Uncertainty Relation on Wigner-Yanase-Dyson Skew Information

Kenjiro Yanagi*

Abstract

We give a trace inequality related to the uncertainty relation of Wigner-Yanase-Dyson skew information. This inequality corresponds to a generalization of the uncertainty relation derived by S.Luo [7] for the quantum uncertainty quantity excluding the classical mixture.

Key Words: Uncertainty relation, Wigner-Yanase-Dyson skew information

1 Introduction

Wigner-Yanase skew information

$$
\begin{aligned}
I_{\rho}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{1 / 2}, H\right]\right)^{2}\right] \\
& =\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{1 / 2} H \rho^{1 / 2} H\right]
\end{aligned}
$$

was defined in [9]. This quantity can be considered as a kind of the degree for noncommutativity between a quantum state ρ and an observable H. Here we denote the commutator by $[X, Y]=X Y-Y X$. This quantity was generalized by Dyson

$$
\begin{aligned}
I_{\rho, \alpha}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{1-\alpha}, H\right]\right)\right] \\
& =\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right], \alpha \in[0,1]
\end{aligned}
$$

which is known as the Wigner-Yanase-Dyson skew information. It is famous that the convexity of $I_{\rho, \alpha}(H)$ with respect to ρ was successfully proven by E.H.Lieb in [6]. From the physical point of view, an observable H is generally considered to be an unbounded opetrator, however in the present paper, unless otherwise stated, we

[^0]consider $H \in B(\mathcal{H})$ represents the set of all bounded linear operators on the Hilbert space \mathcal{H}, as a mathematical interest. We also denote the set of all self-adjoint operators (observables) by $\mathcal{L}_{h}(\mathcal{H})$ and the set of all density operators (quantum states) by $\mathcal{S}(\mathcal{H})$ on the Hilbert space \mathcal{H}. The relation between the Wigner-Yanase skew information and the uncertainty relation was studied in [8]. Moreover the relation between the Wigner-Yanase-Dyson skew information and the uncertainty relation was studied in [4, 10]. In our paper [10], we defined a generalized skew information and then derived a kind of an uncertainty relation. In the section 2, we discuss various properties of the Wigner-Yanase-Dyson skew information. Finally in section 3, we give our main result and its proof.

2 Trace inequalities of Wigner-Yanase-Dyson skew information

We review the relation between the Wigner-Yanase skew information and the uncertainty relation. In quantum mechanical system, the expectation value of an observable H in a quantum state ρ is expressed by $\operatorname{Tr}[\rho H]$. It is natural that the variance for a quantum state ρ and an observable H is defined by $V_{\rho}(H)=$ $\operatorname{Tr}\left[\rho(H-\operatorname{Tr}[\rho H] I)^{2}\right]=\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}[\rho H]^{2}$. It is famous that we have

$$
\begin{equation*}
V_{\rho}(A) V_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2} \tag{2.1}
\end{equation*}
$$

for a quantum state ρ and two observables A and B. The further strong results was given by Robertson and Schrödinger

$$
V_{\rho}(A) V_{\rho}(B)-\left|\operatorname{Cov}_{\rho}(A, B)\right|^{2} \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2},
$$

where the covariance is defined by $\operatorname{Cov}_{\rho}(A, B)=\operatorname{Tr}[\rho(A-\operatorname{Tr}[\rho A] I)(B-\operatorname{Tr}[\rho B] I)]$. However, the uncertainty relation for the Wigner-Yanase skew information failed. (See [8, 4, 10])

$$
I_{\rho}(A) I_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

Recently, S.Luo introduced the quantity $U_{\rho}(H)$ representing a quantum uncertainty excluding the classical mixture:

$$
\begin{equation*}
U_{\rho}(H)=\sqrt{V_{\rho}(H)^{2}-\left(V_{\rho}(H)-I_{\rho}(H)\right)^{2}} \tag{2.2}
\end{equation*}
$$

then he derived the uncertainty relation on $U_{\rho}(H)$ in [7]:

$$
\begin{equation*}
U_{\rho}(A) U_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2} . \tag{2.3}
\end{equation*}
$$

Note that we have the following relation

$$
\begin{equation*}
0 \leq I_{\rho}(H) \leq U_{\rho}(H) \leq V_{\rho}(H) \tag{2.4}
\end{equation*}
$$

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4). In this section, we study one-parameter extended inequality for the inequality (2.3).

Definition 2.1 For $0 \leq \alpha \leq 1$, a quantum state ρ and an observable H, we define the Wigner-Yanase-Dyson skew information

$$
\begin{align*}
I_{\rho, \alpha}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)\left(i\left[\rho^{1-\alpha}, H_{0}\right]\right)\right] \\
& =\operatorname{Tr}\left[\rho H_{0}^{2}\right]-\operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right] \tag{2.5}
\end{align*}
$$

and we also define

$$
\begin{align*}
J_{\rho, \alpha}(H) & =\frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H_{0}\right\}\left\{\rho^{1-\alpha}, H_{0}\right\}\right] \\
& =\operatorname{Tr}\left[\rho H_{0}^{2}\right]+\operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right] \tag{2.6}
\end{align*}
$$

where $H_{0}=H-\operatorname{Tr}[\rho H] I$ and we denote the anti-commutator by $\{X, Y\}=X Y+$ $Y X$.

Note that we have

$$
\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)\left(i\left[\rho^{1-\alpha}, H_{0}\right]\right)\right]=\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{1-\alpha}, H\right]\right)\right]
$$

but we have

$$
\frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H_{0}\right\}\left\{\rho^{1-\alpha}, H_{0}\right\}\right] \neq \frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H\right\}\left\{\rho^{1-\alpha}, H\right\}\right] .
$$

Then we have the following inequalities:

$$
\begin{equation*}
I_{\rho, \alpha}(H) \leq I_{\rho}(H) \leq J_{\rho}(H) \leq J_{\rho, \alpha}(H) \tag{2.7}
\end{equation*}
$$

since we have $\operatorname{Tr}\left[\rho^{1 / 2} H \rho^{1 / 2} H\right] \leq \operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right]$. (See [1, 2] for example.) If we define

$$
\begin{equation*}
U_{\rho, \alpha}(H)=\sqrt{V_{\rho}(H)^{2}-\left(V_{\rho}(H)-I_{\rho, \alpha}(H)\right)^{2}}, \tag{2.8}
\end{equation*}
$$

as a direct generalization of Eq.(2.2), then we have

$$
\begin{equation*}
0 \leq I_{\rho, \alpha}(H) \leq U_{\rho, \alpha}(H) \leq U_{\rho}(H) \tag{2.9}
\end{equation*}
$$

due to the first inequality of (2.7). We also have

$$
U_{\rho, \alpha}(H)=\sqrt{I_{\rho, \alpha}(H) J_{\rho, \alpha}(H)}
$$

From the inequalities $(2.4),(2.8),(2.9)$, our situation is that we have

$$
0 \leq I_{\rho, \alpha}(H) \leq I_{\rho}(H) \leq U_{\rho}(H)
$$

and

$$
0 \leq I_{\rho, \alpha}(H) \leq U_{\rho, \alpha}(H) \leq U_{\rho}(H)
$$

Our concern is to show an uncertainty relation with respect to $U_{\rho, \alpha}(H)$ as a direct generalization of the inequality (2.3) such that

$$
\begin{equation*}
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B) \geq \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2} \tag{2.10}
\end{equation*}
$$

On the other hand, we introduced a generalized Wigner-Yanase skew information which is a generalization of the inequality (2.10), but different from the Wigner-Yanase-Dyson skew information defined in (2.5) and gave the following theorem in [11].

Theorem 2.1 For $0 \leq \alpha \leq 1$, a quantum state ρ and an observable H, we define a generalized Wigner-Yanase skew information by

$$
K_{\rho, \alpha}(H)=\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H_{0}\right]\right)^{2}\right]
$$

and we also define

$$
L_{\rho, \alpha}(H)=\frac{1}{2} \operatorname{Tr}\left[\left(i\left\{\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H_{0}\right\}\right)^{2}\right]
$$

and

$$
W_{\rho, \alpha}(H)=\sqrt{K_{\rho, \alpha}(H) L_{\rho, \alpha}(H)}
$$

Then for a quantum state ρ and observables A, B and $\alpha \in[0,1]$, we have

$$
W_{\rho, \alpha}(A) W_{\rho, \alpha}(B) \geq \frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[A, B]\right]\right|^{2}
$$

3 Main Theorem

We give the main theorem as follows;
Theorem 3.1 For a quantum state ρ and observables A, B and $0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B) \geq \alpha(1-\alpha)|\operatorname{Tr}[\rho[A, B]]|^{2} . \tag{3.1}
\end{equation*}
$$

We use the several lemmas to prove the theorem 3.1. By spectral decomposition, there exists an orthonormal basis $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ consisting of eigenvectors of ρ. Let $\lambda_{1}, \lambda_{2}, \ldots$ be the corresponding eigenvalues, where $\sum_{i=1}^{\infty} \lambda_{i}=1$ and $\lambda_{i} \geq 0$. Thus, ρ has a spectral representation

$$
\begin{equation*}
\rho=\sum_{i=1}^{\infty} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| . \tag{3.2}
\end{equation*}
$$

Lemma 3.1

$$
\left.I_{\rho, \alpha}(H)=\sum_{i<j}\left(\lambda_{i}+\lambda_{j}-\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}-\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} .
$$

Proof of Lemma 3.1. By (3.2),

$$
\rho H_{0}^{2}=\sum_{i=1}^{\infty} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0}^{2} .
$$

Then

$$
\begin{equation*}
\operatorname{Tr}\left[\rho H_{0}^{2}\right]=\sum_{i=1}^{\infty} \lambda_{i}\left\langle\phi_{i}\right| H_{0}^{2}\left|\phi_{i}\right\rangle=\sum_{i=1}^{\infty} \lambda_{i} \| H_{0}\left|\phi_{i}\right\rangle \|^{2} \tag{3.3}
\end{equation*}
$$

Since

$$
\rho^{\alpha} H_{0}=\sum_{i=1}^{\infty} \lambda_{i}^{\alpha}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0}
$$

and

$$
\rho^{1-\alpha} H_{0}=\sum_{i=1}^{\infty} \lambda_{i}^{1-\alpha}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0},
$$

we have

$$
\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}=\sum_{i, j=1}^{\infty} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| H_{0}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| H_{0}
$$

Thus

$$
\begin{align*}
\operatorname{Tr}\left[\rho^{\alpha} H_{0} \rho^{1-\alpha} H_{0}\right] & =\sum_{i, j=1}^{\infty} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\left\langle\phi_{i}\right| H_{0}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| H_{0}\left|\phi_{i}\right\rangle \\
& \left.=\sum_{i, j=1}^{\infty} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} . \tag{3.4}
\end{align*}
$$

From (2.5), (3.3), (3.4),

$$
\begin{aligned}
I_{\rho, \alpha}(H) & \left.=\sum_{i=1}^{\infty} \lambda_{i} \| H_{0}\left|\phi_{i}\right\rangle \|^{2}-\sum_{i, j=1}^{\infty} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} \\
& \left.=\sum_{i, j=1}^{\infty}\left(\lambda_{i}-\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} \\
& \left.=\sum_{i<j}\left(\lambda_{i}+\lambda_{j}-\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}-\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} .
\end{aligned}
$$

Lemma 3.2

$$
\left.J_{\rho, \alpha}(H) \geq \sum_{i<j}\left(\lambda_{i}+\lambda_{j}+\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} .
$$

Proof of Lemma 3.2. By (2.6), (3.3), (3.4), we have

$$
\begin{aligned}
J_{\rho, \alpha}(H) & \left.=\sum_{i=1}^{\infty} \lambda_{i} \| H_{0}\left|\phi_{i}\right\rangle \|^{2}+\sum_{i, j=1}^{\infty} \lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} \\
& \left.=\sum_{i, j=1}^{\infty}\left(\lambda_{i}+\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} \\
& \left.\left.=2 \sum_{i=1}^{\infty} \lambda_{i}\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{i}\right\rangle\left.\right|^{2}+\sum_{i \neq j}\left(\lambda_{i}+\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} \\
& \left.\left.=2 \sum_{i=1}^{\infty} \lambda_{i}\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{i}\right\rangle\left.\right|^{2}+\sum_{i<j}\left(\lambda_{i}+\lambda_{j}+\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} \\
& \left.\geq \sum_{i<j}\left(\lambda_{i}+\lambda_{j}+\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)\left|\left\langle\phi_{i}\right| H_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} .
\end{aligned}
$$

Lemma 3.3 For any $t>0$ and $0 \leq \alpha \leq 1$, the following inequality holds;

$$
\begin{equation*}
(1-2 \alpha)^{2}(t-1)^{2}-\left(t^{\alpha}-t^{1-\alpha}\right)^{2} \geq 0 \tag{3.5}
\end{equation*}
$$

Proof of Lemma 3.3. If $\alpha=0$ or $\frac{1}{2}$ or 1 , then it is clear that (3.5) is satisfied. Now we put

$$
F(t)=(1-2 \alpha)^{2}(t-1)^{2}-\left(t^{\alpha}-t^{1-\alpha}\right)^{2} .
$$

We have

$$
F^{\prime}(t)=2(1-2 \alpha)^{2} t-2 \alpha t^{2 \alpha-1}-2(1-\alpha) t^{1-2 \alpha}+8 \alpha(1-\alpha) .
$$

And we also have

$$
F^{\prime \prime}(t)=2(1-2 \alpha)^{2}-2 \alpha(2 \alpha-1) t^{2 \alpha-2}-2(1-\alpha)(1-2 \alpha) t^{-2 \alpha}
$$

and

$$
\begin{aligned}
& F^{\prime \prime \prime}(t) \\
= & 4 \alpha(1-2 \alpha)(1-\alpha) t^{-2 \alpha-1}-4 \alpha(1-2 \alpha)(1-\alpha) t^{2 \alpha-3} \\
= & 4 \alpha(1-2 \alpha)(1-\alpha)\left(\frac{1}{t^{1+2 \alpha}}-\frac{1}{t^{3-2 \alpha}}\right) .
\end{aligned}
$$

If $\frac{1}{2}<\alpha<1$, then $1+2 \alpha>3-2 \alpha$. Then it is easy to show that $F^{\prime \prime \prime}(t)<0$ for $t<1$ and $F^{\prime \prime \prime}(t)>0$ for $t>1$. On the other hand if $0<\alpha<\frac{1}{2}$, then $1+2 \alpha<3-2 \alpha$. Then it is easy to show that $F^{\prime \prime \prime}(t)<0$ for $t<1$ and $F^{\prime \prime \prime}(t)>0$ for $t>1$. Since $F^{\prime \prime}(1)=0$, we can get $F^{\prime \prime}(t)>0$. Since $F^{\prime}(1)=0$, we also have $F^{\prime}(t)<0$ for $t<1$ and $F^{\prime}(t)>0$ for $t>1$. Since $F(1)=0$, we finally get $F(t) \geq 0$ for all $t>0$. Therefore we have (3.5).

Proof of Theorem 3.1. We put $t=\frac{\lambda_{i}}{\lambda_{j}}$ in (3.5). Then we have

$$
(1-2 \alpha)^{2}\left(\frac{\lambda_{i}}{\lambda_{j}}-1\right)^{2}-\left(\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{\alpha}-\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{1-\alpha}\right)^{2} \geq 0
$$

And we get

$$
(1-2 \alpha)^{2}\left(\lambda_{i}-\lambda_{j}\right)^{2}-\left(\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}-\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)^{2} \geq 0
$$

and

$$
\left(\lambda_{i}-\lambda_{j}\right)^{2}-\left(\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}-\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)^{2} \geq 4 \alpha(1-\alpha)\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

and

$$
\begin{equation*}
\left(\lambda_{i}+\lambda_{j}\right)^{2}-\left(\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)^{2} \geq 4 \alpha(1-\alpha)\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{3.6}
\end{equation*}
$$

Since

$$
\operatorname{Tr}[\rho[A, B]]=\operatorname{Tr}\left[\rho\left[A_{0}, B_{0}\right]\right]
$$

$$
\begin{aligned}
& =2 i \operatorname{ImTr}\left[\rho A_{0} B_{0}\right] \\
& =2 i \operatorname{Im} \sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)\left\langle\phi_{i}\right| A_{0}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| B_{0}\left|\phi_{i}\right\rangle \\
& =2 i \sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right) \operatorname{Im}\left\langle\phi_{i}\right| A_{0}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| B_{0}\left|\phi_{i}\right\rangle, \\
|\operatorname{Tr}[\rho[A, B]]| & \left.=2\left|\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right) \operatorname{Im}\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left\langle\phi_{j}\right| B_{0}\left|\phi_{i}\right\rangle \mid \\
& \left.\leq 2 \sum_{i<j}\left|\lambda_{i}-\lambda_{j}\right|\left|\operatorname{Im}\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left\langle\phi_{j}\right| B_{0}\left|\phi_{i}\right\rangle \mid .
\end{aligned}
$$

Then we have

$$
\left.|\operatorname{Tr}[\rho[A, B]]|^{2} \leq 4\left\{\sum_{i<j}\left|\lambda_{i}-\lambda_{j}\right|\left|\operatorname{Im}\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left\langle\left.\phi_{j}\right|_{0} \mid \phi_{i}\right\rangle \mid\right\}^{2} .
$$

By (3.6) and Schwarz inequality,

$$
\begin{aligned}
& \alpha(1-\alpha)|\operatorname{Tr}[\rho[A, B]]|^{2} \\
\leq & \left.4 \alpha(1-\alpha)\left\{\sum_{i<j}\left|\lambda_{i}-\lambda_{j}\right|\left|\operatorname{Im}\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left\langle\phi_{j}\right| B_{0}\left|\phi_{i}\right\rangle \mid\right\}^{2} \\
= & \left.\left\{\sum_{i<j} 2 \sqrt{\alpha(1-\alpha)}\left|\lambda_{i}-\lambda_{j}\right|\left|\operatorname{Im}\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left\langle\phi_{j}\right| B_{0}\left|\phi_{i}\right\rangle \mid\right\}^{2} \\
\leq & \left.\left\{\sum_{i<j} 2 \sqrt{\alpha(1-\alpha)}\left|\lambda_{i}-\lambda_{j}\right|\left|\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left|\left|\left\langle\phi_{j}\right| B_{0}\right| \phi_{i}\right\rangle \mid\right\}^{2} \\
\leq & \left.\left\{\sum_{i<j}\left\{\left(\lambda_{i}+\lambda_{j}\right)^{2}-\left(\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)^{2}\right\}^{1 / 2}\left|\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left|\left|\left\langle\phi_{j}\right| B_{0}\right| \phi_{i}\right\rangle \mid\right\}^{2} \\
\leq & \left.\sum_{i<j}\left(\lambda_{i}+\lambda_{j}-\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}-\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)\left|\left\langle\phi_{i}\right| A_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} \\
& \left.\times \sum_{i<j}\left(\lambda_{i}+\lambda_{j}+\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}\right)\left|\left\langle\phi_{i}\right| B_{0}\right| \phi_{j}\right\rangle\left.\right|^{2} .
\end{aligned}
$$

Then we have

$$
I_{\rho, \alpha}(A) J_{\rho, \alpha}(B) \geq \alpha(1-\alpha)|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

We also have

$$
I_{\rho, \alpha}(B) J_{\rho, \alpha}(A) \geq \alpha(1-\alpha)|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

Hence we have the final result (3.1).
Remark 3.1 We remark that (2.3) is derived by putting $\alpha=1 / 2$ in (3.1). Then Theorem 3.1 is a generalization of the result of Luo [7].

Remark 3.2 We remark that Conjecture 2.3 in [11] does not hold in genaral. The Conjecture is (2.10). A counterexample is given as follows. Let

$$
\rho=\left(\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right), A=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), B=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \alpha=\frac{1}{3} .
$$

We have

$$
I_{\rho, \alpha}(A) J_{\rho, \alpha}(B)=I_{\rho, \alpha}(B) I_{\rho, \alpha}(A)=0.22457296 \cdots
$$

and $|\operatorname{Tr}[\rho[A, B]]|^{2}=1$. These imply

$$
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B)=0.22457296 \cdots<\frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2}=0.25 .
$$

On the other hand we have

$$
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B)>\alpha(1-\alpha)|\operatorname{Tr}[\rho[A, B]]|^{2}=0.2222222 \cdots
$$

We also give a counterexample for Conjecture 2.10 in [11]. The inequality

$$
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B) \geq \frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[A, B]\right]\right|^{2}
$$

is not correct in general, because $L H S=0.22457296 \cdots$, RHS $=0.23828105995 \cdots$.

Remark 3.3 In the recent literature another generalization for inequality (2.3) has been proved in [5] as follows; for any ρ, A, B and $0 \leq \alpha \leq 1$

$$
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B) \geq \frac{1}{4}\left|\operatorname{Tr}\left[\left(\rho-\rho^{|2 \alpha-1|}\right)[A, B]\right]\right|^{2} .
$$

However we gave the counter example for this inequality. Let

$$
\rho=\left(\begin{array}{ccc}
\frac{1}{64} & 0 & 0 \\
0 & \frac{1}{16} & 0 \\
0 & 0 & \frac{59}{64}
\end{array}\right), A=\left(\begin{array}{ccc}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \alpha=\frac{3}{4} .
$$

Then we have

$$
\begin{gathered}
U_{\rho, \alpha}(A) U_{\rho, \alpha}(B)=0.00170898 \cdots \\
\frac{1}{4}\left|\operatorname{Tr}\left[\left(\rho-\rho^{|2 \alpha-1|}\right)[A, B]\right]\right|^{2}=0.00610351 \cdots
\end{gathered}
$$

References

[1] J.C.Bourin, Some inequalities for norms on matrices and operators, Linear Algebra and its Applications, vol.292(1999), pp.139-154.
[2] J.I.Fujii, A trace inequality arising from quantum information theory, Linear Algebra and its Applications, vol.400(2005), pp.141-146.
[3] W.Heisenberg, Über den anschaulichen Inhat der quantummechanischen Kinematik und Mechanik, Zeitschrift für Physik, vol.43(1927), pp.172-198.
[4] H.Kosaki, Matrix trace inequality related to uncertainty principle, Internatonal Journal of Mathematics, vol.16(2005), pp.629-646.
[5] L.Li, X.Li, F.Wang, H.Huang X.Li and L.C.Kwek, Uncertainty relation of mixed states by means of Wigner-Yanase-Dyson information, Physical Review A, vol.79(2009), pp.052106-1-4.
[6] E.H.Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., vol.11(1973), pp.267-288.
[7] S.Luo, Heisenberg uncertainty relation for mixed states, Phys. Rev. A, vol.72(2005), p. 042110.
[8] S.Luo and Q.Zhang, On skew information, IEEE Trans. Information Theory, vol.50(2004), pp.1778-1782, and Correction to "On skew information", IEEE Trans. Information Theory, vol.51(2005), p. 4432.
[9] E.P.Wigner and M.M.Yanase, Information content of distribution, Proc. Nat. Acad. Sci. U,S,A., vol.49(1963), pp.910-918.
[10] K.Yanagi, S.Furuichi and K.Kuriyama, A generalized skew information and uncertainty relation, IEEE Trans. Information Theory, vol.51(2005), pp.44014404.
[11] S.Furuichi, K.Yanagi and K.Kuriyama, Trace inequalities on a generalized Wigner-Yanase skew information, J. Math. Anal. Appl., vol.356(2009), pp.179185.

[^0]: *Division of Applied Mathematical Science, Graduate School of Science and Engineering, Yamaguchi University, Ube, 755-8611 Japan. E-mail: yanagi@yamaguchi-u.ac.jp, This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B), 18300003 and (C), 20540175

