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Abstract

Living organisms have ingenious control mechanisms in which many molecular interactions work
for keeping their normal activities against disturbances inside and outside of them. However, at the
same time, the control mechanism has debacle points at which the stability can be broken easily.
This paper proposes a new method which uses recurrent neural network for predicting debacle
points in an hybrid functional Petri net model of a biological pathway. Evaluation on an apoptosis
signaling pathway indicates that the rates of 96.5 % of debacle points and 65.5 % of non-debacle
points can be predicted by the proposed method.

Keywords: hybrid functional Petri net, Genomic Object Net, recurrent neural networks, back prop-
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1 Introduction

Living organisms have ingenious control mechanisms in which many molecular interactions work in
order to keep their normal activities against disturbances from inside and outside of living organisms.
Bioinformatics researchers have constructed computational models of biological phenomena with which
many results about robustness have been obtained [4]. However, there have been few researches on
finding debacle points for robustness. A debacle point is the point at which homeostasis of a biological
control system is broken down by some key molecules or some unusual conditions in a biological control
system.

In Genomic Object Net (GON) Project [3, 6, 12], we have modeled many biological pathways
including metabolic pathways, signaling pathways, and gene regulatory mechanisms with Cell Illus-
trator [11] which is a software for biopathway simulator developed on the basis of hybrid functional
Petri net (HFPN). An HFPN is constructed with three types of elements, places, transitions, and
arcs [5]. A real number in a place is controlled by the speed assigned at a transition which is attached
to the place by an arc.

Debacle points can be predicted by repeating simulations, comparing contents in places from the
normal HFPN model with contents in places from an incomplete HFPN model whose some arcs were
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removed in advance1. However, a huge amount of time will be necessary with this method because
many simulations have to be conducted until satisfactory predictions for debacle points are obtained.
In addition, since this method is rather subjective, it is difficult to make appropriate choices to pick
up arcs which will affect the robustness.

This paper proposes a new method which uses recurrent neural network (RNN) [9] for predicting
debacle points in an HFPN model of a biological pathway. An RNN is constructed as it keeps con-
nections in an HFPN of a biological pathways, performing learning processes by the back propagation
through time (BPTT) method so that time course data in places are kept for identifying transnormal
parts and irregular time course behavior of the biological pathway by further disruption processes of
molecular interactions.

This paper gives an RNN based method which can predict debacle points in biological pathways in
much less time than that conventional method by comparison between two types of simulation results
from normal and incomplete HFPN models. In addition, with this method, we can realize a fully
automatic process for predicting debacle points by employing the two features of Cell Illustrator, the
XML description of HFPN and the mechanism exporting numerical time course data in places.

Evaluation of the proposed method has performed on the HFPN model for apoptosis signaling
pathway [1, 5]. With the proposed RNN based method, debacle points of this pathway could be
predicted in one hour, while over eighteen hours were spent by manual procedures of the same works.
For larger pathway models, the differences in these times between the proposed method and the manual
procedure will become larger. The rates of 96.5 % of debacle points and 65.5 % of non-debacle points
can be successfully predicted by the proposed method. Although the results of this experimentation
include some false positives and false negatives, the proposed method works well in finding debacle
points in a biological pathway.

2 Hybrid Functional Petri Net and Recurrent Neural Network

2.1 Hybrid Functional Petri Net

Hybrid Petri net (HPN) [2] has been introduced as an extension of the discrete Petri net [7]. In
HPN, two kinds of places and transitions are used, discrete/continuous places and discrete/continuous
transitions. A discrete place and a discrete transition are the same notions as used in the discrete
Petri net. A continuous place holds a nonnegative real number as its content. A continuous transition
fires continuously in the HPN and its firing speed is given as a function of values in the places in the
model. The HFPN [5] was introduced by expanding the notion of HPN, for example, any functions can
be assigned to arc/transition for controlling the speed/condition of consumption/production/firing.
These expansions allow us to model various aspects in biopathways very smoothly [5, 12].

2.2 Recurrent Neural Network

Recurrent neural networks (RNNs) [9] which can be considered as generalized hierarchical networks
in terms of time-space, is feed forward hierarchical networks with feedback mechanisms, enabling
us to process time-space information naturally. Connections between units of RNNs are generalized
asymmetrically. Hence, RNNs do not have definite concepts of layers as hierarchical networks: units
of a network can be classified into input units, output units, and hidden units. Inputs units are
connected to all output units and hidden units, and output units and hidden units are connected with
each other.

The most simple learning method of RNN is to apply the error back propagation (BP) [8] to
hierarchical networks which are extracted from non-hierarchical networks with feedback loops. This

1Process to remove an arc in an HFPN represent actions to disrupt the corresponding interaction in the original
biological pathway.
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method is called the back propagation through time (BPTT). In the BPTT method, weights of
connections in an RNN will be updated based on previous inputs, outputs and weights of them
which have been kept through the start time t0 to the time t in calculating dynamics of the network.
Learning of RNNs in time-space are performed with repeating such update processes on weights of
connections.

3 A Method to Predict Debacle Points in a Biological Pathway

By repeating the action to remove a different arc in an HFPN model for a biological pathway, debacle
points in the biological pathway can be predicted based on differences in behaviors of place contents
from simulations on these two types HFPN. However, huge amount of time is required by this method
because each simulation on an HFPN spends much time. In contrast, with an RNN based method
proposed in this paper, we can predict these debacle points in much less time.

In addition, we can realize a fully automatic process for debacle points prediction: our method can
automatically utilize parameters for prediction processes by extracting necessary data for predictions
from descriptions of a biological pathway in XML file. The feature of Cell Illustrator in employing
XML format for HFPN description enables this full automatic process.

The proposed method is constituted by the following three stages.

(1st) Reconstruct an RNN from an HFPN with learning.

(2nd) Remove all connections in the RNN corresponding to an arc of the HFPN and extract differ-
ences between its unsteady state of the HFPN model and its steady state of this HFPN model.
Repeat this procedure in sequence for each arc of the HFPN.

(3rd) Predict debacle points by sorting the differences in ascending order.

3.1 1st Stage: RNN Construction and Its Time Expansion to BPTT
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Figure 1: 1st stage: Construction of RTT and its time expansion to BPTT.

The following is a processes to construct the RNN of Figure 1 (b) from the HFPN of Figure 1(a).

• Extract all time course data of token (concentration behavior) from all places of an HFPN. These
time course data are incorporated in input units of RNN.
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Table 1: Input signals and teaching signals.

input signals teaching signals
Pattern 1 all contents of places all 0
Pattern 2 all 0 all 1

error

number of learning (logarithm)

Figure 2: General transition of error differences in learning process by BPTT method.

• Places and transitions of an HFPN are defined as hidden units (including output units), where
the number of units depends on the number of places and the number of transitions of an HFPN.

• A connection in an RNN is made according to each connection of arcs from places/transitions
to a transitions/places in an HFPN.

Figure 1 (c) shows the RNN expanded on time (time expanded RNN) from the RNN of Figure 1(b)
with which the learning by BPTT is going to be performed. The hierarchical structure of an RNN
do not change when time for simulation increases, since the increase in time does not affect the basic
connections of the RNN. That is, the number of hierarchies depends on the number of time course
data. When the sampling period for an HFPN is too short to get result from learning, resampling
process is carried out in order to avoid the increase of hierarchies. Constants are assigned to all units
of the 1st hierarchy of the time expanded BPTT.

Since results of learning on only one pattern tend to be in local minimum, we used two patterns in
Table 1 as input signals and teaching signals. Pattern 1 in Table 1 corresponds to a learning pattern in
steady state, in which all contents of places are used as input signals. The value “0” of teaching signal
in steady state reflects the situation in which the biological pathway is not affected by deletion of the
arc. On the contrary, the value “1” of teaching signal reflects the situation in which the biological
pathway is affected by deletion of the arc. Pattern 1 allows each value in the output layer to be
a number close to zero when a state of an RNN approaches to the steady state. On the contrary,
Pattern 2 allows each value in the output layer to be a number close to one when a state of an RNN
is unstable. Learning processes can be performed effectively based on these two patterns.

In addition, since the number of connections in an RNN increases with increasing complexities of
biological pathways, values in the output layer become larger in more complex biological pathways,
making it possible to have more higher accuracy in analyzing debacle points of biological pathways.
Details for this analysis will be described below.

Figure 2 shows general transition of error differences when learning processes of RNNs are per-
formed by BPTT method. We can see that, in early period of the learning in Figure 2, behaviors
of two patterns in Table 1 are converged to some level by BPTT. The next period of learning is the
process to reduce differences in the output layer. If these differences decrease with increasing learning
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times, it can be said that reforming process of RNN is performed successfully. On the contrary, if
these differences do not decrease in that period, RNN might be in a local minimum. In this case, some
techniques such as simulated annealing have to be applied in order to escape from a local minimum. If
the learning process is performed successfully, it reaches a steady state from which differences are not
improved more. From Figure 2, we can see that learning is not improved from the 10,000 times. For
efficient predictions of debacle points, the learning process has to be ended before it reaches a steady
state.

3.2 2nd Stage: Error Detection by Sequential Deletions of Arcs

The next process after the completion of learning process is to detect errors in RNNs, which corre-
sponds to sequential removal of arcs in an HFPN. Figure 3 (b) shows the RNN model whose connections
are partially deleted based on the removal of arc a2 from place p1 to transition t3 in Figure 3 (a).
Accordingly, the connections from time=1 to time=n corresponding to the arc a2 of the HFPN are
removed as shown in the dotted arc in the time expanded RNN of Figure 3 (c). That is, in accordance
with removal of arc from an HFPN, the connections between any pair of units are deleted from a
time expanded RNN. Note that these deletions result in errors in the output unit. If these errors are
large, the deleted arc shall play an essential role in the original biological pathway, which will break
robustness of the pathway. In contrast, if these errors are small, the corresponding reaction in the
original biological pathway shall not affect the robustness.

By repeating the above removal processes of the connections in a time expanded RNN for each
arc in an HFPN model (arcs a1 to a6 in Figure 3), we obtain errors in the output layer which will be
used in the next stage for debacle points prediction.
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Figure 3: 2nd stage : Error detection by sequential deletion of arcs.

3.3 3rd stage: Debacle Points Prediction Based on Errors

The graph of Figure 4 shows results of errors produced from the RNN. The horizontal axis of Figure 4
represents the arc number shown in No. column of Table 3 which will be sorted in descending order
of errors (see Table 4). As mentioned in the previous section, an arc number of larger error is more
likely to be break down than smaller error one. Based on errors, all arc numbers are classified into
two categories of robust arc numbers and fragile arc numbers.

In the following, we show a method to decide the threshold at which these two categories are
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Figure 4: 3rd stage : Determining the threshold dividing debacle and non-debacle points by errors
produced from the RNN.

classified. First, we calculate the difference

d(n) = y(n − 1) − y(n),

where n is the sorted arc number presented in the first column of Table 4 (and also the horizontal
axis of Figure 4) and y(n)(1 ≤ n) is the error of arc number n. That is, d(n) is the difference of two
neighboring arc numbers sorted by errors. The maximum d(n) is chosen as the threshold, while some
arc numbers of high errors are omitted from candidates of n. The reason of this omission is that the
very early stages of learning are sometimes affected by initial conditions of weights of connections in
an RNN which might be in a local minimum. This phenomenon is not essential, but may produce
unfavorable specific output of errors for predictions. In the experimentation of Figure 4, after omitting
the largest six errors of such phenomena, the range between the marked points “a” and “b” in the
horizontal axis of Figure 4 has been obtained. From this range, the arc marked with “p”, where the
largest difference in errors between two neighboring sorted arcs occurs, was chosen as the arc of the
smallest error of debacle points. This point “p” distinguishes two classes of debacle and non-debacle
points.

4 Experimentation for Debacle Points Prediction on Apoptosis Sig-
naling Pathway

4.1 Signaling Pathway of Apoptosis Induced by Fas Ligand

We conducted an experimentation in order to evaluate the efficiency of the proposed method by using
signaling pathway for apoptosis. This pathway is appropriate for the first evaluation because it does
not include complex set of reactions such as a feedback loop. Although several apoptosis signaling
pathways have been known, we adopted the signaling pathway induced by Fas ligand for evaluation,
since it is one of the most investigated signaling pathways of apoptosis. Figure 5 and Figure 6 show
this signaling pathway and its HFPN model, respectively. From Figure 5, we can see that the pathway
branches off in two pathways at caspase 8 and these two pathways meet again at caspase 3. The HFPN
model of Figure 6 was constructed by including autocatalytic reactions in a basic HFPN model naively
transformed from Figure 5. Refer to [5] for the details of this HFPN model.
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Figure 5: Signaling pathway of apoptosis.

4.2 Manual Extraction of Debacle Points

The HFPN model of signaling pathway includes 39 places, 78 transitions, and 126 arcs. Based on this
HFPN model, we constructed an RNN.

Concentration behavior of each place has been sampled at 2003 points and these 2003 points
were reduced to 200 points by the down sampling. 0.9 is set to the two parameters α and µ0 which
determine learning constant, and random values are used as initial values of weights.

Evaluation of the proposed method has been carried out by comparing the debacle points predicted
by the proposed method with the debacle points obtained by deletion of each arc in the HFPN model of
the apoptosis signaling pathway. Deletions of arcs are carried out by hand, and effects of deletions are
classified into five levels based on the number of damaged places, that is, these levels are remarkably
different from these normal behaviors. These levels are labeled with the numbers 1 to 5 according to
the number of damaged places as shown in the first and second columns of Table 2. Table 3 shows
correspondences between arcs and these five levels.

In the third and the fourth columns of Table 2, the number of damaged places for each of five
levels and its percentage are presented, respectively. We assumed that an arc which is classified as
levels 3, 4 or 5 is the arc which gives serious damage to the biological pathway, and these levels are
distinguished with bold characters in Table 3. That is, arcs of bold characters represent debacle points
for the apoptosis pathway. There are 42 arcs of debacle points and 84 debacle points of non-debacle
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Figure 6: HFPN model of apoptosis signaling pathway.

points in Table 3.

4.3 Results of Predictions

Table 4 is obtained from Table 3 by sorting arcs with respect to errors produced by the time expanded
RNN. Learning processes are performed 3000 times on this RNN. The line drawn around at the center
of the table represents the threshold 55.24, which is shown in Figure 4, obtained from the result of
predictions by the time expanded RNN. The arcs above (below) this line are arcs which are predicted
as debacle (non-debacle) points in the apoptosis pathway.

From Table 4, we can see that 40 arcs (57 arcs) are predicted as debacle (non-debacle) points
among 42 arcs (87 arcs). However, 27 arcs (2 arcs) are falsely predicted as debacle points (non-
debacle points) by BPTT, while these arcs were classified as level 1 or 2 (level 3, 4, or 5) in Table 2
by manual extraction of debacle points. In summary, the proposed method with the RNN exhibits
high rate of efficiency of 96.5 % (55/57) in predicting debacle points. However, for the prediction of
non-debacle points, the proposed method have gave only the rate of 65.5 % (57/87). We are now
working on improving the proposed method in this paper for upgrading the quality of prediction as
well as for reducing the numbers of false positives and false negatives shown in Table 4.
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Table 2: Debacle levels based on the number of damaged places and the number of arcs of these levels.

No. of damaged places levels No. of arcs ratio
0 ∼ 2 1 84 66.67 %
3 ∼ 5 2 17 13.49 %
6 ∼ 8 3 14 11.11 %
9 ∼ 11 4 4 3.17 %

above 12 5 7 5.56 %

5 Conclusion

This paper proposed a method to use RNNs for predicting debacle points in a biological pathway
which will give serious damages to the the biological pathway. With BPTT method, the RNN learns
behaviors of places in an HFPN model of the biological pathway. With the RNN which has finished
the learning, we realized the automatic prediction system for the debacle points, to which an XML file
of an HFPN model of a biological pathway and time series data of all places of the HFPN are given,
and from which a table as Table 5 presenting debacle points is produced. This automatic system
allows us to predict the debacle point in a number of hours, while more than a day has been spent by
a method as in Section 4.2 with repeating a simulation for each deletion of all arcs in the HFPN.

The evaluation on the example of apoptosis shows the availability of the proposed method to a
practical use in debacle points prediction. However, this paper only considers the availability from the
aspects of computational efficiency. The availability has to be also discussed from biological aspects,
that is, biological meaning has to be discussed for each debacle point predicted from RNN as well as
for each behavior resulted from the removal of an arc. Hence, our efforts will be dedicated in applying
our method to more varieties of biological pathways including metabolic pathways and gene regulation
networks with considering biological meanings of debacle points suggested from the RNN.
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Table 3: Damage levels of arcs by manual deletion.
from : to R

FADD : n77 1
FADD : n40 1
complex13 : n114 1
complex13 : n45 1
cytochrome c : n111 2
cytochrome c : n110 1
BID C terminal in mitochondrion : n112 1
BID C terminal in mitochondrion : n109 1
complex12 : n108 1
complex12 : n56 1
complex11 : n105 1
complex11 : n51 3
complex10 : n102 1
complex10 : n68 3
complex9 : n101 1
complex9 : n50 4
complex8 : n95 1
complex8 : n48 3
complex7 : n84 1
complex7 : n65 2
complex6 : n82 1
complex6 : n64 4
complex5 : n81 1
complex5 : n42 4
caspase3 : n72 1
caspase3 : n69 1
caspase3 : n67 1
complex4 : n98 1
complex4 : n60 2
Fas ligand trimer : n75 1
Fas ligand trimer : n58 3
Fas ligand : n74 1
Fas ligand : n57 3
DNA : n107 1
DNA : n71 1
oligomer of DFF40 : n71 1
oligomer of DFF40 : n70 1
n20 : n54 1
n19 : n53 1
DFF45 fragment : n52 1
DFF40 : n115 1
DFF40 : n55 1
DFF : n104 1
DFF : n69 1
pro-caspase3 : n100 1
pro-caspase3 : n67 1
pro-caspase3 : n59 1
pro-caspase3 : n49 1
caspase9 : n73 1
caspase9 : n66 1
caspase9 : n49 1
complex3 : n94 1
complex3 : n47 2
pro-caspase9 : n96 1
pro-caspase9 : n66 1
pro-caspase9 : n46 1
complex2 : n93 1
complex2 : n46 1
dATP : n113 1
dATP : n92 1
Apaf-1 : n113 1
Apaf-1 : n91 1
cytochrome c(2) : n90 1
cytochrome c(2) : n45 1
BID C terminal : n87 1
BID C terminal : n44 2
BID : n83 1
BID : n43 2
caspase8 : n63 1
caspase8 : n62 1
caspase8 : n61 2
caspase8 : n59 1
caspase8 : n43 1
complex1 : n80 1
complex1 : n41 3
DISC : n79 1
DISC : n63 1
DISC : n39 1
pro-caspase8 : n76 1
pro-caspase8 : n62 1
pro-caspase8 : n40 1
Fas ligand trimer-Fas receptor : n78 1
Fas ligand trimer-Fas receptor : n39 1
n116 : FADD 2
n113 : complex13 3
n111 : cytochrome c(2) 4
n109 : cytochrome c 5
n106 : DNA 1
n103 : DFF 2
n99 : pro-caspase3 2
n97 : pro-caspase9 2
n89 : dATP 3
n88 : Apaf-1 3
n86 : BID 3
n85 : pro-caspase8 2
n71 : complex12 1
n69 : complex11 3
n68 : caspase3 2
n67 : complex9 1
n66 : complex8 1
n65 : BID C terminal 5
n64 : caspase8 1
n63 : complex5 1
n62 : complex6 1
n60 : caspase3 2
n59 : complex10 1
n58 : Fas ligand trimer-Fas receptor 5
n57 : Fas ligand trimer 5
n56 : DNA fragment 1
n55 : oligomer of DFF40 2
n51 : n20 1
n51 : n19 1
n51 : DFF45 fragment 1
n51 : DFF40 2
n50 : caspase3 1
n49 : complex4 2
n48 : caspase9 1
n47 : caspase9 3
n46 : complex3 3
n45 : complex2 3
n44 : BID C terminal in mitochondrion 5
n43 : complex7 5
n42 : caspase8 1
n41 : caspase8 5
n40 : DISC 1
n39 : complex1 1

Table 4: Results of prediction.
No. from : to R

1 n56 : DNA fragment 1
2 complex11 : n105 1
3 n69 : complex11 3
4 n59 : complex10 1
5 n71 : complex12 1
6 n49 : complex4 2
7 n43 : complex7 5
8 complex12 : n108 1
9 n67 : complex9 1
10 n66 : complex8 1
11 n46 : complex3 3
12 n39 : complex1 1
13 n45 : complex2 3
14 n63 : complex5 1
15 n113 : complex13 3
16 n40 : DISC 1
17 n19 : n53 1
18 n20 : n54 1
19 DFF45 fragment : n52 1
20 n60 : caspase3 2
21 n50 : caspase3 1
22 n68 : caspase3 2
23 n44 : BID C terminal in mitochondrion 5
24 n65 : BID C terminal 5
25 n48 : caspase9 1
26 n47 : caspase9 3
27 n111 : cytochrome c(2) 4
28 n57 : Fas ligand trimer 5
29 n42 : caspase8 1
30 n41 : caspase8 5
31 n64 : caspase8 1
32 n109 : cytochrome c 5
33 n58 : Fas ligand trimer-Fas receptor 5
34 n55 : oligomer of DFF40 2
35 n51 : n19 1
36 n51 : DFF45 fragment 1
37 n51 : n20 1
38 n51 : DFF40 2
39 complex12 : n56 1
40 n116 : FADD 2
41 n106 : DNA 1
42 n103 : DFF 2
43 n99 : pro-caspase3 2
44 n97 : pro-caspase9 2
45 n89 : dATP 3
46 n88 : Apaf-1 3
47 n86 : BID 3
48 n85 : pro-caspase8 2
49 complex11 : n51 3
50 complex9 : n50 4
51 complex10 : n68 3
52 complex4 : n60 2
53 BID C terminal : n44 2
54 BID C terminal in mitochondrion : n109 1
55 cytochrome c : n111 2
56 complex3 : n47 2
57 complex8 : n48 3
58 complex7 : n65 2
59 Fas ligand : n57 3
60 complex6 : n64 4
61 complex1 : n41 3
62 complex5 : n42 4
63 Fas ligand trimer : n58 3
64 DFF40 : n55 1
65 n62 : complex6 1
66 BID C terminal in mitochondrion : n112 1
67 pro-caspase8 : n62 1

68 caspase8 : n62 1
69 FADD : n40 1
70 pro-caspase8 : n40 1
71 Apaf-1 : n113 1
72 complex13 : n45 1
73 caspase8 : n63 1
74 cytochrome c(2) : n45 1
75 DISC : n39 1
76 dATP : n113 1
77 pro-caspase9 : n46 1
78 DISC : tiny n63 1
79 Fas ligand trimer-Fas receptor : n39 1
80 caspase9 : n66 1
81 complex2 : n46 1
82 pro-caspase3 : n67 1
83 caspase8 : n43 1
84 caspase9 : n49 1
85 pro-caspase9 : n66 1
86 caspase3 : n67 1
87 caspase8 : n59 1
88 BID : n43 2
89 pro-caspase3 : n49 1
90 pro-caspase3 : n59 1
91 DNA : n71 1
92 oligomer of DFF40 : n71 1
93 caspase3 : n69 1
94 DFF : n69 1
95 DFF : n104 1
96 FADD : n77 1
97 caspase3 : n72 1
98 cytochrome c(2) : n90 1
99 complex2 : n93 1
100 dATP : n92 1
101 DISC : n79 1
102 Apaf-1 : n91 1
103 oligomer of DFF40 : n70 1
104 DNA : n107 1
105 Fas ligand trimer-Fas receptor : n78 1
106 BID : n83 1
107 pro-caspase8 : n76 1
108 pro-caspase9 : n96 1
109 complex13 : n114 1
110 caspase9 : n73 1
111 pro-caspase3 : n100 1
112 caspase8 : n61 2
113 Fas ligand : n74 1
114 complex7 : n84 1
115 cytochrome c : n110 1
116 BID C terminal : n87 1
117 complex3 : n94 1
118 complex6 : n82 1
119 complex1 : n80 1
120 complex8 : n95 1
121 complex5 : n81 1
122 complex10 : n102 1
123 complex9 : n101 1
124 complex4 : n98 1
125 Fas ligand trimer : n75 1
126 DFF40 : n115 1
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