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Abstract

Legged locomotion requires the determination of a number of parameters such as

stride period, stride length, order of leg movements, leg trajectory, etc. How are

these parameters determined? It has been reported that the locomotor patterns

of many legged animals exhibit common characteristics, which suggests that there

exists a basic strategy for legged locomotion. In this study we derive an equation

to estimate the cost of transport for legged locomotion and examine a criterion of

the minimization of the transport cost as a candidate of the strategy. The obtained

optimal locomotor pattern that minimizes the cost suitably represents many charac-

teristics of the pattern observed in legged animals. This suggests that the locomotor

pattern of legged animals is well optimized with regard to the energetic cost. The

result also suggests that the existence of specific gait patterns and the phase transi-

tion between them could be the result due to optimization; they are induced by the

change in the distribution of ground reaction forces for each leg during locomotion.

Key words: legged locomotion, energetic cost of transport, gait transition,

optimization
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1 Introduction

Gait transition is a phenomenon generally observed in cats and dogs; it has

attracted the attention of many researchers in the biological and engineering

fields. However, the reason for the transition has not been clearly explained.

The first experimental result that suggested the reason was given by Hoyt and

Taylor who measured the oxygen consumption during horse locomotion and

reported that horses select a gait that suppresses the cost of locomotion, i.e.,

the metabolic cost to move a unit distance [1]. Their result is often considered

to be an evidence for the hypothesis that gait patterns are optimized in order

to suppress energetic cost. However, it does not directly support the hypoth-

esis, instead, raises questions such as (1) Why does walk gait suppresses the

metabolic cost at lower speeds and galloping at higher speeds? (2) Why do

horses exhibit only a few gait patterns such as walking and trotting? In other

words, why do they not exhibit intermediate gait patterns? (3) Is the observed

gait really an optimum solution to minimize the metabolic cost?

It has been reported that many legged animals, such as horses, cats, cock-

roaches, and crabs, exhibit not only the gait transition but also many other

common features of locomotor patterns. (1) Stride period, which is the dura-

tion of one leg-movement cycle, decreases with locomotion speed and reaches

an almost constant value, and swing duration, which is the duration for which

a leg is not in contact with the ground, is almost constant or decreases slightly

with locomotion speed, thereby decreasing the duty ratio [2–14]. The duty ra-

tio is defined as the ratio of a stance duration to a stride period, and stance
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duration is the duration for which a foot applies a force to the ground to sup-

port the body. The decrease in the duty ratio also implies a decrease in the

average number of legs that contact the ground. (2) Stride length, which is the

forward distance the body moves within the stride period, and stance length,

the forward distance in a stance duration, increase slightly with locomotion

speed or remain almost constant [4,8,9,12,15–17]. They begin to increase when

the stride period become almost constant [2,12]. (3) The gait pattern tend to

not only exhibit a nongraded change and but also be restricted to certain spe-

cific patterns such as walking and trotting [1,18]. However, graded transition

has also been observed in sheep [19] and insects [20,21]. (4) The metabolic

cost per unit time linearly increases with locomotion speed. Hence, the cost

of transport, which is the metabolic cost for moving a unit mass by a unit

distance, decreases with speed and becomes almost constant in a wide region

of locomotion speed [1,3,6,15,22–29].

Despite of significant differences in body size, body structure, and the number

of legs, the observation of the above-mentioned characteristics in many legged

animals suggests the existence of a basic strategy for selecting the locomotor

parameters in legged locomotion, as suggested by Full and Tu [3]. The criterion

of the minimization of the transport cost would be one of cogent candidates for

this strategy. In order to examine this hypothesis, we have to find the optimal

locomotor pattern for minimizing the metabolic cost among all the possible

patterns including those that cannot be realized in experimental studies. In

this decade several theoretical studies were conducted in order to examine the

optimality of the legged locomotor patterns. Minetti and Alexander [30] and

Nishii [31,32] demonstrated that many characteristics of the optimal locomo-

tor patterns for minimizing the transport cost which were estimated for the

3



dynamical models of a biped and hexapod, respectively, appropriately predict

the characteristics of the actual locomotor parameters such as stride period,

stride length, and duty ratio. In these studies, the optimal locomotor pat-

terns were determined by employing the inverse dynamics method, however,

no explicit equation to estimate the energetic cost during locomotion was for-

mulated. Therefore, it becomes difficult to explain in detail the cost during

locomotion and the relation between cost and locomotor parameters.

In this study, we derive an equation to estimate the cost of transport including

the mechanical internal work and heat energy loss due to torque generation

and show that the criterion of the minimization of the cost explains many

characteristics of legged locomotion.

2 Estimation of the energetic cost of transport

For moving a physical object, an actuator requires an energy cost due to

mechanical work. Apart from the mechanical work, actuators also lose energy

by generating heat and muscles are not the exception. Conventional studies on

the optimal legged locomotor pattern for minimizing the transport cost have

considered the mechanical work, however, the cost due to heat generation has

rarely been considered [33–35]. In this section, we estimate the energy loss of

a leg movement due to mechanical work and heat energy.

2.1 Locomotor parameters

In order to define the gait pattern, we consider the following locomotor pa-

rameters: duty ratio β, stride period T , and stance length S. We assume that
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these parameter have the same values for all legs, the stance length is much

shorter than the leg length, and the body moves horizontally with an almost

constant speed V . Hence, the parameters satisfy the relation:

V = S/βT. (1)

Therefore, there exists two degrees of freedom for selecting the locomotor

parameters, β, S, and T .

2.2 Definition of foot trajectory

The relative velocity ẋi of i-th foot to the body during the stance phase is

given by ẋi = −V , and the relative foot velocity during the swing phase is

assumed to be sinusoidal, i.e.,

ẋi(t) =a − b cos
2π

T sw
t, (0 ≤ t < T sw) (2)

a =
βV

1 − β ,

b =
V

1 − β ,

(3)

where T sw = (1 − β)T represents the swing duration and t = 0 is the time at

which the swing phase begins. The position and acceleration of a foot required

for analysis in later sections are obtained by the integration and differentiation

of the above equation. The subscript i is omitted in the following equations

when there is no difference between each leg.

2.3 Mechanical work for leg movement

————————— Insert Figure 1 here ————————-
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Although the legs of legged animals are composed of multiple links with mul-

tiple joints, we consider a leg as a simple one-link system with one joint in

order to estimate the mechanical work required to move a leg (Fig. 1). We also

ignore the effect of gravity on leg movement. The inertia moment of the body

is considered to be sufficiently large such that pitching movements of the body

can be ignored. Negative mechanical work is ignored in the estimation of the

energy cost, because muscles consume positive energy even while performing

negative work but the energy loss for negative work is considerably smaller

than that for positive work with the same absolute value [36]. Therefore, the

energy cost due to mechanical work W to move a leg within a stride period is

given by

W =
∫

T
f(τ θ̇)dt, (4)

where τ and θ̇ ' ẋ(t)/l represent the joint torque and angular velocity of a

leg, respectively, l represents the length of a leg, and f(x) = x for x ≥ 0 and

f(x) = 0 for x < 0.

By denoting the inertia moment of the leg around its joint by I, the required

joint torque during the swing phase τ sw can be expressed as

τ sw(t) = Iθ̈(t) ' Iẍ(t)/l. (5)

Equations (2) and (5) determine the mechanical work during the swing phase

W sw as follows (see appendix A for details):

W sw =
∫

T sw
f(τ swθ̇)dt ' I

(
V

l

)2 1 + β2

(1 − β)2
.

(6)

This equation corresponds to work that supplies kinetic energies for the max-

imum angular velocities during the swing phase (1 + β)/(1− β) · V/l and the

stance phase V/l. The mechanical power, which is the work in a unit time,
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is obtained by dividing the above equation by the stride period, and takes

the same form as that of power estimated by Minetti [37] except a constant

coefficient.

During the stance phase, the angular velocity of a leg is θ̇ ' −V/l, and the

joint torque τ st is given by

τ st(t) = −N(t)x(t), (7)

where N(t) is the vertical component of the ground reaction force for a leg, and

the horizontal component is zero because we assume a constant locomotion

speed. Therefore, the mechanical work during the stance phase W st can be

expressed as

W st '
∫

T st
f(N(t)x(t)) · V

l
dt, (8)

where T st = βT is the duration of the stance phase. From eq. (6) and (8), we

obtain the total mechanical work in a stride period:

W = W sw + W st

'I
(

V

l

)2 1 + β2

(1 − β)2
+

∫

T st
f(N(t)x(t)) · V

l
dt. (9)

2.4 Heat energy loss due to force generation

Muscles consume energy during force generation even if no mechanical work

is being performed such as in isometric contractions, and the consumed en-

ergy is lost in the form of heat energy. The metabolic cost during muscle

contraction has been studied by many researchers from the dates of Hill [38],

however, data in these studies were obtained from the activities of a specific

muscle fiber due to tetanic stimulation. During locomotion, different types
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and numbers of muscle fibers are activated depending on the force required

at each moment. For example, it is reported that few fast muscle fibers that

require high metabolic cost are activated for slow locomotion, however, the

number of fast muscles recruited increases in fast locomotion [39]. Therefore,

it is possible that the energy cost estimated by using data taken from the

specific muscle fibers might be inappropriate to estimate the metabolic cost

during locomotion. In order to estimate the total energy cost from the data

on the specific muscle fibers, we require data that shows which muscle fibers

are activated and their number at each moment during locomotion, However,

it is a difficult task to obtain such data that can show the detailed muscle

activities during locomotion. Based on these considerations, we estimate the

cost for force generation by using a relatively simple equation and consider

the essential property of energy cost to trigger a gait transition and the other

common characteristics of legged locomotion.

Hatze and Buys (1977) analyzed the combined activity of different types of

muscle fibers, i.e., slow muscles, fast muscles, and intermediate muscles, by

using a mathematical model and suggested that the total heat energy loss H

would increase nonlinearly with the total muscle force f during the isometric

contractions. This result corresponds to the fact that the ratio of the activated

fast muscle fibers that require high cost increases with the force required during

locomotion, as stated above. Hence, we assume that the heat energy loss H is

proportional to the k-th power (k > 1) of the generated joint torque τ , and

assess the suitability of our assumption for explaining the characteristics of

legged locomotor patterns.

The heat energy loss during the swing phase Hsw is caused by the torque
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required to swing a leg (eq. (5)) and given by

Hsw = γ
∫

T sw
|τ sw(t)|kdt ' γ (I/l)k

∫

T sw
|ẍi(t)|kdt, (10)

where γ is a constant that indicates the ratio of heat energy loss to mechanical

work. The heat energy loss during the stance phase Hst is estimated as

Hst =γ
∫

T st
(|τ st(t)|k + |αN(t)|k)dt

=γ
∫

T st
|N(t)|k(|x(t))|k + αk)dt. (11)

The first term indicates the cost required for the generation of rotational

torque to move a leg against the ground reaction force. Since the legs of most

insects extend radially from their body, a steady joint torque is required to

maintain a posture. Most mammals also require a steady joint torque to main-

tain a bent leg posture below their bodies. The second term represents the heat

energy loss due to such steady joint torque, and α > 0 is a constant value that

represents the amplitude of the torque.

When a stationary body is supported by n legs and the body weight M is

distributed equally on each leg, i.e., the ground reaction force for each sup-

porting leg is given by N = M/n, the total heat energy loss for all the legs

is proportional to n(M/n)k. The assumption k > 1 implies that distributing

body weight at many legs reduces the heat energy loss for supporting the

body, because n(M/n)k < m(M/m)k holds true for n > m. On the other

hand, when k < 1, the heat energy loss is lower when the entire body weight

is supported by a single leg.
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From eq. (10) and (11) we obtain the total heat energy loss:

H = Hsw + Hst

= γ
{∫

T sw
|τ sw(t)|kdt+

∫

T st

{
|N(t)|k(αk + |x(t)|k)

}
dt

}
. (12)

2.5 Cost of transport

We further analyze the total energy loss given by eq. (9) and (12) with the

assumption that the ground reaction force N is equal to the body weight W

divided by the average number of stance legs nβ, i.e., N = M/nβ, where n is

the number of legs. Under this assumption, the mechanical work during the

stance phase W st, which is given by eq. (8), is transformed into

W st =
M

8nl

S2

β
, (13)

which is equal to the mechanical work required to elevate the body accompa-

nied by a leg movement.

When the heat energy loss is proportional to the square of the generated

torque, i.e., k = 2, the heat energy losses, Hsw in eq. (10) and Hst in eq. (11),

becomes

Hsw = γ
2π2I2

l2
βV 3

(1 − β)3S ,

(14)

Hst = γ
(

M

n

)2 T

β

(
α2 +

S2

12

)

.

(15)

The cost of transport e, which is the energetic cost for moving a unit weight

by a unit distance, is given by

e =

∑n
i=1(Wi + Hi)

MV T .
(16)
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From eq. (6), (13), (14), and (15) we obtain the transport cost as follows:

e(V,β, S) = esw
w + est

w + esw
h + est

h ,

esw
w ≡

∑n
i=1 W sw

i

MV T
=

nI

l2M

βV 2

S

1 + β2

(1 − β)2
,

est
w ≡

∑n
i=1 W st

i

MV T
=

1

8l
S,

esw
h ≡

∑n
i=1 Hsw

i

MV T
= γ

2nπ2I2

l2M

V 3β2

(1 − β)3S2
,

est
h ≡

∑n
i=1 Hst

i

MV T
= γ

M

n

1

βV
(α2 +

S2

12
), (17)

where esw
w and est

w are the transport costs due to mechanical work and esw
h and

est
h are the costs due to heat energy loss during the swing and stance phases,

respectively.

Equation (17) indicates that a larger duty ratio β suppress the heat energy

loss during the stance phase est
h because the torque required to support the

body weight is distributed on many legs. However, this leads to large values of

the costs, esw
h and esw

w , to move a leg in a shorter duration of the swing phase.

During the swing phase, the stance length S does not affect the mechanical

work W sw (eq. (6)), and a larger stance length results in lesser heat energy

loss Hsw (eq. (14)) and a smaller step number to move a unit distance, which

results in lower values of esw
w and esw

h for moving a unit distance during the

swing phase. However, a larger stance length requires greater leaning of a leg

during the stance phase, which requires a larger rotational torque against the

body weight. This results in a larger energy loss during the stance phase, est
w

and est
h . Therefore, the optimal stance length S and the optimal duty ratio

β are determined by balancing the costs due to the torque against the body

weight during the stance phase and the torque required to move a leg during

the swing phase.
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At lower speeds, the heat energy loss est
h during stance phase dominates in the

total energy cost in order to support the body, therefore, a larger duty ratio

β and smaller stance length S are required to suppress the cost. On the other

hand, at higher speeds, the costs esw
w and esw

h during the swing phase become

dominant in order to swing the legs, as suggested by Delcomyn and Usherwood

[20]. Hence a smaller duty ratio β and larger stance length S are required

to suppress the costs. Based on these considerations, it is expected that as

the locomotion speed increases, the duty ratio decreases, i.e., the number of

stance legs decreases, while the stance length increases, as observed in legged

locomotion. However, at medium speeds, the increase in the stance length

might be suppressed by mechanical work during the stance phase est
w .

When the heat energy loss is assumed to be in direct proportion to the gen-

erated force, i.e., k = 1, the transport cost due to heat emission becomes

esw
h = γ

4nI

lM

βV

S(1 − β) ,

est
h = γ

1

V
(α +

S

4
).

In this case, the total cost of transport given by the above equation, and esw
w

and est
w in eq. (17) increase monotonously with the duty ratio β for all speeds.

Therefore, the smallest duty ratio always yields the minimum cost, which fails

to explain the observed gait transition in legged animals.

These results suggest that the gait transition occurs when a larger number of

stance legs suppress the total cost to support the body. Hence, a nonlinear

increase in the heat energy loss, i.e., k > 1 or ∂H
∂τ

> 1, can explain the change

in the duty ratio, as observed in legged animals. From these considerations,

we assume k = 2 and obtain the optimal locomotor pattern for minimizing
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the cost eq. (17) in the next section.

3 Optimal locomotor pattern

3.1 Optimal locomotor pattern with identical legs

————————— Insert Figure 2 here ————————-

————————— Insert Figure 3 here ————————-

————————— Insert Figure 4 here ————————-

————————— Insert Figure 5 here ————————-

The optimal locomotor parameters for minimizing the cost of transport given

by the eq. (17) were obtained for different locomotion speeds. The number of

legs are set at n = 6, body parameters are described in appendix B, and duty

ratio is assumed to be greater than 0.5 (β ≥ 0.5), which is the minimum value

to enable static locomotion in hexapods. These assumptions affect only the

quantitative features in the results obtained in this section. This is because

the characteristics of all legs are identical and the body structure does not

affect the estimation of the transport cost given by eq. (17) except the quan-

titative characteristics resulting from body weight W and number of legs n.

Therefore, the results would exhibit the essential characteristics of low-cost

legged locomotor patterns.

Figure 2, 3, and 4 show the relation between the optimal parameters and the

locomotion speed. Figure 2 shows that the optimal duty ratio β decreases

with speed as predicted in section 2.5, i.e., the optimal number of stance legs
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decreases with speed. Figure 3 shows that the optimal stride length V T (=

S/β) increases gradually with locomotor speed, while the stance length S is

almost constant at lower speeds (v < 0.21 [m/s]). These parameters increase

when the duty ratio reaches its minimum value (v > 0.21 [m/s]). Figure 4

shows that the optimal stride period T decreases with speed and reaches an

almost constant value when the duty ratio attains its minimum value, while

no change is observed in the swing duration T sw = (1 − β)T . Figure 5 shows

the energetic cost per unit time calculated using the optimal parameters for

each speed and indicates that the energetic cost increases linearly with speed.

————————— Insert Figure 6 here ————————-

————————— Insert Figure 7 here ————————-

————————— Insert Figure 8 here ————————-

Figure 6 shows the cost of transport and indicates that the heat energy loss

that occurs while supporting the body is dominant at lower speeds, however,

the mechanical work required to swing a leg becomes dominant as the loco-

motion speed increases. By balancing these two costs, we can obtain a speed

range that yields a low value of the total cost of transport. If the available

locomotor parameters are restricted, this region becomes narrower, as shown

in Fig. 7 which shows the transport cost given by specific typical duty val-

ues. However, most legged animals widen this range by selecting the optimal

parameters and utilize this speed range for normal locomotion (Fig. 8). This

could be the reason behind the metabolic cost of transport of legged animals

remaining almost constant for a wide range of locomotion speeds and that gait

transition is observed at usual locomotion speeds.
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These characteristics of the optimal locomotor parameters that minimize the

transport cost are in good agreement with those of observed legged patterns

mentioned in the introduction.

3.2 From graded to non-graded gait transition

For the optimal locomotor pattern calculations in the previous section, the

ground reaction force N = M/nβ for each stance leg was set as a time-

independent constant value. However, in practice, this force changes depending

on the changes in the number of stance legs and posture due to leg movement.

We again calculated the optimal locomotor parameters from eq. (9), (12), and

(16) by considering a more practical distribution of the ground reaction forces.

In this case, the number of legs is set at n = 6 again, and the order of

leg movement is determined according to the rule observed in insects [13]:

(1) antiphase movement of contralateral legs, and (2) forward propagation of

leg movements in ipsilateral legs by the same time delay given by the swing

duration T sw. Based on this rule, the gait pattern is defined for an arbitrary

duty ratio and stride period. The ground reaction force for each stance leg is

determined as follows: (1) the body weight divided by the number of stance

legs, i.e., Ni = M/nst(t), where nst(t) is the number of stance legs, and (2)

computed by using pseudoinverse matrix by considering the balance of forces

around a body at each moment by assuming that vertical movement of the

base of a leg due to leg movement is sufficiently small and the body is a rigid

plate, which results in a minimum variance of the ground reaction forces. The

body parameters are shown in appendix B. In the first case no lower limit

of the duty ratio is assumed, however, in the second case, the duty ratio is
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assumed to be greater than 0.5 (β ≥ 0.5) so as to prevent the negative ground

reaction forces.

————————— Insert Figure 9 here ————————-

In Fig. 9, the pluses and circles indicate the optimal duty ratios when the

ground reaction forces are given by Ni = M/nst(t) and computed by us-

ing the pseudoinverse matrix, respectively. In both cases, the optimal duty

ratio decreases with overall speed but does not change monotonously and as-

sumes some specific values, e.g., β = 10/12, 8/12, 6/12, 4/12 in pluses and

β = 9/12, 8/12 in circles. Among these values, all except β = 4/12 corre-

spond to the typical gait patterns observed in insects, as reported by Wilson

(1966), e.g., wave gait (β ∼ 10/12), quadruped gait (β ∼ 8/12), and tripod

gait (β ∼ 6/12). The transitions between gaits indicate not only a graded

transition but also a discrete transition around v = 0.03 [m/s] in circles and

around v = 0.28 [m/s] in pluses. These characteristics were not observed in

Fig. 2 in which the ground reaction forces are set equally as time-independent

value Ni = M/nβ.

These results suggest that the emergence of specific gait patterns and discrete

gait transition is due to the optimization of the transport cost. The change in

the number of stance legs at each moment, which affects the body balance and

the distribution of ground reaction forces on stance legs, might be a crucial to

trigger cause such nongraded gait transition, as suggested by Nishii (2000).

The emergence of a different set of stable duty ratios for a different distribution

of the ground reaction forces suggests that the body structure for determining

the body balance would yield a different optimal set of gait patterns. This

might explain the observations that different species and different birth stages
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of some insects exhibit different sets of gait patterns [13,41].

4 Discussion

We derived an equation to estimate the cost of transport in legged locomotion

and obtained the optimal locomotor pattern for minimizing this cost. The

heat energy loss due to force produced was considered to take a simple form,

however, the characteristics of the optimal values of the duty ratio, stance

and stride lengths, stride period, swing duration, and transport cost were

in good agreement with those of observed locomotor patterns. Although we

treated a leg as a simple one-link system to estimate the mechanical work, the

characteristics of the obtained locomotor pattern for minimizing the estimated

cost are also in good agreement with those obtained by computations using

inverse dynamics method on a six legged dynamical model with two-link legs

[31,32]. These results suggest that eq. (17) might not be accurate, however,

it would effectively account for energetic costs to qualitatively explain the

gait transition during locomotion. Moreover, the locomotor pattern of legged

animals would be optimized suitably with regard to the cost of transport.

In the analysis of the optimal locomotor pattern in section 3, the heat energy

loss H is assumed to be the square of the generated torque τ . It has also been

reported that other types of nonlinear increases, such as H = τα, α = 1.5 and

3.0, also predict the characteristics of the legged locomotor pattern [32]. These

results suggest that a nonlinear increase in the heat energy loss against the

generated force,
∂H

∂τ
> 1, would play a critical role in many characteristics

of legged locomotion. This is because such property of heat loss shows the

characteristics opposite to that of the work required to move a leg at slow
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locomotion speeds as shown in section 2.5. In other words, if we obtain the

Taylor expansion of the heat energy loss in muscles using the term of generated

force, the second and higher order terms would be essential terms to explain

many characteristics of legged locomotion. Such nonlinear property of heat

energy loss in muscles is supported by the fact that the number of recruited

fast muscle fibers increases in faster locomotion, as discussed in section 2.4.

In our analysis, the effects of elastic components in the musculo-skeletal sys-

tem and the pendulum effect of the leg were neglected. These factors would

contribute to a decrease in the transport cost by saving the kinetic energy

required to move a leg as elastic energy or potential energy. We also ignored

some other factors that could affect the cost, such as the energy loss due to

friction, and the acceleration and deceleration of the center of body mass in

a stride period. Even by considering these factors, energy required for the ac-

tuators to swing a leg and to support the body is inevitable. Therefore, the

scenario that gait transition occurs due to the change in the balance of costs

for swinging the leg and supporting the body would also hold true.

Our result of this paper indicates that the existence of specific gait patterns

and phase transition could be a result of the optimization of the energetic cost.

In order to realize the optimum locomotor pattern, a neural system must be

well organized for determining and producing the optimal motor command.

How does a neural circuit compute the motor command? What triggers the

neural system to produce a gait transition? Are the observed gait patterns

that are realized by a neural system strictly optimized based on the energetic

cost for all locomotor speeds?

A famous experiment using a mescencephalic cat by Shik et al. [42] and the
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other several studies [43,44] reported that the central pattern generator (CPG)

in the spinal cord has the ability to generate a periodic signal to produce the

basic locomotor pattern and the gait transition is induced by an increase in a

burst signal from a higher center such as the brainstem and the midbrain to

the CPG and sensory feedback signals to the CPG. These results suggest that

the basic locomotor patterns are programmed in the CPG, and the trigger for

the gait transition might be induced by a simple signal such as a burst signal

from a higher center or a signal from proprioceptors in the musculo-skeletal

system.

Farley and Taylor (1997) reported that the gait transition observed in horses

occurs at a speed that is not energetically optimal, and it appears to be in-

duced by a critical value of muscle forces. There could be two possible reasons

behind this result. The first possibility is that the gait transition might be

triggered by a critical force to avoid overloading of the musculo-skeletal sys-

tem, as suggested by Farley and Taylor. In other words, horses might choose

a gait pattern under two constraints: minimization of cost of transport and

avoiding any risk to the physical-system. The second possibility is that the gait

transition is simply programmed as the function of a stimulus from the force

sensor in the musculo-skeletal system, which would require a simpler neural

mechanism than to compute the optimal locomotor pattern for minimizing the

energetic cost as a function of several input signals at all times. This implies

that horses might choose a strategy to simplify the neural circuit rather than

to minimize the transport cost around gait transition speeds. During usual lo-

comotion, horses select energetically optimal locomotion speeds for each gait

and do not exhibit a steady locomotion around the gait transition speed [1].

This indicates that the optimization of the gait pattern around these speeds
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might not be important for horses.

In summary, the criterion of the minimization of the cost of transport appears

to determine the characteristics of overall locomotor pattern for many legged

animals. However, as mentioned in the case of horses, other criteria should

also be considered to explain the detailed features of a gait transition for

some classes of animals. Further investigation is required for this criterion to

understand not only the strategy of animal locomotion but also the design of

neural systems for legged locomotion.

A Estimation of mechanical work during the swing phase

The mechanical work during the swing phase W sw is obtained by using eq.(2)

and (5) , i.e.,

W sw =
∫ T sw

0
f(τ θ̇)dt

= −
∫ t0

0
τ θ̇dt +

∫ Tsw

2

t0
τ θ̇dt

= Ibω

{
b

2ω
− 2

(
− a

ω
cos ωt0 +

b

4ω
cos 2ωt0

)}

,

(A.1)

where t0 is the time when θ̇ = 0, i.e., a − b cos ωt0 = 0. Thus, we obtain

W sw = I(a2 + b2).

By substituting eq.(3) into the above equation, we get

W sw = I
(

V

l

)2 1 + β2

(1 − β)2
.

(A.2)
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B Body parameters

In the computations in this study, we used the following parameters: the total

body mass mb = 3 [g], the length of the body L = 5 [cm], the leg mass

ml = 0.2 [g], the leg length l = 1 [cm], and constants a = 1 and γ = 10. The

legs are situated in the front, the middle, and the back of the body.
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Fig. 3. Optimal values for a stride length (solid line) and stance length (dashed

line). These values are normalized by the leg length.
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Fig. 4. Optimal stride period (solid line) and duration of swing phase (dashed line).
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Fig. 5. Minimum energetic cost per unit time obtained from the optimal parameters.
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Fig. 6. Minimum cost of transport obtained from the optimal parameters at each

locomotion speed. The solid line represents the total cost of transport, dotted line

represents the cost due to heat energy loss, and dashed line represents the cost due

to mechanical work.
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Fig. 8. Schematic representation of cost of transport. The heat energy loss to sup-

port the body is dominant at lower speeds and mechanical work is dominant at

higher speeds. The balance of these costs results in low total cost of transport in

a speed range. The selection of the optimal parameters would contribute to widen

this low-cost region.
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Fig. 9. Optimal duty ratio. The pluses and circles show the optimal duty ratios

when the ground reaction forces are calculated from body weight divided by the

number of stance legs and computed by considering the balance of forces around

the body, respectively.
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