
A Self-Organized Fuzzy-Neuro Reinforcement Learning System for  
Continuous State Space for Autonomous Robots 

 
 

Masanao Obayashi1, Takashi Kuremoto1 and Kunikazu Kobayashi1 
1 Division of Computer Science & Design Engineering, Yamaguchi University, Ube, Japan 

 E-mail:{ m.obayas,wu,koba}@yamaguchi-u.ac.jp 
 

 
Abstract 

 
This paper proposes the system that  combines self-

organized fuzzy-neural networks with reinforcement 
learning system (Q-learning, stochastic gradient 
ascent : SGA ) to realize the autonomous robot  
behavior learning for continuous state space. The self-
organized fuzzy neural network works as adaptive 
input state space classifier to adapt the change of 
environment, the  part of reinforcement learning has 
the learning ability   corresponding to rule for the 
input state space . Simultaneously, to simulate the real 
environment the robot has ability to estimate own-
position. Finally, it is clarified that our proposed 
system is effective through the autonomous robot 
behavior learning simulation by using the khepera 
robot simulator.  
 
1. Introduction 

 
Reinforcement learning (R.L.) is a framework for an 

agent to learn the choice of an optimal action to adapt  
unknown environment based on a reinforcement signal 
[1]. It has been applied to a variety of problem such as 
robust control [3]-[5], nonlinear prediction [6], swarm 
behavior learning [7] and so on.  

There are Q-learning, actor-critic and stochastic 
gradient ascent and so on as  representative 
reinforcement learning methods. Q-Learning is usually 
suitable for discrete state and action space and actor-
critic and SGA are for continuous state and action 
space. In real environment, many of real environments 
are continuous one, actor-critic is much used.  

On the other hand, in  reinforcement learning, in 
order to select the appropriate action  adapting  to 
change of environment and  to achieve the object, it is 
very important for robots to  deal with corresponding 
to characteristic of the state taken from environment. 
Considering that, we propose that the self-organized 
fuzzy neural network (SOFNN) is taken into the 

reinforcement learning system. Fusing the SOFNN 
with actor-critic, [6] applies its fusion system to swarm 
behavior problem, and [8] applies to nonlinear system 
control problem. Fusing the SOFN with stochastic 
gradient ascent, [5] also applies it to nonlinear time 
series prediction.  . 

The proposed system in this paper is depicted in 
Fig.1. In Fig.1, SOFNN works as adaptive input state 
space classifier to adapt the change of environment, 
the present reinforcement learning part has learning 
ability   corresponding to classified rules with Fitness 
Degree  by SOFNN.  Rules of SOFNN increase in case 
that the  difference between the present input state and 
previous ones  is bigger than threshold. In this study 
both cases, Q-learning and SGA, are considered. 
Simultaneously, to simulate the real environment the 
robot has ability to estimate own-position. Finally, it is 
clarified that our proposed system is effective through 
the autonomous robot behavior learning simulation by 
using the khepera robot simulator.  

 
 

Fig.1 Structure of our proposed system 
 

2. Self-organizing fuzzy neural network 
 

Our self-organized fuzzy inference net is designed 
with a hidden layer which units are Radial Basis 
Function(RBF)-like fuzzy membership functions 

( ))(txB i
k
i  to classify input states, and fuzzy rules are 

generated by multiplying their corresponding 



membership functions as same as in [4?]. The number 
of membership functions and rules of fuzzy net are 
important for a fuzzy inference system. We proposed a 
self-organized fuzzy neural network (SOFNN) which 
constructed adaptive membership functions and rules 
using training data and thresholds previously [7] and 
[8]. Wang, Cheng, and Yi proposed a structure 
learning algorithm for adding and merging units using 
TD error distribution recently [5]. The self-
multiplication algorithm to decide the size of fuzzy net 
in [4] is also used here.  
 
2.1  Fuzzy net – x 
 
The part of fuzzy net is shown in Fig. 2 in detail. For an 
n-dimension input state space ( ))(),...,(),( 21 txtxtx nx , 
a fuzzy inference net is designed with a hidden layer of 
fuzzy membership functions  ( ))( txB i

k
i

 to categorize 
the states.  

( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−=

2

,

,
, 2

1exp
k
li

k
lii

i
k
li v

ux
xB

,

            (1) 

Here k
liu , , k

liv , denotes the mean and the deviation of 

thl membership function, a kind of  Radial basis 
function (RBF), corresponding to ith input )( tx i , and 
connecting to kth fuzzy rule respectively. 

Let )(tK be the largest number of fuzzy rules 
kR ( k  = 1, 2, … , )(tK  ), then we have (2).  
For kR : 

if( )(1 tx is ))(( 1,1 1
txB k

L
,..., )(txn  is ))((, txB n

k
Ln n

)    

then      ))(x( tF k  = ))((
1

, txB i
n

i

k
Li i

∏
=

  ,   (2) 

where ))(x( tF k means the fitness of the rule kR for an 
input set ( )tx . In the case of the self-organized fuzzy 
net -a, in the above formulation, iL  is replaced by iD  
 ),,1( mi = .  
 
2.2 Adding procedure of fuzzy sets and rules 

 
   The number of membership functions and rules of 

fuzzy net are important for a fuzzy inference system. 
We proposed a self-organized fuzzy neural network 
(SOFNN) which constructed adaptive membership 
fuzzy net are important for a fuzzy inference system. 
We proposed a self-organized fuzzy neural network 

 
 
Fig.2 Structure of the self-organized fuzzy neural 
network (SOFNN) 
 
(SOFNN) which constructed adaptive membership 
functions and rules using training data and thresholds 
previously [5]. Wang, Cheng, and Yi proposed a 
structure learning algorithm for adding and merging 
units using TD error distribution recently [8]. Here we 
use a simpler self-multiplication algorithm to decide 
the size of fuzzy net. Only one membership function is 
generated by the first input data (for example, the 
position of agent) of each input state vector. The value 
of its center equals to the value of input, and the value 
of width of all Gaussian function units is fixed to an 
empirical value. The number of rule for membership 
functions is one, and the output of the rule 1R equals to 



))1(x(1F = ))1((
1

1
, i

n

i
Li xB

i∏
=

 according to (2). For the next 

input state ( ))(),...,(),( 21 txtxtx nx , a new 
membership function  is generated if (3) is satisfied. 
 

thilil
txB θ<))((max ,                             (3) 

Here ))((, txB ili denotes the value of existed 

membership functions calculated by (1) and 
)(,...,2,1 tLl i=  indicates the thl  membership function, 

the maximum number is )(tLi .  thθ  denotes a threshold 
value of whether an input state is evaluated enough by 
existing membership functions. A new rule is 
generated automatically when a new membership 
function is added. Thus the fuzzy net is completed to 
adapt to input states. 

 
3.  SGA with SOFNN  
 

The objective of learning of the robot is to form a 
stochastic policy[2], that assigns probability 
distribution over actions to each observation to 
maximize the acquisition of total rewards. A policy 

),,( XWaπ denotes probability density function of 
selecting action a  in the observation X . The policy is 
represented by a parametric function approximator 
using the internal variable vector W . The robot can 
improve the policyπ  by modifying W .   For example, 
W corresponds to connection weights where the action 
selecting probability is represented by neural networks. 
In this study, it is assumed that  the action of the robot 
follows normal distribution, means and standard 
deviation of its distribution of optimal action are 
estimated by SOFNN with SGA (see Fig.3). 

The mean jμ and standard deviation jσ  of the 

normal distribution  is estimated  as follows: 

∑

∑ ⋅
=

∑

∑ ⋅
=

k

k
k

k
j

k

j

k

k
k

k
j

k

j F

F

F

F σ
σ

μ
μ ,

(4)
),,1( mj L=  

 kR ( )k
nn

kk BisxBisxBisxif ,,, 2211             
( )
( )k

m
kkk

k
m

kkkthen

σσσσ

μμμμ

,,,

,,,

21

21

=

=

.             
 
3.1 Action selection 
 
In this study, it is assumed that  the action of the robot 
follows normal distribution of action ),,1( mja j L= ,

 

            
Fig.3 Structure of  SGA using SOFN   

 

 
 

Fig.4 Action selection in SGA using SOFN  
 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −
−= 2

2

2
exp

2
1

j

jj

j
j

a
a

σ
μ

σπ
π (5) 

    ),,1( mj L=               
The action of the robot can be obtained by 

generating a random data according this probability 
function (5), and is executed (see Fig.4). 
  
3.2 General form of the SGA algorithm  
 
  A general form of the SGA algorithm is as follows: 
1.   Observe tX in the environment. 
2.   Execute action ta with probability ),,( tt XWaπ , 

      here,
 

},,,{ ,,
k
j

k
jlili vuW σμ=  

))(,,1,,,1,,,1,,,1( tKkmjLlni i LLLL ==== . 

3.   Receive the immediate reward tr  
4.   Calculate   ( )tei  and  ( )tEi  as  



( ) ( ){ }

( ) ( ) ( ),1,

,,,ln

−+=
∂
∂

=

tEtetE

W
w

te

iii

tt
i

i

γ

π xa

)10( <≤ γγ , 
 where wi  denotes the  ith component of W . 

( ) astwiΔCalculate.5  
( ) ( ) ( )tEbrtw iti −=Δ (7) 

       where .baselinecementthereinfordenotesb   
6.   Policy Improvement : update   W   as   

             ,)),(,),(),(( 21 LL twtwtwW iΔΔΔ=Δ  
 ( ) WWW Δ−+← γα 1  ,                            (8)  

        where factor.rate learningenonnegativa.isα  
7.   Move to the time step t+1, and go to step 1. 
 
4. Q-learning with SOFNN 
 

An object of the basic Q-Leaning is discrete state 
and action space. However its extension to continuous 
state and action space has been executed so far, for 
example, [7]. In this study, we introduce SOFNN into 
Q-Leaning [7]. The proposed system is shown in Fig.5. 

 
Outline of our Q-learning algorithm is as follows: 

1.   Calculate ( )ax,kf  using tx .  

( ) kt
k
at

k
xttk cf +⋅+⋅= acxcax , (9) 

 where, 
T

nt
Tk

xn
k
x

k xxcc ],,[,],,[ 11 LL == xcx ,
T

mt
Tk

am
k
a

k aacc ],,[,],,[ 11 LL == aca , 

kc  for  kth rule, 
these parameters are to be adjusted.   

2.  Calculate Q function : 

( )
∑

∑ ⋅
= k

ttk
k

tt F
fFQ ),(, axax (10) 

3.  Calculate ( )xa |P   using Eq.(11).  

( ) ( )( )
( )( )∑

∈

=

action
TQ

TQP

b
bx

axxa
/,exp

/,exp| (11) 

4.  Decide  action a as follows: 
4.1 Make predefined number of segments J divided 

equally. 

4.2 Select  segment j  by roulette according to Eq.(11). 
4.3 Select continuous action a  by generating a random 

data. 
5.  Receive the immediate reward tr  
6. Observe 1+tx in the environment. 
7.  Update ( )ttQ ax , using Eq.(12),  

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ++−← + it

i
ttttt QrQQ axaxax ,,1, 1maxγαα

  (12) 
8.  Move to the time step t+1, and go to step 1. 
 
4.1 Learning procedure of  Q-learning with 
SOFNN 
 
   Learning procedure is executed using commonly 
used steepest descent method. The criterion function 
E  is like this, 

( )

( ) ( )
2

1

2

,,max
2
1

2
1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+=

Δ=

+ tttbt axQbxQr

QE

γ

(13) 

All parameters are adjusted to minimize E . By 
taking  gradient  of E  respect to each parameter, 
updating forms are acquired as follows: 

( )

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

Δ−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+←

Δ−
−

+←

QQfS
x

QQfS
x

kkk
i

k
ii

k
i

k
i

k
i

kkk
i

k
ii

k
i

a
k
i

k
i

2
1

1

σ
μ

σ
εσσ

σ

μ

σ
εμμ

σ

              (14) 

⎪⎩

⎪
⎨
⎧

Δ+←

∗Δ+← ∗∗

QSCC

axQxSCC

kckk

ikc
k
i

k
i

ε

ε ),:(,
 , (15) 

where ∑= k
kk

k FFS / , ca εε , : nonnegative 
learning rate factor . 

 
       Fig.5 Structure of Q-learning using SOFN  
 
5. Computer simulation 
 

In this simulation, we consider the problem that the 
robot moves from start to goal in the 
1000mm×1000mm Maze field in the Khepera 



simulator shown in Fig.6. The Q-learning and SGA 
with SOFNN( called the proposed method) are 
compared with the Q-learning and SGA with fixed 
structure of fuzzy neural network(: FSFNN called the 
conventional method here). 
 
5.1  Estimation of the position of the robot  
 

The robot moves and estimates own position in the 
field. In the case that the robot takes the same action,  
all the position of the robot in the Khepera simulator   
are not always at same position, because the simulator 
add the 10±  %  noise to the action of the robot.  

θ̂,ˆ,ˆ yx are estimated values of  axis),(x axis),(y  
angle)(θ frontfrom , respectively. Here the robot has 

three actions and estimates own position as follows: 
  1. Go straight : 

 Output of the right and left motor =10.0 [mm/s]. 
  2. Right revolution : 
      Output of the right and left = -4.0, 4.0 [mm/s] 

respectively. 
  3. Left revolution : reverse of the right revolution. 
 

disand ΔΔθ denote the mean values of change of 
direction and movement distance, respectively.  
  1. Go straight : ]mm[0.5)dis(],rad[0.0)( =Δ=Δ EE θ  
  2. Right revolution : 
      ]mm[0.0)dis(],rad[08.0)( =Δ−=Δ EE θ  
  3. Left revolution : reverse of the right revolution. 
 

  The renewal form of θ̂,ˆ,ˆ yx are as follows: 

  1. )ˆcos()dis()(ˆ)1(ˆ θ×Δ+=+ Etxtx  

  2. )ˆcos()dis()(ˆ)1(ˆ θ×Δ−=+ Etyty  

  3. )()(ˆ)1(ˆ θθθ Δ+=+ Ett  
 
The robot can know own position and acquire 

reward 0.5 by finding sub-goal, he can reset the 
estimation error of the position of robot there. 

In the simulation, 1 action means 1 step and 10 
steps continues the same action without collision with 
wall.1 trial means 20000 steps. The 1 step  movement 
distance is 5[mm]. The reward used in SGA with 
SOFNN and FSFNN learning are 1.0 for arrival to the 
goal, and -0.0001 for collision with wall. On the other 
hands, the rewards in Q-learning with those are 100.0 
for arrival to the goal, and for -0.1 for collision with 
wall. 

   The learning rate factors of mean value of post 
condition of the fuzzy rule are 0.05 and 0.1 for SGA 
and Q-learning, respectively. Other learning rate 

factors are 0.001.The discount factor 99.0=γ for both 
learning. The temperature constant  T is 0.05. The 
number of rules for the conventional are 1152, 9216 
for Q—learning ,SGA respectively to arrange and 
divide a the environment equally.  
 

          Fig.6 Maze used in the simulation  
 
5.2  Simulation results 
 

 
Fig.7  The number of steps to the goal for both SGA. 
The conventional could not arrive at the goal, however, 
the proposed could arrive at it. 
 

 
Fig.8  The number of steps to the goal for both QL. 
The conventional could not also arrive at the goal, 
however, the proposed could arrive at it. 

:Start 
 
:Sub 
 goal 
 
:Goal 

 
SGA with SOFNN 
 (Poroposed) 

 
SGA with FSFNN 
(Conventional) 

 
QL with SOFNN 
  (Poroposed)
 
QL with FSFNN 
 (Conventional)



 
Fig.9  The number of rules are 912 and 10024 for SGA 
and QL, respectively after learning. That of QL is 
much greater than SGA.   

  In Fig.7-9, the position of the robot given into the 
system is  estimated values. 
 

 
Fig.10  The number of steps to the goal for estimated 
and true values of the position of the robot. 
 

 
Fig.11 The change of error between true robot position 
and estimated one on the way to the goal at 150 trials. 
On the way, error is reset to 0 two times because the 
robot arrived at the sub-goal. 

The number of average step to the goal per 10 times 
after learning are 515.9 and 528.9 for SGA with 
SOFNN and Q-learning with SOFNN, respectively. It 
is said that both proposed methods may have same 
performance.  
 
6.  CONCLUSIONS 

We proposed the system that  combines self-
organized fuzzy-neural networks (SOFNN) with 
reinforcement learning system (Q-learning, stochastic 
gradient ascent : SGA ) to realize the autonomous 
robot  behavior learning for continuous state space, 
and showed its effectiveness through goal searching 
problem in Khepera simulator.  

In our future work, we would like to try to expand 
the proposed system to that with memory and function 
of image processing  in order to deal with real and 
plural navigator problems.  
 
Acknowledgements 

We would like to thank Mr. K. Hirosawa for his work in 
experiments, and a part of this study was supported by JSPS-
KAKENHI (No.18500230, No.20500277 and No.20500207).  

 
REFERENCES 

[1] R.S. Sutton, A.G. Barto "Reinforcement Learning", 
The MIT Press,1998 

[2] H. Kimura, S. Kobayashi: Reinforcement Learning for 
Continuous Action using Stochastic Gradient Ascent, 
Intelligent Autonomous Systems (IAS-5) pp.288--295 , 
1998  

[3] Jun Morimoto, Kenji Doya "Robust Reinforcement 
Learning ", Neural Computation ,Vol. 17, pp.335-
359,2005 

[4] M.Obayashi,N.Nakahara,T.Kuremoto,K.Kobayashi : ”
A Robust Reinforcement Learning Using Concept of 
Sliding Mode Control”, Proc. of The 13th International 
Symposiumu on Artificial Life and Robotics,pp547-
550,2008   

[5] T. Kuremoto, M. Obayashi, K. Kobayashi: Nonlinear 
prediction by reinforcement learning, LNCS, Vol. 3644, 
pp.1085--1094 ,2005 

[6] T. Kuremoto, M. Obayashi, K. Kobayashi, H. Adachi, 
K.Yoneda: A Reinforcement Learning System for 
Swarm Behaviors,Proc.2008 IEEE World Congress 
on Computational Intelligence (WCCI /IJCNN 2008), 
pp.3710—3715,2008 

[7] Tadashi Horiuchi, Akinori Fujino, Osamu Katai,Tetsuo 
Sawaragi “Fuzzy Interpolation-Based Q-Learning 
with Continupus Inouts and Outputs, Trans. of the 
Society of Instrument and Control Engineers, Vo.35, 
No.2, pp.271-279,1999 

[8] X. S. Wang, Y. H. Cheng and J. Q. Yi: A fuzzy Actor–
Critic reinforcement learning network, Information Sci
ences, 177, pp.3764--3781 ,2007 


