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A linear lattice model for demonstrating a soft optical mode at a 
zone center is proposed. The unit cell consists of only two atoms. If 
the optical mode is sufficiently soft, anticrossing takes place 
between the optical and acoustic phonon branches. By using the 
generalized Langevin’s equation method, the spectral function is 
calculated analytically. The intensity of the optical mode disappears 
at approximately the anticrossing wave number. In general, the 
spectral line shape of the optical mode is asymmetric because of the 
interaction between the two branches. 
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1.  Introduction 

 The concept of a soft-phonon mode has been introduced to explain ferroelectric and 
structural phase transitions.1) If an optical phonon freezes at a zone center, then the atomic 
configuration in a unit cell changes to induce ferroelectric or ferroelastic phases. Many 
examples have been found in perovskite crystals such as PbTiO3 and KNbO3.2,3) 

An optical branch can be well understood using the two-atom lattice model described in  
standard textbooks of solid state physics.4)  The dispersion relation of an optical branch is 
maximum at a zone center; therefore, such a model cannot describe ferroelectric phase 
transition. 

On the other hand, the freezing of a phonon branch at a zone boundary or a general position 
in a Brillouin zone may be realized if interactions beyond second-nearest neighboring atoms 
are introduced. A typical example was observed at the normal- incommensurate transition in 
K2SeO4

5) and related crystals.6) 
Nowadays, computer programs can easily demonstrate phonon branches on the basis of 

first-principles calculations.7) However, an analytically tractable model will help us to 
understand the physical picture of soft modes. Here, another two-atom lattice model for 
demonstrating a soft optical mode at a zone center is proposed. Its dispersion relation is 
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shown in an analytical equation. Its spectral function is calculated with the addition of friction 
terms to the model’s dynamic equations. Instead of the simple damped harmonic oscillator 
model, generalized Langevin’s equations are considered in constructing a phonon spectrum. 
8,9) 
 

2. Model and Equations of Motion 

Two atoms with masses m (closed circles) and M (open circles) exist in a cell; they interact 

with a spring whose constant is K0/2, as shown in Fig. 1. Let us consider a transverse motion 

perpendicular to the chains denoted by solid and broken lines, and assume that deviations 

from equilibrium positions are the same within each layer. Since the projection on each chain 

takes a ladder form, as shown in Fig. 1(b), we call this model a ladder lattice. 

The atomic vibration in the n-th layer from equilibrium positions is described by un and vn. 

The equations of motion are as follows: 

)2()( 1110 nnnnnn uuuKuvKum −++−= −+&& ,    (1) 

)2()( 1120 nnnnnn vvvKvuKvM −++−= −+&& .    (2) 

Under the periodic boundary condition with N unit cells, the solution takes the following 

forms: 
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where q is the reduced wave number. Then, eqs. (1) and (2) are written as 
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Here, the dynamical matrix V is symmetric and the elements are given by 
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The two frequencies  
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correspond to the acoustic and optical dispersion relations, respectively. At a zone center, the 

acoustic and optical frequencies are given by 
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respectively. Therefore, the optical frequency )2(ω at a zone center vanishes with decreasing 

spring constant, K0. Typical dispersion relations are plotted in Fig. 2, where only K0 is varied 

while the masses m and M and the other spring constants K1 and K2 are fixed. In the ladder 

model, the optical branch always has a minimum at a zone center. When 20 ≤K , for the 

given numerical parameters in Fig. 2, the minimum of the optical branch becomes lower than 

the maximum of the acoustic branch at a zone boundary. 

  Generally, atoms vibrate within the anharmonic potential of a real crystal. Some 

anharmonic models have demonstrated that optical mode frequency softens as temperature 

decreases because of the temperature dependence of effective restoring force.10,11,12) Thus, we 

may consider that spring constant depends on temperature or pressure. Thus, the K0 

dependence of the dispersion relation in Fig. 2 may simulate some characteristics of the soft- 

phonon mode in dielectric crystals. 

  The normalized eigenvector of the dynamical matrix V can be set to real quantities in the 

ladder model:  
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where ( ) 2
21

2
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2 ||)1( VV ++−= ωζ . Using these transform matrix elements, we can write 

the general solutions for eqs. (1) and (2) as follows:  
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Here, )(ν
qQ  is the phonon normal coordinate belonging to the ν  branch. In terms of phonon 

coordinates, the Hamiltonian can be represented in diagonal form, and the thermal expectation 

value is  
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in a classical system. Here, kB is the Boltzmann constant and T is the temperature. The phonon 

frequency )(νω  depends on the wave number q through eqs. (5) and (6). 

  Let us denote )(ν
qu  and )(ν

qv as the Fourier amplitudes of the ν  branch.  At a zone 

center, the amplitude ratios are )1(
0

)1(
0 vu =  and mMvu // )2(

0
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0 −= .  Calculating the 

dispersion relations in various cases, we can find that the curvatures of the two branches 
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repulsively change with each other, so that the separation between the two branches takes a 

minimum (see K0=1 and 0.1 in Fig. 2). Such cases are realized for a small K0 and a small K1 

(under the condition of m<M; otherwise, for a small K2) . This phenomenon is understood 

from the fact that uncorrelated acoustic and optical branches cross and anticrossing takes 

place at a wave number qx in a Brillouin zone, since the two branches have the same 

symmetry in our model. We observe that the optical mode strength 
)2()2()2( cossin qqq vuMmf +∝+−= θθ     (11) 

vanishes at qx, i.e., 1/ )2()2( −=qq vu  at the anticrossing point. For xqq < , a light atom has a 

larger optical mode amplitude than a heavy atom, while a heavy atom has a larger amplitude 

for xqq > .  

 

3. Spectral Function 

Experimentally, the dispersion relations of a phonon are determined by neutron inelastic 

scattering; thus, we consider the scattering intensity for the scattering vector K: 13,14) 
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where bj and Wj are the scattering length and the Debye-Waller factor of atom j, respectively.  

Substituting eq. (9) to eq. (12), and summing n and n’ over N cells, we obtain the scattering 

intensity for a reduced wave number q as 
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Here, the Laue function Δ  imposes K+q to be some reciprocal vector, j
iKrW

jj mebb jj +−=ˆ  

is the scattering factor for atom j, and the spectral function is defined as 
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This function can be given by the Laplace transformation of the relaxation function15) 
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as follows: 
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This quantity is directly related to dynamical susceptibility as 

 ),(Im)(),(Re ωωχωχ qqq Ξ−=  and ),(Re),(Im ωωωχ qq Ξ= . (17) 
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If a Hamiltonian is diagonal in phonon coordinates, phonons do not couple any more, and 

the damped harmonic oscillator may be a reasonable assumption when mode damping works: 
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  In real systems, anharmonic interactions of lattice vibration as well as the coupling with 

other degrees of freedom introduce linewidth into the spectra. In order to consider damping 

effects, we add the velocity-dependent friction terms num &1γ− and nvM &2γ−  to the dynamic 

equations (1) and (2), respectively. Substituting eq. (9), we obtain the following Langevin’s 

equation: 
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where fj is the random force, which satisfies 0)( =jfQ ν . The elements of the transform 

matrix T are given by eq. (8), and T~ is the transposed matrix of T.  By performing the 

Laplace transformation eq. (15) and performing partial integrating, we obtain the following 

equation for Ξ : 
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Here, the damping matrix is given as 
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Furthermore we put 0*)2()1( =QQ , because the Hamiltonian of the dynamic system is 

diagonal in terms of Q.   

For our ladder model with two types of atom, the concrete form of scattering intensity is 

written as  
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Hereafter, the scattering vector K is the component parallel to the atomic displacement.  

Some typical scattering intensities, )/(),( 2TKkqI Bω , are shown in Fig. 3 for a set of wave 
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numbers, q. The parameters are m=1, M=2, K0=0.5, K1=0.5, K2=2, 05.021 == γγ  and 

b1=b2=1, and the Debye-Waller factors are neglected, that is, W1=W2=0. The acoustic phonon 

branch is rather strong, and the optical phonon branch is weak. The peak positions correspond 

to the dispersion curve given by eq. (6) in weak-damping cases.  
 

4.  Discussion and Summary 

  In this report, we have demonstrated that a soft optical branch can be represented by the 

ladder lattice model. The dispersion relation is easily calculated analytically. The spectral 

function has been evaluated from the damped oscillator equations with the generalized 

Langevin’s equation method. If the damping factors are the same, i.e., 21 γγ = , then the 

dynamical equations can be diagonalized using the transform matrix T directly. Scattering 

intensity is just a superposition expressed as eq. (18).  

Here, we comment on the scattering intensity of the optical mode. Figure 4 shows the line 

shape of the optical mode around the anticrossing point. The parameters in Fig. 4 are similar 

to those in Fig. 3, but the damping constants are assumed to be 01.021 == γγ , in order to 

show the peaks sharply. With increasing wave number q, the mode strength of the optical 

mode of eq. (11) changes from negative to positive at qx=1/6, for the given parameters. In the 

case of b1=b2, the coefficient θθ cosˆsinˆ
21 bb +− in (22) vanishes at qx. The optical mode 

intensity disappears even if an optical phonon exists. Generally, the scattering lengths b1 and 

b2 are different; thus, the disappearance of optical mode intensity takes place at approximately 

qx.  

  Although the line shapes in Fig. 4 seem symmetric, unbalanced damping parameters bring 

asymmetry in line shapes, which is shown in Fig. 5 for the same parameters except the 

unbalanced damping parameters. This is another effect of the anticrossing of the acoustic and 

optic branches in the ladder lattice model.  

  In the past, a number of experiments on and theories of the soft optical and acoustic mode 

couplings were published.16,17) Relations similar to eq. (20) were used to explain experimental 

results. However, in many cases, the off-diagonal elements on the right-hand side of eq. (20) 

were set to zero.17) Furthermore, the wave number dependence of the matrix element ijΓ  was 

often neglected. These approximations made the spectral function tractable to fit experimental 

data; however, they are reasonable only around a zone center. If mode mixing occurs at a 

general point in the reciprocal lattice, the wave number dependence of transform matrix 

elements should be taken into account. Since our model is simple, it will help us to understand 
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the significance and limit of the various approximations of mode coupling systems. 

  Recently, a unique phenomenon has been reported in NaNbO3. 18) A soft optical branch 

drops sharply at a general wave number in reciprocal space and disappears with decreasing 

wave number. Such a phenomenon has been observed in relaxor ferroelectrics, and is called a 

waterfall.19)  Although our model may be too simple to explain real systems, especially 

relaxor crystals, our model suggests that a waterfall-like phenomenon appears in a pure 

crystal if anticrossing takes place and the damping is sufficiently strong. When an optical 

mode becomes soft and anticrosses with an acoustic branch, careful treatments are highly 

expected to reduce the dispersion relations.  
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Figures 1-5 
 

 
 

Fig. 1.  Ladder lattice model: (a) three-dimensional and (b) one-dimensional 

schematics. 
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Fig. 2.  Dispersion relation of the ladder lattice model. The parameters are m=1, M=2, 

K1=0.5, K2=2, and K0=3, 2, 1 or 0.1, as indicated in the figure. 
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Fig. 3. Spectra of the ladder lattice model. The damping factors are 05.021 == γγ , and 
the coupling constant is K0=0.5. The wave numbers are given in the figure. 
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Fig. 4. Line shape of optical mode around the anticrossing point of the ladder lattice 
model. The spectra are given for the wave numbers q=0.15, 0.16, 1/6, 0175, and 0.185. 
The damping factors are 01.021 == γγ .  
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Fig. 5.  Asymmetric line shapes of optical mode around the anticrossing point qx=1/6. 
The damping factors are 05.01 =γ  and 005.02 =γ , and 005.01 =γ  and 05.02 =γ  in 
the (a) and (b) cases, respectively. The wave numbers are 0.15 and 0.185. 


