ伝達され難い状態となることが明らか となった.また,自由長部周面摩擦がある場合,自由長部地盤の強度が低いほど,深 部への締付け力の伝達割合が低くなる傾向が示された.

以上のことから,自由長部周面摩擦が作用することにより,従来考えられていたより もアンカーの締付け効果が低く見込まれるものと考えられる.今後,アンカーを実際 の現象に沿った設計方法を考案していく上で,このことは十分考慮しなければならな い問題であると考える.

現行の2次元極限平衡法によるアンカーの設計手法では、この自由長部周面摩擦の影響を全く考慮することができないため、今後は FEM などの応力解析手法を取り入れ、 アンカーの設計がなされるようになると思われる.

このような場合において、本研究では、アンカーの具体的な設計手法については検討 していないため、本研究結果の具体的な活用方法については言及できないものの、本 研究の結果から導かれた、自由長部周面摩擦がアンカー締付け効果に及ぼす影響に関 する基礎的な考察が、今後の研究に対して多くの示唆を与えるものと考える.

また、今後は自由長部周面摩擦が発生しないように、アンカー自由長部の構造の見直 しも必要であると考える.現行の施工方法では、自由長部に対してもアンカー体と同 じ配合のセメントミルクを充填注入する場合が多いが、このために自由長部において も周面摩擦が生じることとなる.充填注入の目的としては、アンカーを挿入した孔の 孔壁崩壊に伴う周辺地盤の緩み防止および自由長部の防錆・防食である.したがって、 地盤との摩擦が生じ難い比較的軟質な材料(例えばベントナイトなどを混合した貧配 合ソイルセメント)など、自由長部に充填注入する材料を改めて検討する必要がある と思われる.

## 謝辞

本研究は、著者が建設コンサルタントとして斜面災害の業務に従事する間に、グラウンド アンカーの設計に関して抱いた疑問を解決したいという思いに端を発したものです.業務 に従事する傍ら、社会人として山口大学大学院理工学研究科に入学し、多くの方々の御支 援や御協力によって、研究を完遂することができたことを大変有難く思っています.

本研究の全般にわたり、山口大学大学院理工学研究科の金折裕司教授には、指導教員とし て終始あたたかい御指導と御教示を頂きました.また、島根大学大学院総合理工学研究科 の横田修一郎教授には、論文の内容に関して貴重な議論をして頂くとともに、多くの御助 言を頂きました.

山口大学大学院理工学研究科の田中和広教授,宮田雄一郎教授,澤井長雄准教授ならびに 鈴木素之准教授には,論文をまとめるにあたり,貴重な御指摘と御助言を頂きました.特 に第3章の内容に関して,同研究科の故山本哲朗教授には査読を御願いして貴重な御助言 を頂きました.同研究科の吉本憲正助教ならびに山本修三専門技術員には,第5章に述べ たひずみ測定のためのデータロガー等の機器の使用を御快諾して頂くとともに,多くの御 支援を得ました.

最後になりましたが,筆者が勤務する株式会社日本海技術コンサルタンツの中田昭彦社長 ならびに大坂理常務には、本研究について多大なる御理解を示して頂き、研究を遂行する 機会を与えて頂きました.また、同社隠岐支社の浜崎晃支社長には、本研究を遂行するた めに、筆者が社会人の立場で山口大学大学院に入学することに対し御理解と御支援を頂き ました.

上記の方々に、衷心より感謝の意を表します.