誘導結合型プラズマ支援マグネトロンスパッタ法による Co-Cr 膜の作成 - 基板バイアスの効果 -

林 利彦、山本節夫、 山時照章、 栗巣普揮、 松浦 満 (山口大工)

Preparation of Co-Cr films using magnetron sputtering assisted by inductively coupled rf plasma

T. Hayashi, S. Yamamoto, T. Santoki, H. Kurisu and M. Matsuura (Faculty of Engineering, Yamaguchi Univ.)

1. はじめに

筆者らは、プラズマ生成、スパッタリング、成膜の各機能が分離し、制御性に優れた電子サイ クロトロン共鳴マイクロ波プラズマを用いたスパッタ法によって、高密度記録に適した Co-Cr メ ディアを作製できることを既に報告した¹⁾。最近、同様なコンセプトのもとで、誘導結合型プラ ズマ(ICP)を利用したマグネトロンスパッタ装置²⁰を試作し、高密度磁気記録用 Co-Cr 膜の作製 を試みている^{3,4)}。今回は基板に正のバイアス電圧を印可することによって、成膜中に基板を照 射するイオンのエネルギーを低領域側に拡張し、高品質な Co-Cr 膜の作製を試みた。

2. 実験方法

使用した成膜装置では、プラズマ生成はターゲット直上に置いた ICP 用コイルに高周波電流を 流すことによって行われ、スパッタリングはマグネトロンモードで行われる。ICP 用コイルへ供 給する高周波電力は10W、ターゲットへの直流印可電圧は - 500V、スパッタ時のAr ガス圧は4mTorr とした。基板は、高密度なプラズマから直接影響を受けないように、ターゲットからその直径の 2倍である 100mm ほど離れた位置に設置した。これまでの実験結果から、高密度記録に適した Co-Cr 膜を得るには、基板を照射するイオンの加速電圧 V_p-V_{sub}(ここで V_pはプラズマポテンシャ ル、V_{sub}は基板バイアス電圧)を低くした方がよいことがわかっている。基板をフローティング状 態にしたときに 22V ほどあったイオン加速電圧は、基板ホルダーをグランドに落とすと 11V に減 少し、基板に印可する正のバイアス電圧を増していくとさらに減少し、+100V のバイアス電圧 においては 3V まで減少することがわかった。

3.実験結果と考察

基板に印可するバイアス電圧 V_{sub} を 0V から+100V の範囲で変えて、成膜中のイオン加速電圧を 制御し、厚みが約 0.2 μ m の Co-Cr 膜を作製した。Fig. 1 は、Co-Cr 膜の抗磁力 Hc と垂直磁気異 方性磁界 Hk を、成膜中に基板を照射するイオン加速電圧 V_p - V_{sub} に対してプロットしたものであ る。イオン加速電圧が 22V から減少していくと Hc_および Hk は増大した。ただし、イオン加速

電圧がさらに減少して 5 V 以下になると、Hc⊥および Hk は急激に減少した。イオン加速電圧が 10V 付近の 場合に、垂直方向抗磁力および垂直磁気異方性磁界 ともに最高の値である 2200 0e と 6 k0e が得られた。 4. む す び

誘導結合型プラズマ(ICP)を利用したマグネトロン スパッタ装置を試作し、成膜中に基板を衝撃するイ オンの加速電圧の最適化を行った。イオン加速電圧 を 10V 程度に設定すると高い Hc_⊥と Hk をもった Co-Cr 垂直磁気異方性膜を実現できることがわかった。 「参考文献]

- 2) 山本、森田、倉内、松浦,日本応用磁気学誌,Vol. 21,No. 4-2,p. 569(1997).
- 3) 林 他, 電子情報通信学会 1997 年総合大会講演論文集, C-7-22, p.66 (1997).
- 4) 林 他, 電子情報通信学会技術研究報告, MR97-14, p.41 (1997).

