1	Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading
2	enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets
3	
4	Sukanya Aiamla-or ^a , Samak Kaewsuksaeng ^{b**} , Masayoshi Shigyo ^{a,b} , Naoki Yamauchi ^{a,b*}
5	
6	^a The United Graduate School of Agricultural Science, Tottori University, Koyama-
7	Minami, Tottori 680-8553, Japan
8	^b Faculty of Agriculture, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
9	
10	
11	
12	
13	
14	
15	
16	* Corresponding author Tel.: +81-83-933-5843; Fax: +81 83933 5820; E-mail
17	address:yamauchi@yamaguchi-u.ac.jp
18	**Present address: Faculty of Technology and Community Development, Thaksin
19	University, Phatthalung campus, Phatthalung 93110, Thailand
20	
21	

22 ABSTRACT

23 UV-B irradiation was applied to broccoli florets to investigate its effect on 24 chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli. Broccoli florets were irradiated with UV-B doses at 4.4, 8.8 and 13.1 kJ m^{-2} and then 25 kept at 15 °C in darkness. We found that a UV-B dose of at least 8.8 kJ m^{-2} efficiently 26 27 delayed the decrease of the hue angle value and the contents of chlorophylls a and b. Chlorophyllide a and 13^2 -hydroxychlorohyll a gradually decreased with senescence. 28 29 Pheophorbide a and pyropheophorbide a levels were significantly higher in broccoli 30 without UV-B treatment. Chlorophyllase and chlorophyll-degrading peroxidase activities 31 with UV-B treatment were suppressed, as well as the activity of Mg-dechelatase. Mg-32 dechelating substance activity was also suppressed with this treatment. We concluded 33 that UV-B treatment effectively suppressed chlorophyll degradation in broccoli florets 34 during storage, suggesting that the effect could be due to the suppression of chlorophyll-35 degrading enzyme activities. 36 37 38 39 40 41 42 43 Keywords: Broccoli; UV-B; Chl degradation; Chl derivatives; Chl-degrading enzymes 44

45 **1. Introduction**

46 Broccoli is a highly perishable product and floret yellowing is a major limitation to 47 shelf life and quality. Therefore, suitable treatments are necessary to maintain quality 48 levels until consumption. Some techniques used to delay senescence include heat 49 treatments, which effectively reduce yellowing among stored broccoli florets (Funamoto, 50 Yamauchi, Shigenaga & Shigyo, 2002; Costa, Civello, Chaves & Martínez, 2006; 51 Kaewsuksaeng, Yamauchi, Funamoto, Mori, Shigyo & Kanlayanarat, 2007); chemical 52 treatments, such as 1-methylcyclopropene (Able, Wong, Prasad & O'Hare., 2002) and 53 ethanol vapor (Suzuki, Uji & Terai, 2004); plant hormone treatment like a cytokinin 54 (Costa, Civello, Chaves & Martínez, 2005); low temperature storage (Starzyńska, Leja & Mareczek, 2003); and controlled atmosphere storage (Yamauchi & Watada, 1998). 55 56 Recently, treatment with UV-C was reported to maintain the postharvest quality of 57 strawberries (Erkan, Wang & Wang, 2008) and also to inhibit chlorophyll (Chl) 58 degradation in stored broccoli florets (Costa, Vicente, Civello, Chaves & Martínez, 2006). 59 However, the effects of UV-A and/or UV-B on Chl degradation in stored broccoli florets 60 have not been clarified. Previous studies reported that UV-A and UV-B irradiation 61 enhanced the level of antioxidant compounds and antioxidant enzyme activity in plants 62 (Costa, Gallego & Tomaro, 2002). Toivonen & Sweeney (1998) reported that antioxidant enzymes containing superoxide dismutase, peroxidase and catalase are important for the 63 64 retardation of Chl degradation in broccoli. However, no study has examined the effect of the postharvest application of UV-A and/or UV-B on Chl degradation in broccoli florets. 65 66 Furthermore, UV-A and UV-B are less harmful wavelengths, in comparison with UV-C,

and may represent a new practical approach for maintaining the postharvest quality offruits and vegetables.

69	The early steps of Chl degradation include the removal of phytol and the formation
70	of chlorophyllide (Chlide) <i>a</i> by chlorophyllase (Chlase) (Harpaz-Saad et al, 2007),
71	followed by the removal of an Mg atom by either Mg-dechelatase (MD) (Langmeier,
72	Ginsburg & Matile, 1993) or another Mg-dechelating substance (MDS) (Shioi, Tomita,
73	Tsuchiya & Takamiya, 1996). Finally, pheophorbide (Pheide) a is degraded to
74	fluorescent Chl catabolites, which are primarily colorless catabolites, via red Chl
75	catabolite by Pheide a oxygenase and red Chl catabolite reductase (Matile, Hörtensteiner
76	& Thomas, 1999). Chl a is also degraded in vitro by Chl-peroxidase (POX) in the
77	presence of some phenolic compounds and hydrogen peroxide to form 13^2 -
78	hydroxychlorohyll (OHChl) a, which is an oxidized form of Chl a (Yamauchi, Funamoto
79	& Shigyo, 2004). In horticultural crops, OHChl <i>a</i> is usually presents as a Chl derivative,
80	and its content shows a decline with senescence during storage (Yamauchi & Watada,
81	1991, 1993, 1998).
82	Previously, we have investigated the effects of UV-A and UV-B treatment on
83	yellowing of broccoli florets during storage at 15 °C. In general, broccoli florets retained
84	more color after UV-B irradiation as compared to UV-A irradiation, although the doses of
85	UV-A treatment and UV-B treatment were similar (Aiamla-or, Yamauchi & Shigyo, 2007)
86	Here, we therefore examined the impact of UV-B irradiation on Chl degradation and Chl-
87	degrading enzyme activities and the resultant quality control of broccoli using UV-B
88	irradiation.

90	2. Materials and Methods
/0	and mattering and methods

92 2.1. Plant materials and UV-B treatments

94	Broccoli (Brassica oleracea L. cv. endeavor) heads were harvested in the Fukuoka
95	Prefecture and transported to the Horticultural Science laboratory at Yamaguchi
96	University. Broccoli heads were immediately irradiated with UV-B (spectral peak value:
97	312 nm, T-15M, VL). Each broccoli head was placed vertically under the UV-B lamps at
98	a distance of 15 cm, resulting in UV-B energy doses of 4.4, 8.8 and 13.1 kJ m ^{-2} . Broccoli
99	florets were kept in polyethylene film bags (0.03 mm in thickness), with the top folded
100	over. The bags were then placed on a plastic tray and stored at 15 $^{\circ}$ C in the dark.
101	Triplicates of three heads were removed at scheduled intervals during the 6-day storage
102	period, and the floral tissue was analyzed.
103	
104	2.2. Surface color and Chlorophyll assays
105	
106	Chl content was determined using N,N-dimethylformamide (Moran, 1982). The
107	surface color of the heads, as represented by hue angle, was measured with a color
108	difference meter (Nippon-denshoku NF 777).
109	
110	2.3. Preparation of substrates
111	
112	2.3.1. Chlorophyll a

114	Spinach leaves were homogenized for 3 min in cold acetone (–20 $^{\circ}$ C). The homo-
115	genate was filtrated through two layers of Miracloth (Calbiochem, USA). The filtrates
116	were treated with dioxane and distilled water and then kept for 1 h on ice. The filtrates
117	were centrifuged at $10,000 \times g$ for 15 min at 4 °C. After centrifugation, the pellets were
118	treated again with acetone, dioxane and distilled water, and then kept for 1 h on ice.
119	Afterwards, the soluble pellets were centrifuged at $10,000 \times g$ for 15 min at 4 °C and
120	where subsequently dissolved in petroleum ether. Soluble chlorophyll in petroleum ether
121	was stored at -20 °C until the individual pigments were separated using sugar powder
122	column chromatography (Perkins & Roberts, 1962). Finally, five hundred μ g/mL of Chl
123	a was prepared in acetone.
124	
125	2.3.2. Chorophyllin a
126	
127	Chlorophyllin (Chlin) a was slightly modified according to Vicentini, Iten & Matile
128	(1995). The Chl <i>a</i> acetone solution (500 μ g/mL) was partitioned into petroleum ether.
129	The petroleum ether phase was washed three times with 20 mL of distilled water, after
130	which 30% KOH in methanol was mixed into the solution. The Chlin a was allowed to
131	precipitate and was then centrifuged at $16,000 \times g$ at 4 °C for 15 min. The precipitate was
132	dissolved in distilled water and adjusted to pH 9.0 with 2 M of tricine.
133	
134	2.3.3. Chlorophyllide a

136	Chlorophyllide (Chlide) <i>a</i> was prepared from a Chl <i>a</i> acetone solution (500 μ g/mL)
137	with 0.798 mg protein of partial purified Chlase (20-40% of $(NH_4)_2SO_4$) from green
138	citrus fruits. The reaction mixture was incubated at 25 $^{\circ}$ C for 40 min. The reaction was
139	stopped using acetone and the remaining Chl a was separated by hexane. The lower part
140	of the reaction mixture was used as the Chlide <i>a</i> .
141	
142	2.4. Analyses of Chlorophyll-degrading enzyme activities
143	
144	An acetone powder (500 mg) of floral tissues was suspended in 15 mL 10 mM
145	phosphate buffer (pH 7.0) containing 0.6% CHAPS for Chlase. For Mg-dechelatase, an
146	acetone powder (500 mg) of floral tissues was suspended in 15 mL 50 mM phosphate
147	buffer (pH 7.0) containing 50 mM KCl and 0.24% Triton-X 100, or in 15 mL 10 mM
148	phosphate buffer (pH 7.0) for Chl-POX. The crude enzyme was stirred for 1 h at 0 °C and
149	the mixture was filtered with two layers of Miracloth. The filtrate was then centrifuged at
150	16,000 × g at 4 °C for 15 min. The supernatant was used as the crude enzyme extract. The
151	enzyme protein contents were determined based on Bradford's method (1976).
152	
153	2.4.1. Chlorophyllase activity
154	
155	The reaction mixture contained 0.5 mL 0.1 mM phosphate buffer (pH 7.5), 0.2 mL
156	500 μ g/mL Chl <i>a</i> acetone solution (100 μ g/mL) and 0.5 mL enzyme solution. The
157	reaction mixture was incubated in a water bath at 25 $^{\circ}$ C for 40 min, and the enzyme

reaction was stopped by adding 4 mL of acetone. Chlide *a* was separated by adding 4 mL

159	of hexane. The upper phase contained the remaining Chl a while the lower phase
160	contained the Chlide a . The activity was spectrophotometrically detected by Chlide a
161	formation at 667 nm per unit per mg protein.
162	
163	2.4.2. Chlorophyll-degrading peroxidase activity
164	
165	Chl-POX was determined as previously described (Yamauchi, Harada & Watada.,
166	1997). The reaction mixture contained 0.5 mL of enzyme solution, 0.1 mL 1.0% Triton
167	X-100, 0.1 mL 5 mM p-coumaric acid, 0.2 mL 500 µg/mL Chl a acetone solution, 1.5
168	mL 0.1 mM phosphate buffer (pH 5.5) and 0.1 mL 0.3% hydrogen peroxide. Activity was
169	determined spectrophotometrically by measuring the decrease of Chl a at 668 nm per unit
170	per mg protein at 25 °C.
171	
172	2.4.3. Mg-dechelatase activity
173	
174	Mg-dechelatase activity using Chlin a was determined spectrophotometrically by
175	measuring the absorbance of pheophorbin a formation at 686 nm (Costa, Gallego &
176	Tomaro, 2002). The reaction mixture, which contained 0.75 mL 50 mM Tris-HCl buffer
177	(pH 8.0), 0.3 mL Chlin a and 0.2 mL of enzyme solution, was incubated at 37 °C. Mg-
178	dechelatase activity using Chlide a was determined by the method of Suzuki & Shioi
179	(2002) with slight modification. The activity of Mg-dechelatase was measured with
180	Pheide <i>a</i> formation, the reaction mixture contained 0.75 mL 10 mM phosphate buffer (pH
181	7.5), 0.25 mL Chlide a (7.55 µg) and 0.2 mL of enzyme solution.

183 2.5. Analyses of Chlorophyll and resulting derivatives

185	The acetone-HEPES solution was prepared from 16 mL of cold acetone and 2 mL
186	50 mM HEPES buffer (pH 7.5). Two grams of fresh broccoli florets were ground in 9 mL
187	of acetone-HEPES solution using a mortar and pestle and the remaining solution (9 mL
188	acetone-HEPES solution) was then added. The extraction was kept in the dark for 5 min,
189	and passed through filter paper (Whatman # 2). Subsequently, the aliquots were filtered
190	through a DISMIC filter (0.45 μ m, AVANTEC, Japan) and then used for HPLC analyses.
191	Chl and the resulting derivatives were analyzed by HPLC using a Hitachi L-700 pump
192	with an automated gradient controller and a Hitachi L-2450 diode array detector or a
193	Hitachi L-7240 UV-visible spectrophotometer. The absorption spectrum of the pigment
194	was recorded at 665 nm. Pigments were separated on a LiChropher C18 column
195	(MERCK), 4×250 mm, using two solvents; solvent A, 80% methanol (methanol:milipore
196	water, 80:20, v/v) and B, 100% ethyl acetate in a gradient. Solvent B was added to
197	solvent A at a linear rate until a 50:50 mixture was attained at the end of 20 min. The
198	50:50 mixture was then used isocratically for an additional 20 min, as described by Eskin
199	& Harris (1981). The flow rate was 1.0 mL/min, and the injection volume was 100 μL
200	The identification of Chl and the resulting derivatives were based on the retention time
201	and the visible absorption spectra. Chl derivative standards, such as Pheide a and
202	Pyropheide a were purchased from Wako Pure Chemical Industries (Tokyo, Japan), and
203	Tama Biochemical (Tokyo, Japan), respectively. Phy a standard was prepared by adding
204	a few drops of 0.1 M hydrochloric acid to Chl a solution (Holm-Hansen, Lorenzen,

205	Holmes & Strickland, 1965). OHChl a was prepared by adding peroxidase (horseradish,
206	Sigma-Aldrich, USA) into Chl a solution in the present of hydrogen peroxide and p -
207	coumaric acid, as described by Kaewsuksaeng, Yamauchi, Funamoto, Mori, Shigyo &
208	Kanlayanarat (2007).
209	
210	3. Results
211	
212	3.1. Optimization of UV-B dose for broccoli floret treatments
213	
214	As shown in Fig. 1, hue angle value was not altered in broccoli florets during the
215	first two days of storage. However, a decrease in the hue angle value was found on day 4.
216	Broccoli in the control showed lowest hue angle value. We found that the decrease of the
217	hue angle value was delayed by a UV-B dose at least 8.8 kJ m ^{-2} . The hue angle values
218	were high in broccoli with 8.8 and 13.1 kJ m^{-2} of UV-B on day 6, as compared to florets
219	in the control and those irradiated with 4.4 kJ m^{-2} . UV-B treatment delayed the reduction
220	of total Chl content, as shown in Fig. 2A. Moreover, a UV-B dose of at least 8.8 kJ m^{-2}
221	delayed the degradation of Chl a in broccoli florets. As apparent in Fig. 2B, Chl a content
222	in fresh broccoli was approximately 94 mg/100g FW, but during storage, the content
223	greatly decreased without UV-B treatment and with UV-B doses at 4.4 kJ m^{-2} by 19 and
224	13 mg/100g FW, respectively. On the other hand, Chl a content in broccoli treated with
225	UV-B doses at 8.8 and 13.1 kJ m^{-2} retained approximately 33 and 25 mg/100g FW,
226	respectively, on day 6 of the storage. In the case of Chl b , the alteration trend of its
227	content was similar to that of Chl a content in broccoli during storage. In Fig. 2C, the

228	broccoli treated with a UV-B dose at least 8.8 kJ m ^{-2} had a higher content of Chl <i>b</i> than
229	the broccoli without UV-B treatment on day 4. Based on the results of the hue angle
230	values and Chl contents, UV-B treatment at a dose of 8.8 kJ m^{-2} was selected to further
231	analyze the impact of UV-B treatment on the formation of Chl derivatives and Ch-
232	degrading enzyme activities in stored broccoli florets.
233	
234	3.2. Changes in Chlorophyll derivatives
235	
236	As shown in Fig. 3. fresh broccoli florets had high Chlide a levels compared to
237	stored broccoli. The Chlide a levels gradually decreased in broccoli without UV-B
238	treatment, but the decrease in Chlide a levels was delayed in broccoli with UV-B
239	treatment (Fig. 3A). In Fig. 4, showing the Chl derivative chromatogram, broccoli
240	without UV-B treatment can be seen to have a lower Chlide a level than broccoli with
241	UV-B treatment on day 4. Broccoli with UV-B treatment also showed a high level of
242	OHChl <i>a</i> as compared to broccoli without UV-B treatment. The trend in OHChl <i>a</i> levels
243	was similar to the Chlide <i>a</i> level in broccoli, as shown in Fig. 3B. Pheide and Pyropheide
244	a were found in stored broccoli on day 4. In broccoli without UV-B treatment, both
245	Pheide and Pyropheide a levels sharply increased during storage, whereas broccoli with
246	UV-B treatment showed a slight increase. Although, the levels of Pheide and Pyropheide
247	a greatly increased in broccoli without UV-B treatment on day 4, the levels of both
248	Pheide <i>a</i> and Pyropheide <i>a</i> decreased in stored broccoli on day 6. In contrast, broccoli
249	treated with UV-B showed a continuous increase in Pheide a and Pyropheide a levels
250	(Fig. 3C, D). The Phy a level in fresh broccoli florets was higher than any other

251	derivative level. Broccoli with UV-B treatment showed a higher level of Phy a than that
252	without UV-B treatment throughout the storage period. Moreover, Phy a level was found
253	to be slightly increased in broccoli with UV-B treatment at day 4, followed by a decrease
254	in the level on day 6 (Fig. 3E).
255	
256	3.3. Changes in Chlorophyll-degrading enzyme activities
257	
258	In Fig. 5A, Chlase activity in broccoli with or without UV-B treatment decreased
259	during storage. Fresh broccoli florets had high Chlase activity compared to stored
260	broccoli. Chlase activity in broccoli without UV-B treatment was approximately 0.17
261	units/mg protein, but its activity was lowered in broccoli with UV-B treatment. Notably,
262	the enhancement of Chlase activity was suppressed by UV-B treatment during the first
263	two days of storage. During the first two days, Chl-POX activity slightly increased in
264	both the control and the UV-B treatments, and then sharply increased only in broccoli
265	without UV-B treatment on day 6. In contrast, Chl-POX activity showed almost no
266	change in broccoli with UV-B treatment after 2 days of storage (Fig 5B). In this study,
267	Mg-dechelation activity was examined by using Chlin <i>a</i> as an artificial substrate,
268	tentatively named Mg-dechelatase (MD). After UV-B treatment, MD activity was not at a
269	significantly different level between the control and the UV-B treatment during the first 4
270	days of storage. However, MD activity was suppressed by UV-B treatment, as its activity

271 greatly increased in broccoli without UV-B treatment on day 6 (Fig. 5C). In contrast, Mg-

272 dechelation activity using Chlide *a* as a native substrate, tentatively named Mg-

273 dechelating substance (MDS), showed unchanged in broccoli on day 6 of the storage. In

addition, the UV-B treatment effectively reduced the activity of MDS in broccoli duringstorage (Fig. 6).

276

277 **4. Discussion**

278

279 Broccoli is a cole crop with floral heads consisting of small florets arranged on 280 branches sprouting from stalk. When broccoli heads are harvested, their florets are 281 immature and in the phase of their most intense growth, which makes them very sensitive 282 to stress factors and leads to a rapid initiation of senescence. Senescence in broccoli is 283 normally characterized by a decrease in pigment, as well as Chl degradation (Yamauchi 284 & Watada, 1998). Several techniques have been applied to maintain the green color of 285 broccoli florets (Funamoto, Yamauchi, Shigenaga & Shigyo, 2002; Costa, Civello, 286 Chaves & Martínez, 2005, 2006; Costa, Vicente, Civello, Chaves & Martínez, 2006). In the present study, different UV-B doses (4.4, 8.8 and 13.1 kJ m^{-2}) were irradiated into 287 broccoli florets. We found that a UV-B dose of at least 8.8 kJ m^{-2} effectively delayed the 288 289 yellowing of florets and Chl degradation. Based on the results of hue angle value and Chl degradation, we suggested that 8.8 kJ m^{-2} was an optimal UV-B dose and used this does 290 291 for further study. The delay of Chl degradation with UV-B treatment may have the same 292 effect as heat treatment (Funamoto, Yamauchi, Shigenaga & Shigyo, 2002; Costa, 293 Civello, Chaves & Martínez, 2006) and UV-C irradiation (Costa, Vicente, Civello, 294 Chaves & Martínez, 2006), which also suppressed Chl-degrading enzyme activities in broccoli florets. In this study, a UV-B dose at 8.8 kJ m^{-2} effectively suppressed the 295 296 activities of Chl-degrading enzymes such as Chlase, Chl-POX, MD and MDS, in broccoli 297 florets. During storage, Chlase activity decreased in broccoli florets with or without UV-298 B treatment, and it was previously reported that Chlase activity decreased with the 299 senescence of leaves (Ben-Yaakov, Harpaz-saad, Galili, Eyal & Goldschmidt, 2006). In 300 the study, we found that Chlase activity was tentatively suppressed in stored broccoli 301 florets during the first two days of storage by UV-B treatment. Chlase, which is involved 302 in the first step of Chl catabolic pathway, catalyzes the conversion of Chl a to Chlide a 303 and phytol (Harpaz-Saad et al, 2007). The highest level of Chlide a was found in fresh 304 broccoli florets and it decreased in stored broccoli. As might be expected a decrease in 305 Chlide a is associated with the noted decrease in Chlase activity during storage. After 4 306 days, the level of Chlide a was highly retained in broccoli with UV-B treatment as 307 compared to broccoli without UV-B treatment. This might be due to UV-B treatment 308 effectively suppressing Chlase activity, and also delaying the reduction of Chlide a levels 309 in broccoli. Our results showed that Chl-POX activity was markedly increased in broccoli 310 during storage, but its activity was clearly suppressed throughout the storage life of 311 broccoli treated with UV-B. In broccoli, Chl a can be degraded by Chl-POX, Chl oxidase 312 and lipoxygenase, resulting in OHChl a (Lüthy, Martinoia, Matile & Thomas, 1984; 313 Yamauchi, Funamoto & Shigyo 2004). OHChl a is formed as an intermediate and does 314 not accumulate. Therefore, in horticultural crops, the content of OHChl a usually show a 315 decrease with senescence during storage (Yamauchi & Watada, 1991, 1993, 1998). 316 Notably, the decrease of OHChl level was delayed by UV-B treatment after 4 days of 317 storage. In addition, Pheide a and Pyropheide a levels in broccoli with UV-B treatment 318 were slowly accumulated as compared to broccoli without UV-B treatment.

319 It is possible that UV-B treatment could not only effectively delay Chl degradation 320 in broccoli but also retard the other senescence processes that occur during storage. It is 321 known that both antioxidative components and antioxidative enzyme activities increase 322 by UV irradiation (Costa, Gallego & Tomaro, 2002). Toivonen & Sweeney (1998) 323 reported that superoxide dismutase, peroxidase and catalase are important for the 324 retardation of Chl degradation and senescence in broccoli. Furthermore, UV-B treatment 325 also effectively suppressed MDS and MD activities in broccoli florets. However, UV-B doses at 4.4 kJ m^{-2} resulted in the florets quickly turning yellow as compared to other 326 327 UV-B doses. In this case, the acceleration of broccoli senescence may be cased by a 328 certain level of UV-B dosage. From the results of our study, the optimal dose of UV-B 329 treatment delayed Chl degradation in broccoli florets by the suppression of the Chl-330 degrading enzyme activities. However, the impact of UV-B irradiation in delaying the 331 Chl degradation of broccoli and its relationship with the antioxidant system need to be 332 further investigated. In addition, Mg-dechelation activity was determined by using Chlin 333 a and Chlide a as artificial and native substrates. As above mentioned, we tentatively 334 called these Mg-dechelatase (MD) and Mg-dechelating substance (MDS), respectively. 335 Especially, the MD activity increased in broccoli during storage. However, MDS activity 336 was consistently unchanged in stored broccoli florets. These findings were similar to the 337 finding by Suzuki, Kunieda, Murai, Morioka & Shioi (2005) that MDS activity was not 338 altered in radish cotyledons. Furthermore, MD acted only on the frequently used artificial 339 substrate, Chlin a, but MDS, which is small molecule and heat stable substance, was 340 required to remove the magnesium atom from Chlide a. Accordingly, we suggest that

341	MDS could be involved in Mg-dechelation from Chlide <i>a</i> in broccoli florets. Further
342	study needs to clarify the role of MDS in Chl degradation of broccoli florets.
343	In conclusion, the findings obtained in the present study show that UV-B dosage of
344	at least 8.8 kJ m^{-2} effectively retarded the degradation of Chl in broccoli florets during
345	storage. The reduction of Chl derivative levels, such as Chlide and OHChl a, were
346	retarded by a 8.8 kJ m^{-2} of UV-B dose. Furthermore, UV-B treatment effectively
347	delayed the accumulations of Pheide and Pyropheide a in stored broccoli florets. Chl-
348	degrading enzyme activities such as Chlase, Chl-POX and Mg-dechelation were also
349	suppressed by UV-B treatment, indicating that the suppression of those enzyme activities
350	by UV-B treatment cloud be involved in retardation of Ch degradation in stored broccoli
351	florets. We suggest that UV-B treatment could be a good practical approach for
352	maintaining the postharvest quality of broccoli.
353	
354	Acknowledgements
355	
356	The authors kindly thank FUKUREN Co.Ltd. for supplying with broccoli florets.
357	This work was supported by grants from Japanese Government
358	(MONBUKAGAKUSHO: MEXT) scholarship.
359	
360	References
361	

362	Able, A. J., Wong, L. S., Prasad, A., & O'Hare, T. J. (2002). 1-MCP is more effective on
363	floral brassica (Brassica oleracea var. italica L.) than a leafy brassica (Brassica
364	rapa var. chinensis). Postharvest Biology and Technology, 26(2), 147–155.
365	Aiamal-or, S., Yamauchi, N., & Shigyo, M. (2007) Effect of UV-B irradiation on
366	chlorophyll degradation in stored broccoli florets. Horticultural research (Japan),
367	6(Supplement 2), 406.
368	Ben-Yaakov, E., Harpaz-saad, S., Galili, D., Eyal, Y., & Goldschmidt, E. (2006). The
369	relationship between chlorophyllase activity and chlorophyll degradation during the
370	course of leaf senescence in various plant species. Israel Journal of Plant Sciences,
371	54(2), 129–135.
372	Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram
373	quantities of protein utilizing the principle of protein-dye binding. Analytical
374	Biochemistry, 72(7), 248–254.
375	Costa, H., Gallego, S. M., & Tomaro, M. (2002). Effect of UV-B radiation on antioxidant
376	defense system in sunflower cotyledon. Plant Science, 162(6), 939–945.
377	Costa, L., Vicente, A. R., Civello, P. M., Chaves, A. R., & Martínez, G. A., (2006). UV-
378	C treatment delays postharvest senescence in broccoli florets. Postharvest Biology
379	and Technology, 39(2), 204–210.
380	Costa, M. L., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2005). Effect of ethephon
381	and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-
382	linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica
383	oleracea L.) at 20 °C. Postharvest Biology and Technology, 35(2), 191–199.

384	Costa, M. L., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2006). Hot air treatment
385	decreases chlorophyll catabolism during postharvest senescence of broccoli
386	(Brassica oleracea L. var. italica) heads. Journal of the Science of Food and
387	Agriculture, 86(7), 1125–1131.
388	Erkan, M., Wang, S. Y., & Wang, C. Y. (2008). Effect of UV treatment on antioxidant
389	capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest
390	Biology and Technology, 48(2), 163–171.
391	Eskin, K., & Harris, L. (1981). High-performance liquid chromatography of etioplast
392	pigment in red kidney bean leaves. Photochemistry and Photobiology, 33(1), 131-
393	133.
394	Funamoto, Y., Yamauchi, N., Shigenaga, T., & Shigyo, M. (2002). Effects of heat
395	treatment on chlorophyll degradation enzymes in stored broccoli (Brassica oleracea
396	L.). Postharvest Biology and Technology, 24(2), 163–170.
397	Harpaz-Saad, S., Azoulay, T., Arazi, A., Ben-Yaakov, E., Mett, A., Shiboleth, Y. M.,
398	Hörtensteiner, S., Gidoni, D., Gal-On, A., Goldschmidt, E. E., & Eyal, Y. (2007).
399	Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is
400	posttranslationally regulated. The Plant Cell, 19(3), 1007–1022.
401	Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. H. (1965).
402	Fluorometric determination of chlorophyll. Journal of Marine Science, 30(1), 3-5.
403	Kaewsuksaeng, S., Yamauchi, N., Funamoto, Y., Mori, T., Shigyo, M., & Kanlayanarat,
404	S., (2007). Effect of heat treatment on catabolites formation in relation to
405	chlorophyll degradation during storage of broccoli (Brassica oleracea L. italica

- 406 group) florets. Journal of the Japanese Society for Horticultural Science, 76(4),
 407 338–344.
- 408 Langmeier, M., Ginsburg, S., & Matile, P. (1993). Chlorophyll breakdown in senescent
- 409 leaves: demonstration of Mg-dechelatase activity. Physiologia Plantarum, 89(2),
- 410 347–353.
- 411 Lüthy, B., Martinoia, E., Matile, E., & Thomas, H. (1984). Thylakoid-associated
- 412 chlorophyll oxidase: distinction from lipoxygenase. Zeitschrift für
- 413 Pflanzenphysiologie, 113(5), 423-434.
- 414 Matile, P., Hörtensteiner, S., & Thomas, H. (1999). Chlorophyll degradation. Annual
- 415 Review of Plant Physiology and Plant Molecular Biology, 50 (Volume publication
 416 date on June), 67–95.
- Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with *N,N*-dimethylformamide. Plant Physiology, 69(6), 1376–1381.
- 419 Perkins, H. J., & Roberts, D. W. (1962). Purification of chlorophylls, pheophytins and
- 420 pheophobides for specific activity determinations. Biochimica et Biophysica Acta,
 421 58(3), 486–498.
- 422 Shioi, Y., Tomita, N., Tsuchiya, T., & Takamiya, K. (1996). Conversion of
- 423 chlorophyllide to pheophobide by Mg-dechelating substance in extracts of
- 424 *Chenopodium album.* Plant Physiology and Biochemistry, 34(1), 41–47.
- 425 Starzyńska, A., Leja, M., & Mareczek, A. (2003). Physiological changes in the
- 426 antioxidant system of broccoli flower buds senescing during short-term storage,
- 427 related to temperature and packaging. Plant Science, 165(6), 1387–1395.

428	Suzuki, T., Kunieda, T., Murai, F., Morioka, S., & Shioi, Y. (2005). Mg-dechelation
429	activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin
430	a and chlorophyllide a. Plant Physiology and Biochemistry, 43(5), 459–464.
431	Suzuki, Y., Uji, T., & Terai, H. (2004). Inhibition of senescence in broccoli florets with
432	ethanol vapor from alcohol powder. Postharvest Biology and Technology, 31(2),
433	177-182.
434	Toivonen, P. M. A., & Sweeney, M. (1998). Difference in chlorophyll loss at 13 °C for
435	two broccoli (Braccica oleracea L.) cultivars associated with antioxidant enzyme
436	activities. Journal of Agricultural and Food Chemistry, 46(1), 20-24.
437	Vicentini, F., Iten, F., & Matile, P. (1995). Development of assay for Mg-dechelatase of
438	oilseed rape cotyledons, using chlorophyllin as substrate. Physiologia Plantarum
439	94(1), 57–63.
440	Yamauchi, N., Funamoto, Y., & Shigyo, M., (2004). Peroxidase-mediated chlorophyll
441	degradation in horticultural crops. Phytochemistry Reviews, 3(1-2), 221–228.
442	Yamauchi, N., Harada, K., & Watada, A. E. (1997). In vitro chlorophyll degradation in
443	stored broccoli (Brassica oleracea L var. italica Plen) florets. Postharvest Biology
444	and Technology, 12(3), 239-245.
445	Yamauchi, N., & Watada, A. E. (1998). Chlorophyll and xanthophyll changes in broccoli
446	florets stored under elevated CO2 or ethylene-containing atmosphere. HortScience,
447	33(1), 114–117.
448	Yamauchi, N., & Watada, A.E. (1991). Chlorophyll degradation in spinach leaves during
449	storage. Journal of the American Society for Horticultural Science, 116(1), 58-62.

- 450 Yamauchi, N., & Watada, A.E. (1993). Pigment changes in parsley leaves during storage
- 451 in controlled or ethylene containing atmosphere. Journal of Food Science, 58(3),
- 452 616-618.
- 453

454 Figure captions:

455

a: 13²-hydroxychlorophyll *a*, C; Pheide *a*: pheophobide *a*, D; Pyropheide *a*: 466 467 pyropheophobide a and E; Phy:pheophytin a) of broccoli florets with and without UV-B doses of 8.8 kJ m^{-2} during storage at 15 °C. Chl derivatives were analyzed using HPLC 468 469 system. Vertical bars represent average values with \pm SE (n = 3). 470 471 Figure 4. HPLC chromatograms of Chl and Chl derivatives (Chlide a: chlorophyllide a, OHChl $a: 13^2$ -hydroxychlorophyll a, Pheide a: pheophorbide a, Pyropheide a:472 473 pyropheophorbide *a* and Phy *a*:pheophytin *a*) in broccoli florets on day 4. Broccoli florets were irradiated with a UV-B dose of 8.8 kJ m^{-2} and then kept into incubator at 15 °C. 475

- 456 Figure 1. Changes in the hue angle value of the surface color of broccoli florets with and
- 457 without UV-B irradiation during storage at 15 °C. Broccoli florets were irradiated with
- UV-B of 4.4, 8.8 and 13.1 kJ m⁻². Vertical bars represent the average values with \pm SE 458
- 459 (n = 3).

460

- 461 Figure 2. Changes in total Chl (A), Chl a (B) and Chl b (C) contents in broccoli florets
- 462 with different doses of UV-B treatment. Broccoli florets were irradiated with UV-B at 4.4,
- 8.8 and 13.1 kJ m^{-2} and stored at 15 °C in darkness. 463

- Figure 3. Changes in the Chl derivatives levels (A; Chlide *a*: chlorophyllide *a*, B; OHChl 465

- 474

- 476 Figure 5. Changes of Chl-degrading enzyme activities in broccoli florets with and
- 477 without UV-B at 8.8 kJ m^{-2} during storage at 15 °C. Vertical bars represent average
- 478 values with \pm SE (n = 3). A; Chlase: chlorophyllase, B; Chl-POX: Chlorophyll-
- 479 peroxidase and C; MD: Mg-dechelatase using Chlin *a* as an artificial substrate.
- 480
- 481 Figure 6. Changes in Mg-dechelating substrance (MDS) activity in broccoli florets with
- 482 and without UV-B at 8.8 kJ m⁻² during storage at 15 °C, using Chlide *a* as a native
- 483 substrate. Vertical bars represent average values with \pm SE (n = 3)
- 484

487 Figure 1.

489 Figure 2.

491 Figure 3

497 Figure 5.

