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Abstract

We study the open problem given by Holevo and
Ogawa-Nagaoka on the concavity of the auxiliary func-
tion of the quantum reliability function. Firstly we
review the previous results on this problem in the case
that the parameter s is positive. Secondly we consider
the problem in the case that the parameter s is nega-
tive.

1. INTRODUCTION

In classical information theory [1], the random cod-
ing exponent Ec

r(R), the lower bound of the reliability
function, is defined by

Ec
r(R) = max

p,s
[Ec(p, s)− sR] .

As for the classical auxiliary function Ec(p, s), it is well-
known the following properties [1].

(a) Ec(p, 0) = 0.

(b) ∂Ec(p,s)
∂s |s=0 = I(X;Y ), where I(X;Y ) presents

the classical mutual information.

(c) Ec(p, s) > 0 (0 ≤ s ≤ 1). Ec(p, s) < 0 (−1 < s <
0).

(d) ∂Ec(p,s)
∂s > 0, (−1 < s ≤ 1).

(e) ∂2Ec(p,s)
∂s2 ≤ 0, (−1 < s ≤ 1).
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ξ = Rs

ξ = Ec(p∗, s)

Figure 1: The sketch of the auxiliary function ξ =
Ec(p∗, s) in 0 ≤ s ≤ 1.

In figure 1, we suppose that p∗ is a priori probabil-
ity which attains the maximum of the classical mutual
information. We then find that there exists a code sat-
isfying Ec

r(R) > 0 by the above properties. Thus the
upper bound [1] of the error probability Pe due to the
random coding and the maximum likelihood decoding

Pe ≤ exp [−nEc
r(R)] , (0 ≤ s ≤ 1)



goes to 0 as the code length n → ∞. The parameter
s ∈ (−1, 0) (resp.s ∈ [0, 1]) corresponds to the converse
(resp. direct) part of the channel coding theorem.

In quantum information theory, it is also impor-
tant to study the properties of the auxiliary function
Eq(π, s), which will be defined in the below, appearing
in the lower bound with respect to the random coding
in the reliability function for general quantum states.
The corresponding properties to (a),(b),(c) and (d) in
quantum system have been shown in [4, 6]. Also the
concavity of the auxiliary function Eq(π, s) is shown
in the case when the signal states are pure [5], and
when the expurgation method is adopted [6]. However,
for general signal states, the concavity of the auxiliary
function Eq(π, s) which corresponds to (e) in the above
has remained as an open question [4, 6].

The reliability function of classical-quantum chan-
nel is defined by

E(R) ≡ − lim inf
n→∞

1
n

log Pe(2nR, n), 0 < R < C, (1)

where C is a classical-quantum capacity, R is a trans-
mission rate R = log2 M

n (n and M represent the num-
ber of the code words and the messages, respectively),
Pe(M,n) can be taken any minimal error probabilities
of minW,X P̄ (W,X ) or minW,X Pmax(W,X ). These er-
ror probabilities are defined by

P̄ (W,X ) =
1
M

M∑
j=1

Pj(W,X ),

Pmax(W,X ) = max
1≤j≤M

Pj(W,X ),

where
Pj(W,X ) = 1− TrSwj Xj

is the usual error probability associated with the posi-
tive operator valued measurement X = {Xj} satisfying∑M

j=1 Xj ≤ I. Here we note Swj represents the den-
sity operator corresponding to the code word wj chosen
from the code(blook) W =

{
w1, w2, · · · , wM

}
. For de-

tails, see [3, 4, 6].
The lower bound for the quantum reliability func-

tion defined in Eq.(1), when we use random coding,
was conjectured [5, 6] by

E(R) ≥ Eq
r (R) ≡ max

π
sup

0<s≤1
[Eq (π, s)− sR] ,

where π = {π1, π2, · · · , πa} is a priori probability dis-
tribution satisfying

∑a
i=1 πi = 1 and

Eq (π, s) = − log G(s),
G(s) = Tr

[
A(s)1+s

]
,

A(s) =
a∑

i=1

πiS
1

1+s

i ,

where each Si is density operator which corresponds to
the output state of the classical-quantum channel i →
Si from the set of the input alphabet A = {1, 2, · · · , a}
to the set of the output quantum states in the Hilbert
space H.

2. A sufficient condition on concavity of the
auxiliary function Eq(π, s)

Proposition 2.1 ([8]) For any real number s (−1 <
s ≤ 1), density operators Si(i = 1, · · · , a) and a priori
probability π = {πi}a

i=1, if the trace inequality

Tr

A(s)s
a∑

j=1

πjS
1

1+s

j (log S
1

1+s

j )2


−Tr

A(s)−s+1

(
a∑

i=1

πiH(S
1

1+s

i )

)2
 ≥ 0 (2)

holds, then the auxiliary function

Eq (π, s) = − log

Tr


(

a∑
i=1

πiS
1

1+s

i

)1+s

 (3)

is concave in s. Where H(x) = −x log x is the operator
entropy [7].

The condition (2) can be weakened by

Tr

A(s)s
a∑

j=1

πjAj(log Aj)2


−Tr

A(s)−s+1

(
a∑

i=1

πiH(Aj)

)2
 ≥ 0 (4)

for 0 ≤ Aj ≤ I.

3. Previous results

In this section, we review the previous results on the
present problem limited the parameter s ∈ [0, 1]. In the
previous section, we found that in order to prove the
concavity of the auxiliary function Eq.(3), we have only
to prove the sufficient condtion (2) for any a, s, (0 ≤
s ≤ 1) and any density matrices Si. If the condition
(4) is proven, we see the condition (2) holds. Thus
we considered the simple case a = 2 and then we put

A = S
1

1+s

1 , B = S
1

1+s

2 and π1 = π2 = 1
2 for simplicity.

Thus our problem could be deformed as follows:



Problem 3.1 Prove

Tr[(A + B)s
{
A(log A)2 + B(log B)2

}
]

−Tr[(A + B)−1+s(A log A + B log B)2] ≥ 0 (5)

for any s, (0 ≤ s ≤ 1) and two positive matrices A ≤ I
and B ≤ I.

For this problem, we obtained the following results.

Theorem 3.2 ([12]) For two positive matrices A ≤ I
and B ≤ I, Eq.(5) holds in the case of s = 1:

Tr[(A + B)
{
A(log A)2 + B(log B)2

}
]

−Tr[(A log A + B log B)2] ≥ 0.

Theorem 3.3 ([12]) For two positive matrices A ≤ I
and B ≤ I, Eq.(5) holds in the case of s = 0:

Tr[
{
A(log A)2 + B(log B)2

}
]

−Tr[(A + B)−1(A log A + B log B)2] ≥ 0.

To prove the above theorem, we used the Jensen’s
operator inequality:

Lemma 3.4 ([10, 11]) For the continuous function f :
[0, α) → R, (0 < α ≤ ∞), the following statements are
equivalent.

(i) f is operator convex and f(0) ≤ 0.

(ii) For the bounded linear operators Ki, (i =
1, 2, · · · , n) satisfying σ(Ki) ⊂ [0, α), where σ(Z)
represents the set of all spectrums of the bounded
linear operator Z, and the bounded linear opera-
tors Ci, (i = 1, 2, · · · , n) satisfying

∑n
i=1 C∗i Ci ≤

I, we have

f(
n∑

i=1

C∗i KiCi) ≤
n∑

i=1

C∗i f(Ki)Ci.

With the help of the following lemma, we could ob-
tained the following Theorem 3.6 as a kind of the in-
terpolation between Theorem 3.2 and Theorem 3.3.

Lemma 3.5 Suppose the positive numbers
t1, t2, a1, a2, b1 and b2 satisfy the following two
conditions.

(i) t1a1 + t2a2 ≥ b1 + b2

(ii) a1 + a2 ≥ t−1
1 b1 + t−1

2 b2

Then for any 0 ≤ s ≤ 1 we have

ts1a1 + ts2a2 ≥ t−1+s
1 b1 + t−1+s

2 b2.

Theorem 3.6 Suppose A and B are 2 × 2 positive
matrices. Then for any 0 ≤ s ≤ 1 we have

Tr[(A + B)s
{
A(log A)2 + B(log B)2

}
]

−Tr[(A + B)−1+s(A log A + B log B)2] ≥ 0.

Remark 3.7 In the process of the proof of Theorem
3.3, we found the operator inequality holds in the case
of s = 0. However, we did not know whether the fol-
lowing matrix inequalities

(A + B)1/2
{

A (log A)2 + B (log B)2
}

(A + B)1/2

≥ (A log A + B log B)2 (6)

or {
A (log A)2 + B (log B)2

}1/2

(A + B)

×
{

A (log A)2 + B (log B)2
}1/2

≥ (A log A + B log B)2 (7)

corresponding to the case of s = 1 for any two positive
matrices A ≤ I and B ≤ I hold or not. We have not
yet found any counter-examples, namely the examples
that the matrix ineqalities both Eq.(6) and Eq.(7) are
not satisfied simultaneously, for some positive matrices
A ≤ I and B ≤ I. For this question, T.Furuta give the
answer by finding the counter example [13].

We expected that our Lemma 3.5 can be extended
to the general n ≥ 3, where n represents the number of
the eigenvalues given in the Schatten decomposition of
A + B in Theorem 3.6.

A + B =
∑

n

tn|φn〉〈φn|, (8)

where {tn} are the eigenvalues of A+B, {|φn〉} are the
corresponding eigenvectors. However it is impossible to
prove it, because we have a counter-example for such
a generalization. This means that our Lemma 3.5 can
not be extended to the general case of n ≥ 3. Therefore
one must produce an another method to prove Theo-
rem 3.6 for any n × n positive matrices A and B. In
such a situation, J.I.Fujii solved this problem by prov-
ing the remarkable trace inequality [14, 15, 16]. Us-
ing this method, the open problem given in [6, 4] was
completely solved in the case of s ∈ [0, 1] by J.I.Fujii,
R.Nakamoto and K.Yanagi [17] in the following way.



Definition 3.8 ([15, 16]) Let f, g be real valued con-
tinuous functions. Then (f, g) is called a monotone
(resp. antimonotone) pair of functions on the domain
D ⊂ R if

(f(a)− f(b))(g(a)− g(b)) ≥ 0 (resp. ≤)

for any a, b ∈ D.

Proposition 3.9 ([15, 16, 14]) If (f, g) is a mono-
tone (resp. antimonotone) pair, then

Tr[f(A)Xg(A)X] ≤ Tr[f(A)g(A)X2] (resp. ≥)

for selfadjoint matrices A and X whose spectra are in-
cluded in D.

Theorem 3.10 ([14]) For 0 ≤ A,B ≤ I and s ≥ 0,
we have

Tr[(A + B)s(A(log A)2 + B(log B)2)]
−Tr[(A + B)s−1(A log A + B log B)2] ≥ 0.

Theorem 3.11 ([17]) For the operators 0 ≤ Ai ≤ I,
the probability distribution πi, (i = 1, . . . , a), and s ≥ 0
we have

Tr

[(
a∑

k=1

πkAk

)s a∑
i=1

πiAi (log Ai)
2

]

−Tr

( a∑
k=1

πkAk

)s−1( a∑
i=1

πiAi log Ai

)2
 ≥ 0,

4. Study on the case of s ∈ (−1, 0)

Our remained problem is the following.

Problem 4.1 Prove the trace inequality

Tr

A(s)s


a∑

j=1

πjS
1

1+s

j

(
log S

1
1+s

j

)2



−Tr

A(s)−1+s


a∑

j=1

πjH

(
S

1
1+s

j

)
2
 ≥ 0 (9)

for any real number s (−1 < s < 0), any density
matrices Si(i = 1, · · · , a) and any probability dis-
tributions π = {πi}a

i=1, under the assumption that

A(s) ≡
∑a

i=1 πiS
1

1+s

i is invertible. Or find the counter
example of the inequality (9).

As similar way of the previous section, this problem
can be weakened in the following.

Problem 4.2 Prove

Tr
[
(A + B)s

{
A(log A)2 + B(log B)2

}]
−Tr

[
(A + B)−1+s(A log A + B log B)2

]
≥ 0 (10)

for any s, (−1 < s < 0) and two positive matrices
A ≤ I and B ≤ I. Or find the counter example of the
inequality (10).

Here we give a counter-example of the inequality
(10) for s ∈ (−1, 0). Putting A = e−X and B = e−Y

for X, Y > 0, the inequality (10) is equivalent to

Tr
[(

e−X + e−Y
)s (

e−XX2 + e−Y Y 2
)]

−Tr
[(

e−X + e−Y
)s−1 (

e−XX + e−Y Y
)2] ≥ 0. (11)

If we take

X =
(

5 3
3 2

)
, Y =

(
4 0
0 25

)
, s = −1/2,

then the left hand side of the inequality (11) takes
−0.441722.

However this counter example does not necessarily
assure that the concavity of the auxiliary function of
the quantum reliability function does not hold. In order
to show that the concavity of the auxiliary function of
the quantum reliability function does not hold, we must
find the counter example of the original trace inequality
(9) for a = 2. However we have not found such counter
examples yet.
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