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Abstract— This is an extension of results represented in
ISIT2003. Concavity of the auxiliary function which appears in
the random coding exponent as the lower bound of the quantum
reliability function for general quantum states is proven for
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I. INTRODUCTION

In quantum information theory, it is important to study the
properties of the auxiliary function ����� ��, which will be
defined in the below, appearing in the lower bound with respect
to the random coding in the reliability function for general
quantum states. In classical information theory [7], the random
coding exponent � �

����, the lower bound of the reliability
function, is defined by

��
���� � ���

���
������ ��� ��� �

As for the classical auxiliary function ����� ��, it is well-
known the following properties [7].

(a) ����� �� � ��

(b)
������ ��

��
���� � ��	 	
 �� where ��	 	
 � presents the

classical mutual information.
(c) ����� �� � � �� � � � 
�.

����� �� � � ��
 � � � ��.

(d)
������ ��

��
� �, ��
 � � � 
�.

(e)
������� ��

���
� �, ��
 � � � 
�.

In quantum case, the corresponding properties to (a),(b),(c)
and (d) have been shown in [11], [10]. Also the concavity of
the auxiliary function ����� �� is shown in the case when the
signal states are pure [3], and when the expurgation method is
adopted [10]. However, for general signal states, the concavity
of the function ����� �� which corresponds to (e) in the above
has remained as an open question [11] and still unsolved
conjecture [10].
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II. QUANTUM RELIABILITY FUNCTION

reliability function of classical-quantum channel is
by

���� � � ��� ��
���





�������

��� �� (1)

� � � � ��

is a classical-quantum capacity, � is a transmission
�

����	

�
( and � represent the length and the

of the code words, respectively), ������ can be
ny minimal error probabilities of �����

�� �� �� � or
������ �� �. These error probabilities are defined by
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sual error probability associated with the positive op-
alued measurement � � �	
� satisfying

�	


�		
 �
we note ��� represents the density operator corre-

g to the code word � 
 choosen from the code(blook)
�	� ��� � � � � �	

�
. For details, see [9], [11], [10].

ume that the words in the codebook � are chosen at
, independently, and with the probability distribution

	�� � ��	� � � � � ���� � ��� � � ����

h word. We shall denote expectations with respect to
bability distribution by the symbol 
 . In [3], it was

ured that the random coding bound is given in the
g;
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The bound (2) holds for pure states � � in which case �
�
���

� �
�� and � � �. For commuting �� it reduces to the classical
bound of Theorem 5.6.2 in [7] with � � �. By putting � �
���, it implies the lower bound for the reliability function
defined in Eq.(1), when we use random coding, is given by

���� � ��
� ��� � ���

�
�	
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��� ��� ��� ��� �

where � � ���� ��� � � � � ��� is a priori probability distribution
satisfying
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where each �� is a non-degenerate density operator which cor-
responds to the output state of the classical-quantum channel
� � �� from the set of the input alphabet 	 � ��� �� � � � � 
�
to the set of the output quantum states in the Hilbert space
�. For the problem stated in previous section, a sufficient
condition on concavity of the auxiliary function was given in
the following.

Proposition 2.1 ([6]): If the trace inequality

Tr
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holds for any real number � ���  � � ��, any density
matrices ���� � �� � � � � 
� and any probability distributions

� � ����
�
���, under the assumption that 	��� �

��
��� ���

�
���

�

is invertible, then the auxiliary function �� ��� �� defined by
Eq.(2) is concave for all � ���  � � ��. Where ���� �
�� ��� is the matrix entropy.

We note that our assumption “	��� is invertible” is not so
special condition, because 	��� becomes invertible if we have
one invertible �� at least. Moreover, we have the possibility
such that 	��� becomes invertible even if all �� is not
invertible for all �� 	� �.

In [13], Yanagi, Furuichi and Kuriyama proved the concav-
ity of �� ��� �� in the special case 
 � � with �� � �� � �

�

under the assumption that the dimension of � is two by
proving the trace inequality (4). And recently in [5], Fujii
proved (4) in the case 
 � � with �� � �� � �

�
under any

dimension of �. In this paper we prove (4) for any 
 under
any dimension of �. Then it is shown that ����� �� is concave
on ��� ��.

III. MAIN RESULTS

We need several results in order to state the main theorem.
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ition 3.1 ([1],[2]): Let �� � be real valued continuous
s. Then ��� �� is called a monotone (resp. antimono-

air of functions on the domain � 
 � if

���
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� � � �.

osition 3.2 ([1],[2],[5]): If ��� �� is a monotone (resp.
otone) pair, then

���	����	�� � � Tr ���	���	���� ������ ��

adjoint matrices 	 and � whose spectra are included

we state the main theorem.

rem 3.3: Let �
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ave to need the following lemma to prove the theorem.

a 3.4 ([8]): For the continuous function � � ��� ���
� ���, the following statements are equivalent.

� is operator convex and ���� � �.
For the bounded linear operators � �� �� �
�� �� � � � � �� satisfying ����� 
 ��� ��, where ����
represents the set of all spectrums of the bounded
linear operators �, and the bounded linear operators
��� �� � �� �� � � � � �� satisfying
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We apply Lemma 3.4. If
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���

��� �� � � , then
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or any Hermitian operators ��, since ���� � �� is
r convex on any interval. We put
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And so we have
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Hence it follows that
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