FACILE SYNTHESIS OF (2-BENZIMIDAZOLYL)-1-AZAAZULENES, (2-BENZOTHIAZOLYL)-1-AZAAZULENES, AND RELATED COMPOUNDS AND EVALUATION OF THEIR ANTICANCER IN VITRO ACTIVITY ${ }^{\dagger}$

Noriko Yamauchi, ${ }^{1}$ Hiroyuki Fujii, ${ }^{2}$ Akikazu Kakehi, ${ }^{3}$ Motoo Shiro, ${ }^{4}$ Masaki Kurosawa, ${ }^{5}$ Takeo Konakahara, ${ }^{5}$ and Noritaka Abe* ${ }^{1}$
${ }^{1}$ Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
${ }^{2}$ Science Research Center, Yamaguchi University, Yamaguchi 753-8512, Japan
${ }^{3}$ Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, Japan
${ }^{4}$ Rigaku X-Ray Research Laboratory, Rigaku Corporation, Matsubara-cho, Akishima, Tokyo 196-0003, Japan
${ }^{5}$ Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan

Abstract

Facile syntheses of 2-, 3,- and 8-(2-benzimidazolyl)-1-azaazulenes ($\mathbf{2 a - c}, \mathbf{5}, \mathbf{7}, \mathbf{9}$) and 2-, 3-, and 8-(2-benzothiazolyl)-1-azaazulenes (13b-c, 16, $\mathbf{1 7}, \mathbf{1 8})$ were achieved by the condensation of corresponding 1 -azaaazulenecarbaldehydes with o-phenylenediamine and 2-aminothiophenol in alcoholic solvents at rt or under reflux under airobic conditions. Reaction of 1-azaazulenecarbaldehyds with 2-aminophenol gave Schiff's bases (10a-c, 11, 12). Reaction of 2-chloro-1-azaazulene-3-carbaldehyde (1a) with 2-aminothiophenol in refluxing $1-\mathrm{BuOH}$ gave benzothiazapine-fused 1 -azaazulene (20). Reaction of 4-amino-3-mercapto-4H-1,2,4-triazoles (21a-d) with in refluxing $1-\mathrm{BuOH}$ gave triazolothiadizapine-fused 1-azaazulene (22a-d). The structure of trifluolomethyl derivative (22c) was determined by X-ray structure analysis. 3-(2-Benz- imidazolyl)-2-chloro-1-azaazulene (2a) showed anticancer activity against HeLa S3 cells (IC_{50} : $5.3 \mu \mathrm{M}$).

[^0]
INTRODUCTION

Benzazoles such as benzimidazoles, benzothiazoles, and benzoxazoles, are important subunits for the development of functional molecules of pharmaceutical and biological interest. Substituted benzothiazoles and benzimidazoles have found application in a wide range of therapeutic areas such as antiulcers, anticancers, antihistamics, antifungals, and antivirals to name a few. ${ }^{1-10}$
The chemistry of azaazulenes ${ }^{11}$ is of interest for their physiological properties ${ }^{12,13}$ as well as physical and chemical properties. Therefore, it is expected that benzazolyl-1-azaazulenes have potential bioactivities. Numerical methods for the synthesis of benzazols are reported. We previously reported that 2-chloro-1-azaazulene-3-carboaldehyde reacted with o-phenylenediamine to give 3-(benzimidazol-2-yl)-2-chloro-1-azaazulene. ${ }^{14}$ Therefore, we expand the investigation about the syntheses of benzazolyl-1-azaazulenes by condensation reaction of formyl-1-azaazulenes with o-phenylenediamine, 2-aminophenol, and 2-aminothiophenol.

RESULTS AND DISCUSSION

Synthesis of (benzimidazol-2-yl)- and (benzothiazol-2-yl) -1-azaazulenes

Under open air conditions, the reaction of 2-chloro-1-azaazulene-3-carbaldehyde (1a) with o-phenylenediamine in EtOH for 48 h at rt underwent to give 2a in 78% yield along with recovered (1a : 15%). In the reaction, the intermediate imine (3a) was not observed. Reactivity of $\mathbf{1 b}$ was slightly low than that of $\mathbf{1 a}$, and heating under reflux of $\mathbf{1 b}$ with o-phenylenediamine in EtOH for 37 h gave $\mathbf{2 b}$ in 59% yield along with a trace amount of $\mathbf{1 b}$, and $\mathbf{3 b}$ was not obtained. Reactivity of $\mathbf{1 c}$ was moreover low, and when 1c was treated with o-phenylenediamine in EtOH for 44 h at rt to give the imine derivative (3c) in 62% yield along with 1c (15\%). Heating under reflux of 1c with o-phenylenediamine in 1-BuOH for 37 h achieved 2 c in 88% yield. Extent of electron-donation of the sunstituent at $\mathrm{C}-2$, which

conjugated with carbonyl at C3, would affect the reactivity.
Similar treatment of 3-bromo-1-azaazulene-2-carbaldehyde (6) and 1-azaazulene-8-carbaldehyde (8a) with o-phenylenediamine in EtOH at rt gave 7 and 9 in 40% and 38% yields, respectively. In these reactions, $\mathbf{6}$ and $\mathbf{8}$ were not recovered because of their lability.

The structures of obtained compounds were determined by spectroscopic data as well as elemental analyses as shown in EXPERIMENTAL. The imine (3c) was decided by X-Ray structure analysis and its ORTEP drawing ${ }^{15}$ is shown in Figure 1.

Figure 1. ORTEP drawing with thermal ellipsoids (50\% probability) of 3c.

Next, we examined the reaction of 1-azaazulene-3-carbaldehydes (1a-1c) with 2-aminophenol. When 1a was treated with 2-aminophenol in refluxing EtOH for 15 min , 10a precipitated as orange crystals in 60% yield. When the heating was continued, the precipitates were dissolved and after heating of the mixture for 15 h , compound (11) was obtained in 37% yield. When the reaction was carried out at $50^{\circ} \mathrm{C}$ for $40 \mathrm{~min}, \mathbf{1 0 a}$ was obtained in 80% yield. Similarly, treatment of $\mathbf{1 b}$ with 2-aminophenol in

10a: $\mathrm{X}=\mathrm{Cl}$
10b : $\mathrm{X}=\mathrm{OEt}$
10c: $\mathrm{X}=\mathrm{NH}_{2}$

11

12
refluxing EtOH for 24 h and treatment of $\mathbf{1 c}$ with 2-aminophenol in refluxing 1-BuOH for 22 h gave $\mathbf{1 0 b}$ (48\%) and 1c (91\%), respectively. Similar treatment of 4 with 2-aminophenol in refluxing EtOH gave 12 in 54% yield.

It is known that the reaction under presence of oxidizing reagents facilitates the cyclization to benzimidazoles and benzoxazoles. ${ }^{16-18}$ Therefore, we performed the reaction of $\mathbf{1 b}$ with 2-aminophenol in the presence of DDQ in EtOH under reflux for 24 h . In the reaction, a new spot was seen on the TLC, but after work-up, $\mathbf{1 b}$ (69%) was recovered with a trace amount of $\mathbf{2 b}$, and benzoxazole derivative was not obtained. It seems that $\mathbf{1 b}$ formed CT-complex with DDQ, and the reaction underwent scarcely. Then, we treated 1c with 2-aminophenol under reflux for 48 h in the presence of I_{2}, but a complex mixture was produced and the benzoxazole derivative was not obtained again.

Next, we examined the synthesis of benzothiazole derivatives. It expected that high nucleophilicity of S-atom would facilitate the attack to imine moiety. Indeed, the reaction of $\mathbf{1 b}$ with 2 -aminothiophenol in EtOH under reflux for 4.5 h underwent and 13b was obtained in 66% yield. Similar treatment of 4, 6, and $\mathbf{8 b}$ with 2-aminothiophenol gave $\mathbf{1 6}$ (53\%), $\mathbf{1 7}$ (32\%), and 18b (54\%), respectively.

Interestingly, when 1c was treated with 2-aminothiophenol in EtOH under reflux, the reaction was not proceeded. But when of $\mathbf{1 c}$ was treated with 2-aminothiophenol in 1-BuOH under reflux for $190 \mathrm{~h}, \mathbf{1 3 c}$ (36\%) and 2-amino-1-azaazulene (14: 59\%) were obtained. In the reaction, benzothiazole was detected. Plausible reaction mechanism is shown in Scheme 1. At first, the imine (A) would be produced, and a successive cyclization affords B. Auto oxidation of B furnishes 13c (path a), and elimination of benzothiazole from \mathbf{B} gave 14 (path b).

13b : $\mathrm{X}=\mathrm{OEt}$
13c: $\mathrm{X}=\mathrm{NH}_{2}$

16

14

17

15

18

Above consideration suggested that the use of oxidation reagent would improve the reaction. Therefore,
we carried out the reaction of $\mathbf{1 c}$ with 2-aminothiophenol in the presence of I_{2} in 1-BuOH under reflux for 48 h , and $\mathbf{1 3 c}$ (24\%) and $\mathbf{1 5}$ (52\%) were obtained together with 1c (7\%). Attack of S-atom to aldehyde group of 1 c and successive oxidation by I_{2} would produce 15 . When the reaction was carried out in DMF at $100{ }^{\circ} \mathrm{C}$ for 24 h , $\mathbf{1 3 c}$ was obtained only in 25% yield along with $\mathbf{1 c}$ (51\%). In this case, the compound (15) was not obtained. Reaction of $\mathbf{1 c}$ with 2-aminothiophenol in the presence of FeCl_{3} in 1-BuOH under reflux for 48 h gave 13c in 31% along with 1c (11\%).

Scheme 1
The structure of 13c was confirmed by X-ray structure analysis (Figure 2). The bond length of $\mathrm{C}(2)-\mathrm{N}(\mathrm{amino})$ is rather short ($1.331 \AA$), and hydrogen bonding $\mathrm{N}-\mathrm{H}--\mathrm{N}(2.08 \AA)$ is observed. The results suggest that contribution of resonance form ($\mathbf{1 3} \mathbf{c} \mathbf{- A}$) is large. The electronic spectra of 13b, 13c,

Figure 2. ORTEP drawing with thermal ellipsoids (50\% probability) and selective bond lengths of 13c.
and 16 in EtOH are shown in Figure3. Interestingly, the spectral features of $\mathbf{1 3 c}$ and 16 resemble, and those of 13c and 13b are rather different. The results suggest that tautomerisation between 13c and $\mathbf{1 9}$ exists in the solution.

Figure 3. UV and Visible spectra of 13b, 13c, and 16.

Syntheses of benzothiaazepine-fused and triazolothiadiazepine fused 1-azaazulenes

Interestingly, the reaction of 2-chloro-1-azaazulene-3-carboaldehyde (1a) with 2-aminothiophenol showed a different aspect. Treatment of 1a with 2-aminothiophenol in EtOH under reflux gave a complex mixture and distinct product was not obtained. When the reaction performed in 1-BuOH under reflux for 45 h , cyclized compound (20) was obtained in a 41% yield. The structure of 20 was determined by spectroscopic data as well as elemental analysis. In its ${ }^{1} \mathrm{H}$ NMR spectrum, low field resonated 1 H singlet assigned to $\mathrm{H}-12$ was observed at $\delta 10.61$, owing to the anisotropic effect of seven-menbered ring.
We expand the examination for synthesis of fused 1 -azaazulenes containing thiadiazepine ring. Thus,

1a was treated with 4 -amino-3-mercapto-1,2,4-triazoles (21a-d) in refluxing 1-BuOH for a few min, and 22a-d were obtained in $49 \%, 67 \%, 33 \%$, and 43% yields, respectively. The structure of 22c was confirmed by X-ray structure analysis (Figure 4).

20

21a: $\mathrm{R}=\mathrm{H}$
21b: R $=\mathrm{Me}$
21c: $\mathrm{R}=\mathrm{CF}_{3}$
21d : R = 4-Py

22a: $\mathrm{R}=\mathrm{H}$
22b: R = Me
22c: $\mathrm{R}=\mathrm{CF}_{3}$
22d : $\mathrm{R}=4-\mathrm{Py}$

Figure 4. ORTEP drawing with thermal ellipsoids (50\% probability) of 22c.

Biological evaluation

Some new synthesized products ($\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}, \mathbf{5}, \mathbf{1 3 b}, \mathbf{1 6}$) were evaluated for their anticancer activity (cytotoxic activity) against HeLa S3 cells. The IC_{50} values $[\mu \mathrm{M}$] are summarized in Table 1. In several cases (denoted $>$), the minimum inhibitory concentration could not be determined due to limited solubility of the compounds in the testing medium. The data revealed that compounds (2a) showed moderate activity against HeLa S3 cells, and others would be inactive ($\mathrm{IC}_{50}>30 \mu \mathrm{M}$).

Table 1. Cytotoxic evaluation of compounds ($\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}, \mathbf{5}, \mathbf{1 3 b}, \mathbf{1 6}$) expressed in $\mu \mathrm{M}$.

	2a	$\mathbf{2 b}$	$\mathbf{2 c}$	$\mathbf{5}$	$\mathbf{1 3 b}$	$\mathbf{1 6}$
IC_{50}	5.3 ± 0.4	62 ± 3	>9.6	>38	>8.1	>4.4

CONCLUSION

Benzimidzolyl- and benzthiazolyl-1-azaazulenes are easily synthesized by the treatment of
formyl-1-azaazulenes with o-phenylenediamine and 2-aminothiophenol in alcoholic solvent under airobic conditions. Reaction of formyl-1-azaazulenes with 2 -aminophenol gave only Schiff's bases and benzoxazolyl-1-azaazulenes were not obtained. Reactions of 2-chloro-1-azaazulene-3-carbaldehyde with 2-aminothiophenol and 4-amino-3-mercapto-1,2,4-triazoles gave 5-thia-6,13-diazacyclohepta[a]benz[f]azulene and 4-thia-2,3,5,12,12a-pentaazaazuleno[5,6-b]azulenes. Benzimidzolyl- and benzthiazolyl-1-azaazulenes showed anticancer activity (cytotoxic activity) against HeLa S3 cells.

EXPERIMENTAL

Mps are measured using a Yanagimoto micro-melting apparatus and uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra (including HH-COSY and CH-COSY NMR)) were recorded on a Bruker AVANCE $400 \mathrm{~S}(400 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE $400 \mathrm{~S}(100.6 \mathrm{MHz})$ using DMSO- d_{6} as a solvent with TMS as an internal standard unless otherwise stated; J values are recorded in Hz . IR spectra were recorded for KBr pellets on a Nicolet FT-IR Avatar 370DTGS. Electronic spectra were recorded with Shimadzu UV-1600PC spectrophotometer using EtOH as a solvent. Elemental analyses were taken with a Perkin Elmer 2400II. Kieselgel 60 was used for column chromatography and Kieselgel 60G was used for thin-layer chromatography.

Reactions of 2-chloro-1-azaazulene-3-carbaldehyde (1a) with o-phenylenediamine

A mixture of $1 \mathbf{1 a}(0.071 \mathrm{~g}, 0.37 \mathrm{mmol})$ and o-phenylenediamine ($0.042 \mathrm{~g}, 0.39 \mathrm{mmol}$) in EtOH (20 mL) was stirred for 48 h at rt . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 2a ($0.081 \mathrm{~g}, 78 \%$) and recovered (1a) ($0.011 \mathrm{~g}, 15 \%$).

2a: Red plates (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 221-223 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 12.59(1 \mathrm{H}, \mathrm{s}), 9.68(1 \mathrm{H}, \mathrm{d}, J 10.0)$, 8.79 (1H, d, J 9.6), 8.27 (1H, dd, J 10.0, 9.6), 8.13 (1H, dd, J 10.0, 9.6), 8.11 (1H, dd, J 10.0, 9.6), 7.76-7.67 (2H, m), 7.31-7.23 (2H, m); ${ }^{13} \mathrm{C}$ NMR δ 155.4, 153.4, 144.9, 143.9, 141.0, 138.7 (br), 137.5, 137.2, 132.5, 132.4, 122.1, 115.1 (br), 112.1; $\nu_{\max } / \mathrm{cm}^{-1} 3368$ (NH); $\lambda_{\max } \mathrm{nm}(\log \varepsilon) 228$ (4.45), 262 (4.49), 306 (4.53), 366 (3.91), 478 (3.09). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Cl}: \mathrm{C}, 68.70 ; \mathrm{H}, 3.60$; N, 15.02. Found: C, 68.57; H, 3.78; N, 14.78.

Reactions of 2-ethoxy-1-azaazulene-3-carbaldehyde (1b) with o-phenylenediamine

A mixture of $\mathbf{1 b}$ ($0.061 \mathrm{~g}, 0.31 \mathrm{mmol}$) and o-phenylenediamine ($0.034 \mathrm{~g}, 0.32 \mathrm{mmol}$) in EtOH (20 mL) was heated under reflux for 37 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave $\mathbf{2 b}$ ($0.052 \mathrm{~g}, 59 \%$).
2b: Orange needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 173-175 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 11.96(1 \mathrm{H}, \mathrm{br}$ s), $9.80(1 \mathrm{H}, \mathrm{d}, J$ 9.6), 8.44-8.36 (1H, m), 7.98-7.82 (3H, m), 7.72-7.64 ($2 \mathrm{H}, \mathrm{m}$), 7.25-7.19 ($2 \mathrm{H}, \mathrm{m}$), 4.89 ($2 \mathrm{H}, \mathrm{q}, J 7.0$), 1.59 (3H, t, J 7.0); ${ }^{13} \mathrm{C}$ NMR $\delta 171.6,155.6,146.4,143.8,138.5$ (br), 135.6, 133.1, 132.1, 131.9, 131.8,
121.7, 114.7 (br), 99.4, 65.5, 14.7; $v_{\text {max }} / \mathrm{cm}^{-1} 3271(\mathrm{NH}), 1604$ and $1563(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon) 234$ (4.41), 262 (4.55), 320 (4.70), 392 (4.07). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 74.72 ; \mathrm{H}, 5.23 ; \mathrm{N}, 14.52$. Found: C, 74.44; H, 5.27; N, 14.11.

Reactions of 2-amino-1-azaazulene-3-carbaldehyde (1c) with o-phenylenediamine

a) A mixture of $1 \mathbf{c}(0.053 \mathrm{~g}, 0.30 \mathrm{mmol})$ and o-phenylenediamine $(0.099 \mathrm{~g}, 0.91 \mathrm{mmol})$ in 1-BuOH (10 mL) was heated at $70^{\circ} \mathrm{C}$ for 44 h . The solvent was evaporated, and the chromatography of the residue with AcOEt gave 2-amino-3-[(2-aminophenyl)iminomethyl]-1-azaazulene (3c) (0.050 g, 62\%) and recovered (1c) ($0.012 \mathrm{~g}, 22 \%$).
b) A mixture of $\mathbf{1 c}(0.051 \mathrm{~g}, 0.30 \mathrm{mmol})$ and o-phenylenediamine $(0.098 \mathrm{~g}, 0.90 \mathrm{mmol})$ in 1-BuOH (10 mL) was heated under reflux for 48 h . The solvent was evaporated, and the chromatography of the residue with AcOEt gave 2-amino-3-(2-benzimidazoyl)-1-azaazulene (2c) ($0.068 \mathrm{~g}, 88 \%$).
2c: Orange needles (from EtOH), mp 289-291 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 12.50(1 \mathrm{H}, \mathrm{s}), 8.54(1 \mathrm{H}, \mathrm{d}, J 10.4), 8.20$ ($2 \mathrm{H}, \mathrm{br}$ s), 7.92 ($1 \mathrm{H}, \mathrm{d}, J 9.6$), $7.70-7.55(4 \mathrm{H}, \mathrm{m}), 7.47$ ($1 \mathrm{H}, \mathrm{dd}, J 10.0,9.6$), 7.22 ($1 \mathrm{H}, \mathrm{dd}, J 10.0,9.6$), 7.22 (1H, dd, $J 8.8,0.8$); ${ }^{13} \mathrm{C}$ NMR $\delta 168.7,160.3,148.2,142.7$ (br), 142.4, 134.3 (br), 132.0, 130.8, 130.3, 126.3, 125.4, 121.7, 117.7 (br), 111.1 (br), 98.5; $v_{\max } / \mathrm{cm}^{-1} 3432$, 3288, 3222 (NH); $\lambda_{\max } \mathrm{nm}(\mathrm{log}$ ع) 244 (4.37), 270 (4.52), 328 (4.69), 448 (3.99). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4}: \mathrm{C}, 73.83$; H, 4.65; N, 21.52. Found: C, 73.83; H, 4.79; N, 21.08.

3c: Red plates (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 210-212 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.14(1 \mathrm{H}, \mathrm{s}), 8.56(1 \mathrm{H}, \mathrm{d}, J 9.9), 8.03$ (2H, s), 7.90 (1H, d, J 9.8), 7.65 (1H, dd, J 9.9, 9.8), 7.58 (1H, dd, J 9.9, 9.7), 7.47 (1H, dd, J 9.9, 9.7), 7.15 (1H, dd, J 7.8, 1.1), 6.94 (1H, ddd, J 7.9, 7.2, 1.1), 6.74 (1H, dd, J 7.9, 1.1), 6.62 (1H, ddd, J 7.8, 7.2, 1.1), 5.06 (2H, br); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.7,161.1,152.1,147.5,141.2,139.6,133.4,132.0,131.7$, 128.6, 127.1, 125.2, 119.3, 118.3, 115.6, 107.0; $v_{\max } / \mathrm{cm}^{-1} 3486,3465,3370,3342(\mathrm{NH}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon)$ 226(4.39), 271 (4.30, sh), 300 (4.43), 352 (4.29), 463 (4.10). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4}$: C, 73.26; H, 5.38; N, 21.36. Found: C, 73.56; H, 5.48; N, 20.96.

Reactions of 2-oxo-1,2-dihydro-1-azaazulene-3-carbaldehyde (4) with o-phenylenediamine

A mixture of $4(0.0526 \mathrm{~g}, 0.30 \mathrm{mmol})$ and o-phenylenediamine ($0.0339 \mathrm{~g}, 0.31 \mathrm{mmol}$) in EtOH (10 mL) was heated under reflux for 20 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 3-(2-benzimidazoyl)-1-azaazulen-2(1H)-one (5) ($0.0345 \mathrm{~g}, 43 \%$).
5: Red powders (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 277-279 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 12.28(1 \mathrm{H}, \mathrm{s}), 12.19(1 \mathrm{H}, \mathrm{s}), 9.38$ ($1 \mathrm{H}, \mathrm{d}, J 11.2$), $7.76-7.66(2 \mathrm{H}, \mathrm{m}), 7.63$ (1H, dd, $J 11.2,9.6$), 7.53 ($1 \mathrm{H}, \mathrm{dd}, J 10.0,9.2$), 7.43 ($1 \mathrm{H}, \mathrm{d}, J$ 9.2), 7.31 ($1 \mathrm{H}, \mathrm{dd}, J 10.0,9.6$), $7.22-7.13$ ($2 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR $\delta 168.1,147.3,145.6,143.3$ (br), 141.1, 134.5, 134.1, 133.3 (br), 131.2, 129.8, 121.5, 117.8 (br), 116.8, 112.0 (br), 101.2; $v_{\max } / \mathrm{cm}^{-1} 3428,3346$ (NH), $1660(\mathrm{C}=\mathrm{O})$; $\lambda_{\max } \mathrm{nm}(\log \varepsilon) 226$ (4.25), 242 (4.26), 262 (4.32), 308 (4.34), 318 (4.36), 448 (4.22). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 73.55$; H, 4.24; $\mathrm{N}, 16.08$. Found: C, 72.95; H, 4.28; N, 15.88.

Reactions of 3-bromo-1-azaazulene-2-carbaldehyde (6) with o-phenylenediamine

A mixture of $6(0.0425 \mathrm{~g}, 0.18 \mathrm{mmol})$ and o-phenylenediamine ($0.0233 \mathrm{~g}, 0.22 \mathrm{mmol}$) in EtOH (10 mL) was stirred for 15 h at rt . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 2-(benzimidazol-2-yl)-3-bromo-1-azaazulene (7) ($0.0233 \mathrm{~g}, 40 \%$).
7 : Red needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp $150-152{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 13.42(1 \mathrm{H}, \mathrm{br}$ s), $8.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0)$, 8.73 (1H, d, J 9.6), 8.20 (1H, dd, J 10.0, 9.6), 8.06 (1H, dd, J 10.0, 9.6), 8.03 (1H, dd, J 10.0, 9.6), 7.90-7.75 (1H, m), 7.70-7.55 (1H, m), 7.40-7.20 (2H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 155.9,151.8,146.7,144.2,140.6$, 137.8, 136.3, 131.4, 130.7, 123.9, 122.1, 119.7, 117.3, 114.5, 112.1, 99.0; $v_{\max } / \mathrm{cm}^{-1} 3423$ (NH); $\lambda_{\max } n m$ ($\log \varepsilon$) 220 (4.52), 274 (4.65), 336 (4.43), 400 (4.29), 524 (3.45). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Br}$. $3 / 4 \mathrm{H}_{2} \mathrm{O}$: C, 56.91 ; H, 3.43; N, 12.44. Found: C, 57.24; H, 3.55; N, 12.31.

Reaction of ethyl 2-chloro-8-formyl-1-azaazulene-3-carboxylate (8a) with o-phenylenediamine

A mixture of $\mathbf{8 a}(0.0526 \mathrm{~g}, 0.30 \mathrm{mmol})$ and o-phenylenediamine ($0.0231 \mathrm{~g}, 0.21 \mathrm{mmol})$ in EtOH (10 mL) was stirred for 4 h at rt. The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave ethyl 8-(benzimidazol-2-yl)-1-azaazulene-3-carboxylate (9) ($0.0190 \mathrm{~g}, 38 \%$).
9: Orange needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp $187-189{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 13.51(1 \mathrm{H}, \mathrm{br}$ s), $9.59(1 \mathrm{H}, \mathrm{d}, J$ 10.4), 9.52 (1H, d, J 10.0), 8.42 (1H, dd, J 10.4, 10.0), 8.24 (1H, dd, J 10.0, 10.0), 7.94-7.82 (2H, m), $7.43-7.31(2 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{q}, J 7.2), 1.43(3 \mathrm{H}, \mathrm{t}, J 7.2) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 163.3,157.0,151.9,150.1$, $148.3,138.8,137.1,134.6,134.2,133.9,125.2,123.5,120.4,112.4,112.2,60.9,14.4 ; v_{\max } / \mathrm{cm}^{-1} 3224$ (NH), $1692(\mathrm{C}=\mathrm{O}), 1651(\mathrm{C}=\mathrm{N})$; $\lambda_{\max } \mathrm{nm}(\log \varepsilon) 225$ (4.17), 281 (4.10), 293 (4.13), 330 (3.95), 409 (4.03), 451 (3.55, sh). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{ClO}_{2}$: C, 64.87; H, 4.01; N, 11.94. Found: C, 64.73; H, 4.22; N, 12.12.

Reactions of 2-chloro-1-azaazulene-3-carbaldehyde (1a) with 2-aminophenol

a) A mixture of $\mathbf{1 a}(0.0579 \mathrm{~g}, 0.30 \mathrm{mmol})$ and 2-aminophenol ($0.0331 \mathrm{~g}, 0.30 \mathrm{mmol}$) in EtOH (10 mL) was heated under reflux for 10 min . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 2-chloro-3-[(2-hydroxyphenyl)iminomethyl]-1-azaazulene (10a) (0.0512 g, 60\%) and 2-[(2-hydroxyphenyl)amino]-3-[(2-hydroxyphenyl)iminomethyl]-1-azaazulene (11) (trace).
b) A mixture of $\mathbf{1 a}(0.0589 \mathrm{~g}, 0.31 \mathrm{mmol})$ and o-aminophenol ($0.0356 \mathrm{~g}, 0.33 \mathrm{mmol}$) in EtOH (10 mL) was heated at $50^{\circ} \mathrm{C}$ for 40 min . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 10a ($0.0692 \mathrm{~g}, 80 \%$) and $\mathbf{1 1}$ (trace).
c) A mixture of $1 \mathbf{1 a}(0.0728 \mathrm{~g}, 0.38 \mathrm{mmol})$ and 2-aminophenol ($0.0582 \mathrm{~g}, 0.53 \mathrm{mmol}$) in EtOH (15 mL) was heated under reflux for 15 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 10a (trace) and $\mathbf{1 1}$ ($0.0505 \mathrm{~g}, 37 \%$).
10a: Orange needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp $179-181{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.04(1 \mathrm{H}, \mathrm{d}, J 10.0), 9.11(1 \mathrm{H}$, s), 8.95 (1H, s), 8.78 (1H, d, J 9.6), 8.30 (1H, dd, J 10.0, 9.6), 8.18 (1H, dd, J 10.0, 9.6), 8.16 (1H, dd, J
10.0, 9.6), 7.21 (1H, dd, J 7.6, 1.6), 7.10 (1H, ddd, J 8.0, 7.6, 1.6), 6.94 (1H, dd, J 8.0, 1.2), 6.88 ($1 \mathrm{H}, \mathrm{td}$, J 7.6, 1.2); ${ }^{13} \mathrm{C}$ NMR $\delta 158.2,156.7,152.7,150.5,142.8,141.5,139.5,138.3,137.9,134.2,133.6,126.9$, 119.7, 119.4, 116.1, 114.3; $v_{\max } / \mathrm{cm}^{-1} 3375(\mathrm{OH}), 1616(\mathrm{C}=\mathrm{N}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 254$ (4.33), 259 (4.33), 291 (4.45, sh), 298 (4.46), 324 (4.15, sh), 394 (3.97), 482 (3.25, sh). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{ClO}: \mathrm{C}$, 67.97; H, 3.92; N, 9.91. Found: C, 67.87; H, 3.68; N, 9.64.

11: Orange powders (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp $235-237{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\delta 11.43(1 \mathrm{H}, \mathrm{s}), 10.77(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 9.57 (1H, s), 8.88 (1H, dd, J 7.2), 8.71 (1H, d, J 10.0), 8.49 (1H, br s), 8.21 (1H, d, J 9.6), 7.78 (1H, dd, J 10.0, 9.6), 7.72 (1H, dd, $J 10.0,9.2$), 7.64 (1H, dd, $J 10.0, ~ 9.2$), 7.59 (1H, d, J 7.6), 7.12 (1H, dd, J 7.6 , 7.2), 7.03-6.89 (5H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 162.7,159.9,152.3,150.5,145.8,145.7,137.3,133.3,132.8,131.9$, $129.4,128.2,126.8,122.6,119.8,119.54,119.47,118.9,115.7,114.5,107.6 ; v_{\max } / \mathrm{cm}^{-1} 3415(\mathrm{OH})$, 3259 (NH); $\lambda_{\max } \mathrm{nm}(\log \varepsilon) 234$ (4.22), 294 (4.41), 329 (4.40), 345 (4.40), 374 (4.39), 484 (4.14). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 74.35; H, 4.82; N, 11.82. Found: C, 74.70; H, 5.05; N, 11.57.

Reactions of 2-ethoxy-1-azaazulene-3-carbaldehyde (1b) with 2-aminophenol

a) A mixture of $\mathbf{1 b}(0.0582 \mathrm{~g}, 0.29 \mathrm{mmol})$ and 2-aminophenol ($0.0425 \mathrm{~g}, 0.39 \mathrm{mmol}$) in EtOH (10 mL) was heated under reflux for 24 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 2-ethoxy-3-[(2-hydroxyphenyl)iminomethyl]-1-azaazulene (10b) (0.0761 g, 90\%).
b) A mixture of $\mathbf{1 b}(0.0632 \mathrm{~g}, 0.31 \mathrm{mmol})$, 2-aminophenol ($0.0368 \mathrm{~g}, 0.34 \mathrm{mmol})$ and $\operatorname{DDQ}(0.0692,0.31$ $\mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$ was heated under reflux for 24 h . The solvent was evaporated, and the residue was chromatographed with hexane-AcOEt to give a trace amount of $\mathbf{1 0 b}$ and recovered $\mathbf{1 b}$ (0.0440 g , 69\%).
10b: Orange needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 205-207 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0,1.6), 8.88$ $(1 \mathrm{H}, \mathrm{s}), 8.82(1 \mathrm{H}, \mathrm{s}), 8.41(1 \mathrm{H}, \mathrm{dd}, J 9.6,1.6), 7.94-7.87(3 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{dd}, J 7.6,1.6), 7.05$ (1H, ddd, J 8.0, 7.6, 1.6), 6.91 (1H, dd, J 8.0, 1.6), 6.85 (1H, td, J 7.6, 1.6), 4.72 ($2 \mathrm{H}, \mathrm{q}, J 7.0$), 1.48 ($3 \mathrm{H}, \mathrm{t}, J 7.0$); ${ }^{13} \mathrm{C}$ NMR δ 174.4, 157.0, 152.1, 150.4, 143.8, 140.1, 136.1, 134.1, 133.4, 132.9, 132.6, 126.2, 119.6, 119.1, 115.8, 106.1, 65.1, 14.6; $v_{\max } / \mathrm{cm}^{-1} 3206(\mathrm{OH}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 256$ (4.11), 305 (4.29), 413 (3.93). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.96; H, 5.52; N, 9.58. Found: C, 73.77; H, 5.64; N, 9.36.

Reactions of 2-amino-1-azaazulene-3-carbaldehyde (1c) with 2-aminophenol

a) A mixture of $\mathbf{1 c}(0.0594 \mathrm{~g}, 0.35 \mathrm{mmol})$ and 2 -aminophenol ($0.0762 \mathrm{~g}, 0.70 \mathrm{mmol})$ in 1-BuOH (10 mL) was heated under reflux for 22 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 2-amino-3-[(2-hydroxyphenyl)iminomethyl]-1-azaazulene (10c) (0.0827 g, 91\%).
b) A mixture of $\mathbf{1 c}(0.0498 \mathrm{~g}, 0.29 \mathrm{mmol})$, o-aminophenol $(0.0590 \mathrm{~g}, 0.54 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.0386,0.15$ $\mathrm{mmol})$ in $1-\mathrm{BuOH}(10 \mathrm{~mL})$ was heated under reflux for 48 h . The solvent was evaporated, and the
residue was chromatographed with hexane-AcOEt to give 10c ($0.0273 \mathrm{~g}, 36 \%$) and recovered $\mathbf{1 b}$ (trace).
10c: Dark red prisms (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 207.5-209 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.21(1 \mathrm{H}, \mathrm{s}), 9.01(1 \mathrm{H}, \mathrm{br}$ s), 8.50 (1H, d, J 9.9), 8.21 ($2 \mathrm{H}, \mathrm{br}$ s), 7.88 (1H, d, J 9.8), 7.64 ($1 \mathrm{H}, \mathrm{dd}, J 9.9,9.8$), 7.57 ($1 \mathrm{H}, \mathrm{dd}, J 9.9,9.8$), 7.45 (1H, dd, J 9.9, 9.8), 7.32 (1H, dd, J 7.9, 1.4), 7.04 (1H, ddd, $J .0,7.9,1.4$), 6.92-6.82 (2H, m); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.3,161.2,153.1,150.7,148.0,139.2,133.9,132.6,132.2,129.2,127.7,125.4,121.0$, 117.6, 115.3, 106.6; $v_{\max } / \mathrm{cm}^{-1} 3387(\mathrm{OH})$, 3284, $3235(\mathrm{NH})$; $\lambda_{\max } \mathrm{nm}(\log \varepsilon) 241$ (4.69), 286 (4.54), 349 (4.44), 362 (4.38, sh), 461 (4.13). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 72.99$; H, 4.98; N, 15.96. Found: C, 73.07; H, 5.03; N, 15.87.

Reactions of 2-oxo-1,2-dihydro-1-azaazulene-3-carbaldehyde (4) with 2-aminophenol

A mixture of $4(0.0650 \mathrm{~g}, 0.38 \mathrm{mmol})$ and 2-aminophenol ($0.0615 \mathrm{~g}, 0.56 \mathrm{mmol})$ in EtOH (10 mL) was heated under reflux for 12 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 3-[(2-hydroxyphenyl)iminomethyl]-1-azaazulen-2(1H)-one (12) ($0.0531 \mathrm{~g}, 54 \%$).
12: Orange powders (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 247-250 ${ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR $\delta 9.19$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8$), 8.67 (1H, s), 7.59 ($1 \mathrm{H}, \mathrm{t}, ~ J 10.0$), 7.57 (1H, dd, J 10.8, 10.0), 7.46 (1H, d, J 9.6), 7.31 (1H, dd, J 10.0, 9.6), 7.07 (1H, d, J 7.6), 7.03 (1H, ddd, J 8.0, 7.6, 1.2), 6.89 (1H, dd, J 8.0, 1.2), 6.83 (1H, td, J 7.6, 1.2), (NH and OH protons were not observed); ${ }^{13} \mathrm{C}$ NMR $\delta 170.1,152.9,150.4,148.1,142.5,139.9,136.0,135.3$, 131.5, 130.0, 126.2, 119.6, 118.8, 117.8, 115.8, 107.6; $v_{\max } / \mathrm{cm}^{-1} 3407$ (NH, OH), 1654 (C=O); $\lambda_{\max } \mathrm{nm}$ ($\log \varepsilon$) 258 (4.16), 287 (4.14), 363 (3.41), 422 (3.76, sh), 444 (3.92), 475 (3.63, sh), 510 (3.40, sh). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.72; H, 4.58; N, 10.64. Found: C, 72.83; H, 4.82; N, 9.89.

Reactions of 2-ethoxy-1-azaazulene-3-carbaldehyde (1b) with 2-aminothiophenol

A mixture of $\mathbf{1 b}(0.0816 \mathrm{~g}, 0.41 \mathrm{mmol})$ and 2-aminothiophenol ($0.0538 \mathrm{~g}, 0.43 \mathrm{mmol}$) in EtOH (10 mL) was heated under reflux for 4.5 h . The mixture was evaporated, and the chromatography of the residue with hexane-AcOEt gave 3-(benzothiazol-2-yl)-2-ethoxy-1-azaazulene (13b) ($0.0823 \mathrm{~g}, 66 \%$).

13b: Orange needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 177-179 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.94(1 \mathrm{H}, \mathrm{d}, J 10.0), 8.53-8.44$ (1H, m), 8.14 (1H, d, J 7.6), 8.09 (1H, d, J 8.0), 8.08-8.01 (1H, m), 8.01-7.93 ($2 \mathrm{H}, \mathrm{m}$), 7.54 ($1 \mathrm{H}, \mathrm{dd}, J 8.0$, 7.6), 7.42 ($1 \mathrm{H}, \mathrm{t}, J 7.6$), 4.85 ($2 \mathrm{H}, \mathrm{q}, J 7.0$), 1.59 ($3 \mathrm{H}, \mathrm{t}, J=7.0$); ${ }^{13} \mathrm{C}$ NMR $\delta 171.9,159.8,156.1,152.8$, $143.4,136.5,133.5,133.3,133.3,133.1,133.0,126.2,124.3,121.7,121.6,102.6,66.0,14.8 ; v_{\max } / \mathrm{cm}^{-1}$ $1600(\mathrm{C}=\mathrm{N}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 222$ (4.52), 258 (4.37), 270 (4.32, sh), 315 (4.52, sh), 326 (4.66), 396 (4.12), 464 (3.53, sh). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 70.56$; H, 4.61; N, 9.14. Found: C, 70.89; H, 4.70; N, 9.05.

Reactions of 2-amino-1-azaazulene-3-carbaldehyde (1c) with 2-aminothiophenol

a) A mixture of 2-amino-1-azaazulene-3-carbaldehyde (1c) (0.0427 g, 0.25 mmol$)$ and 2-aminothiophenol ($0.103 \mathrm{~g}, 0.82 \mathrm{mmol}$) in 1-BuOH (30 mL) was heated at $125{ }^{\circ} \mathrm{C}$ for 190 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt to give

2-amino-3-(2-benzothiazoyl)-1-azaazulene (13c) ($0.0246 \mathrm{~g}, 36 \%$), 2-amino-1-azaazulene (14) (0.0212 g , 59%), and a trace amount of benzothiazole.
b) A mixture of $1 \mathrm{c}(0.0357 \mathrm{~g}, 0.21 \mathrm{mmol})$, 2-aminothiophenol ($0.0332 \mathrm{~g}, 0.27 \mathrm{mmol}$), and $\mathrm{I}_{2}(0.0262 \mathrm{~g}$, 0.10 mmol) in 1-BuOH (25 mL) was refluxed for 24 h . To the mixture $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (18 mL) was added, and the precipitate was filtered off. The filtrate was evaporated, and the chromatography of the residue with hexane-AcOEt gave 13c (0.0209 g, 36\%), 2-amino-3-(2-aminophenyl-mercaptocalbonyl)-1-azaazulene (15) ($0.0102 \mathrm{~g}, 17 \%$), and 1c ($0.0026 \mathrm{~g}, 7 \%$).
c) A mixture of $1 \mathrm{c}(0.0348 \mathrm{~g}, 0.20 \mathrm{mmol})$, 2-aminothiophenol ($0.0374 \mathrm{~g}, 0.30 \mathrm{mmol}$), and sat. FeCl_{3} solution $(2.0 \mathrm{~mL})$ in 1-BuOH $(10 \mathrm{~mL})$ was refluxed for 24 h . To the mixture water (30 ml) was added, and the mixture was extracted with CHCl_{3}. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. Chromatography of the residue with hexane-AcOEt gave $\mathbf{1 3 c}(0.0176 \mathrm{~g}, 31 \%)$ and $\mathbf{1 c}$ ($0.0028 \mathrm{~g}, 11 \%$).

13c: Orange prisms (from EtOAc), mp $247-250{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.49(1 \mathrm{H}, \mathrm{d}, J 10.1) 8.48(2 \mathrm{H}, \mathrm{s}), 8.15$ (1H, d, J 8.1), 8.07 (1H, d, J 8.2), 8.02 (1H, d, J 9.9), 7.81 (1H, dd, J 10.1, 9.8), 7.79 (1H, dd, J 10.0, 9.9), 7.59 (1 H , dd, $J 10.0,9.8$), 7.56 (1H, ddd, $J 8.1,7.9,1.2$), 7.43 (1 H , ddd, $J 8.2,7.9,1.2$); ${ }^{13} \mathrm{C}$ NMR δ 161.17, 158.94, 151.67, 133.62, 132.18, 131.99, 131.13, 127.51, 126.56, 125.04, 124.34, 122.52, 121.69, 121.45, 120.37, 109.04; $\nu_{\max } / \mathrm{cm}^{-1} 3342,3276(\mathrm{NH}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 222$ (4.39), 260 (4.23), 294 (4.13), 338 (4.55), 460 (4.04). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}: \mathrm{C}, 69.29$; H, 4.00; N, 15.15. Found: C, 69.69; H, 4.14; N, 14.88 .

15: Red plates (from CHCl_{3}-hexane), mp $190-191{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.21(1 \mathrm{H}, \mathrm{d}, J 10.2), 7.98(1 \mathrm{H}$, d, J 9.7), 7.57 (1H, dd, J 10.0, 9.7), 7.51 (1H, dd, J 10.2, 9.5), 7.42 (1H, dd, J 10.0, 9.5), 7.01 (1H, ddd, J 7.9, 7.4, 1.1), 6.92 (1H, dd, J 7.8, 1.4), 6.71 (1H, dd, J 7.9, 1.1), 6.59 (1H, ddd, J 7.8, 7.4, 1.4), 5.69 (2H, br s), $4.22(2 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 196.61,168.67,159.16,149.60,145.34,131.63,131.45$, $130.79,130.79,128.11,127.31,127.25,119.64,119.58,115.83,97.07 ; v_{\max } / \mathrm{cm}^{-1} 3430,3343,3277$, $3214(\mathrm{NH}), 1639(\mathrm{C}=\mathrm{O})$; $\lambda_{\max } \mathrm{nm}(\log \varepsilon) 239$ (4.29, sh), 280 (4.47), 320 (4.27, sh), 434 (3.61). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$: C, 65.06; H, 4.44; N, 14.23. Found: C, 65.28; H, 4.79; N, 14.10.

Reactions of 2-oxo-1,2-dihydro-1-azaazulene-3-carbaldehyde (4) with 2-aminothiophenol

A mixture of $4(0.0538 \mathrm{~g}, 0.31 \mathrm{mmol})$ and 2-aminothiophenol ($0.0404 \mathrm{~g}, 0.32 \mathrm{mmol}$) in EtOH (10 mL) was heated under reflux for 15 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 3-(2-benzothiazolyl)-1-azaazulen-2(1H)-one (16) ($0.0460 \mathrm{~g}, 53 \%$).
16: Red plates (from EtOH), mp $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 12.38(1 \mathrm{H}, \mathrm{s}), 9.51$ ($1 \mathrm{H}, \mathrm{d}, J 11.2$), $8.10(1 \mathrm{H}, \mathrm{d}, J$ 7.6), 8.04 (1H, d, $J 8.0$), 7.77 (1H, dd, J 11.2, 10.8), 7.67 (1H, dd, $J 10.0,9.6$), 7.58 (1H, d, $J 9.6$), 7.52 $(1 \mathrm{H}, \mathrm{dd}, J 10.8,10.0), 7.39(1 \mathrm{H}, \mathrm{dd}, J 7.6,7.2) ;{ }^{13} \mathrm{C}$ NMR $\delta 167.5,160.2,152.4,146.2,141.0,136.1$, $135.4,133.4,132.1,129.7,125.9,124.1,121.6,121.4,118.2,104.3 ; v_{\max } / \mathrm{cm}^{-1} 3436(\mathrm{NH}), 1684(\mathrm{C}=\mathrm{O})$;
$\lambda_{\max } \mathrm{nm}(\log \varepsilon) 231$ (4.46), 256 (4.39), 274 (4.28), 310 (4.39), 322 (4.41), 456 (4.33). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 69.05 ; \mathrm{H}, 3.62$; $\mathrm{N}, 10.06$. Found: C, 69.26; H, 3.55; $\mathrm{N}, 9.84$.

Reactions of 3-bromo-1-azaazulene-2-carbaldehyde (6) with 2-aminothiophenol

A mixture of 6 ($0.0434 \mathrm{~g}, 0.18 \mathrm{mmol}$) and 2-aminothiophenol ($0.0262 \mathrm{~g}, 0.21 \mathrm{mmol}$) in EtOH (10 mL) was heated under reflux for 1 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 2-(benzothiazol-2-yl)-3-bromo-1-azaazulene (17) ($0.0198 \mathrm{~g}, 32 \%$).
17: Reddish violet needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); mp 119-121 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 8.88$ ($1 \mathrm{H}, \mathrm{d}, J 9.6$), 8.79 (1H, d, J 9.6), 8.27 (1H, dd, J 10.0, 9.6), 8.25 (1H, dd, J $8.0,0.8$), 8.21 (1H, d, J 8.0), 8.08 ($1 \mathrm{H}, \mathrm{dd}, J 10.0$, $9.6), 8.07(1 \mathrm{H}, \mathrm{t}, J 9.6), 7.63(1 \mathrm{H}, \mathrm{ddd}, J 8.0,7.2,1.2), 7.57(1 \mathrm{H}, \mathrm{ddd}, J 8.0,7.2,0.8)$; ${ }^{13} \mathrm{C}$ NMR $\delta 163.0$, 155.8, 154.3, 152.9, 144.5, 141.8, 139.2, 137.7, 135.4, 131.8, 131.1, 126.8, 126.4, 123.7, 122.4, 98.4; $v_{\max } / \mathrm{cm}^{-1} 1611(\mathrm{C}=\mathrm{N}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 223$ (4.22), 242 (3.91), 276 (4.12), 302 (4.04), 331 (4.19), 379 (3.98), 397 (3.97), 533 (3.11). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{BrS}: \mathrm{C}, 56.32 ; \mathrm{H}, 2.66 ; \mathrm{N}, 8.21$. Found: C, 56.67; H, 2.89; N, 8.10.

Reaction of ethyl 2-ethoxy-8-formyl-1-azaazulene-3-carboxylate (8b) with 2-aminothiophenol

 A mixture of $\mathbf{8 b}(0.0329 \mathrm{~g}, 0.12 \mathrm{mmol})$ and 2-aminothiophenol ($0.0229 \mathrm{~g}, 0.18 \mathrm{mmol}$) in EtOH (10 mL) was stirred for 15 min at rt. The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave ethyl 8-(2-benzothiazolyl)-1-azaazulene-3-carboxylate (18) (0.0244 g, 54\%).18: Yellow needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp $176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.21(1 \mathrm{H}, \mathrm{dd}, J 9.6,1.6)$, 8.34 (1H, dd, J 9.6, 1.2), 7.70 (1H, td, J 9.6, 1.2), 7.63 (1H, ddd, J 9.6, 9.6, 1.6), 7.02 (1H, dd, J 8.0, 1.2), 6.98 (1H, ddd, J 8.0, 7.6, 1.2), 6.80 (1H, dd, J 8.0, 1.2), 6.76 (1H, ddd, J 8.0, 7.6, 1.2), 4.83 (2H, q, J 7.0), 4.43 (2H, q, $J 7.2$), $1.56(3 \mathrm{H}, \mathrm{t}, J 7.2), 1.44(3 \mathrm{H}, \mathrm{t}, J 7.0) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 173.6,165.1,164.2,152.5$, 151.6, 149.9, 139.2, 134.0, 133.5, 133.4, 132.8, 126.2, 125.7, 123.7, 121.4, 100.7, 67.3, 60.1, 14.7, 14.5; $v_{\max } / \mathrm{cm}^{-1} 1687(\mathrm{C}=\mathrm{O}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 226(4.62), 246(4.35, \mathrm{sh}), 299(4.47), 343(4.34, \mathrm{sh}), 351(4.36)$, 351 (4.36), 375 (4.38), 397 (4.33), 465 (3.50). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 66.65$; H, 4.79; N, 12.68. Found: C, 66.88; H, 4.79; N, 12.52.

Reactions of 2-chloro-1-azaazulene-3-carbaldehyde (1a) with 2-aminothiophenol

A mixture of $\mathbf{1 a}(0.0632 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 2-aminothiophenol ($0.0469 \mathrm{~g}, 0.38 \mathrm{mmol}$) in 1-BuOH (5 mL) was heated under reflux for 45 h . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 5-thia-6,13-diazacyclohepta[a]benz[f]azulene (20) ($0.0357 \mathrm{~g}, 41 \%$).

20: Redddish violet powders (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp 251-253 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 10.61(1 \mathrm{H}, \mathrm{s}), 7.41(1 \mathrm{H}$, d, $J 8.8$), $7.21-7.02(4 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{dd}, J 7.6,1.2), 7.04$ (1H, ddd, $J 8.0,7.6,1.2$), 6.89 ($1 \mathrm{H}, \mathrm{dd}, J$ 8.0,1.2), $6.84(1 \mathrm{H},, J 7.6,1.2) ;{ }^{13} \mathrm{C}$ NMR $\delta 158.6,136.5,130.8,130.2,128.7,127.2,126.7,125.2,123.0$, 117.5, 115.5, 97.8; $v_{\max } / \mathrm{cm}^{-1} 1630(\mathrm{C}=\mathrm{N}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 251$ (4.18), 274 (4.32), 312 (3.93), 342 (4.15), 363 ($4.06, \mathrm{sh}$), 454 (3.43 , sh), 479 (3.55), 509 ($3.46, \mathrm{sh}$), 543 ($3.40, \mathrm{sh}$), 602 ($3.11, \mathrm{sh}), 653$ ($2.65, \mathrm{sh}$).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 73.26$; H, 3.84; N, 10.68. Found: C, 73.83; H, 4.22; N, 10.61.

Reactions of 2-chloro-1-azaazulene-3-carbaldehyde (1a) with 4-amino-3-mercapto-4H-1,2,4-triazol

 A mixture of $\mathbf{1 a}(0.0597 \mathrm{~g}, 0.31 \mathrm{mmol})$ and 4 -amino-3-mercapto-1,2,4-triazol (21a) ($0.0415 \mathrm{~g}, 0.36$ mmol) in 1- $\mathrm{BuOH}(10 \mathrm{~mL}$) was heated under reflux for 3 min . The solvent was evaporated, and the chromatography of the residue with hexane-AcOEt gave 4-thia-2,3,5,12,12a-pentaazaazuleno[5,6-b]azulene (22a) ($0.0391 \mathrm{~g}, 49 \%$).22a: Orange powders (from $\mathrm{CHCl}_{3}-\mathrm{EtOH}$), mp 202-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (TFA-d) $\delta 9.82(1 \mathrm{H}, \mathrm{s}), 9.52(1 \mathrm{H}, \mathrm{d}$, $J ~ 9.6), 9.40(1 \mathrm{H}, \mathrm{d}, J 9.6), 9.33(1 \mathrm{H}, \mathrm{s}), 9.02(1 \mathrm{H}, \mathrm{t}, J 9.6), 8.87(2 \mathrm{H}, \mathrm{t}, J 9.6) ;{ }^{13} \mathrm{C}$ NMR (TFA-d) $\delta 156.3$, 152.3, 151.0, 148.8, 147.8, 146.2, 144.8, 144.1, 143.9, 143.6, 139.5, 119.5; $v_{\max } / \mathrm{cm}^{-1} 1614(\mathrm{C}=\mathrm{N}) ; \lambda_{\max }$ $\mathrm{nm}(\log \varepsilon) 233$ (3.68), 290 (4.31, sh), 315 (4.47), 365 (3.78, sh), 462 (3.40). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 56.90 ; \mathrm{H}, 2.79$; N, 27.65. Found: C, 57.02; H, 3.14; N, 26.93.
In a similar manner, reactions of 1a with 21b, 21c, and 21d gave 22b, 22c and 22d in 67\%, 33\%, and 43%, respectively.

22b: Orange powders (from EtOH-CHCl ${ }_{3}$), mp $270-272{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (TFA-d) $\delta 9.50(1 \mathrm{H}, \mathrm{d}, J 9.6), 9.36$ ($1 \mathrm{H}, \mathrm{d}, ~ J 10.0$), $9.32(1 \mathrm{H}, \mathrm{s}), 9.01(1 \mathrm{H}, \mathrm{dd}, J 10.0,9.6), 8.86(1 \mathrm{H}, \mathrm{dd}, J 10.0,9.6), 8.84$ (1H, dd, J 10.0, 9.6), 2.99 (3H, s); ${ }^{13} \mathrm{C}$ NMR (TFA-d) $\delta 159.2,155.4,152.3,151.0,148.9,146.0,144.9,144.1,143.8$, 143.7, 139.4, 119.4, 11.0; $v_{\max } / \mathrm{cm}^{-1} 1615(\mathrm{C}=\mathrm{N}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 239$ (4.20), 275 (4.42), 318 (4.59), 364 (3.90, sh), 465 (3.27). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 58.41$; H, 3.39; N, 26.20. Found: C, 58.43; H, 3.40; N, 26.17.

22c: Yellow prisms (from $\mathrm{EtOH}-\mathrm{CHCl}_{3}$), mp $224-226{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (TFA-d) $\delta 9.47(1 \mathrm{H}, \mathrm{d}, J 10.0), 9.32$ $(1 \mathrm{H}, \mathrm{d}, J 10.0), 9.24(1 \mathrm{H}, \mathrm{s}), 9.00(1 \mathrm{H}, \mathrm{t}, J 10.0), 8.84(2 \mathrm{H}, \mathrm{t}, J 10.0) ;{ }^{13} \mathrm{C}$ NMR (TFA-d) $\delta 154.0,152.0$, 151.0, 149.4, 149.0 (q, $J_{\text {CCF }} 45.0$), 146.9, 144.7, 143.9, 143.6, 143.5, 139.1, 119.9, 118.5 (q, $J_{\text {CF }} 271.7$); $\nu_{\max } / \mathrm{cm}^{-1} 1617(\mathrm{C}=\mathrm{N})$; $\lambda_{\text {max }} \mathrm{nm}(\log \varepsilon) 253$ (3.86), 270 (4.01), 275 (4.00), 314 (4.29), 364 (3.53, sh), 456 (2.99); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4}$: C, 48.60; H, 1.88; N, 21.80. Found: C, 49.10; H, 1.95; N, 21.55.

22d: Yellow prisms (from EtOH-CHCl ${ }_{3}$), mp 249-250 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (TFA-d) δ 9.57-9.50 (1 H, m), 9.40-9.35 ($2 \mathrm{H}, \mathrm{m}$), 9.24-9.16 ($2 \mathrm{H}, \mathrm{m}$), 9.05-8.96 (3H, m), 8.89-8.81 ($2 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR (TFA-d) $\delta 154.7$, 152.7, 152.1, 151.1, 149.6, 146.9, 144.7, 144.6, 143.9, 143.8, 143.6, 139.2, 129.4, 119.3; $v_{\max } / \mathrm{cm}^{-1} 1633$ $(\mathrm{C}=\mathrm{N}) ; \lambda_{\max } \mathrm{nm}(\log \varepsilon) 240$ (3.74), 272 (3.99, sh), 288 (4.27), 322 (4.45), 370 (3.72, sh), 458 (3.14). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}: \mathrm{C}, 61.80$; H, 3.05; N, 25.44. Found: C, 61.54; H, 3.01; N, 25.78.

X-Ray structure determination

Crystal data of $3 \mathbf{c}$: brown prismatic, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Cl}, M=347.25$, monoclinic, space group $\mathrm{P}_{1 / \mathrm{n}}, a=$
$12.699(3) \AA, b=7.502(3) \AA, c=18.935(4) \AA, \beta=108.74(2)^{\circ}, V=1708.3(8) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\text {cale }}=1.350$ $\mathrm{g} / \mathrm{cm}^{3}$, crystal dimensions $0.06 \times 0.62 \times 0.80 \mathrm{~mm}$. Data were measured on a Rigaku AFC5S radiation diffractometer with graphite monochromated $\mathrm{MoK} \alpha$ radiation. Total 4010 reflections (3827 unique) were collected using $\omega-2 \theta$ scan technique with in a 2θ range of 55.0°. The structure was solved by direct methods (SIR92), ${ }^{19}$ and refined a full-matrix least squares methods with 208 variables and 1213 ovserved reflections $[I>2.00 \sigma(l)]$. The final refinement converged to $R=0.126$ and $R w=0.148$. All calculations were performed using the CrystalStracture crystallographic software package. ${ }^{20,21}$
Crystal data of 13c: brown plate, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}, M=277.34$, monoclinic, space group $\mathrm{P} 2_{1 / \mathrm{c}}, a=6.125(6) \AA$, $b=8.883(8) \AA, c=23.697(5) \AA, \beta=94.82(5)^{\circ}, V=1284.8(17) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\text {cale }}=1.434 \mathrm{~g} / \mathrm{cm}^{3}$, crystal dimensions $1.00 \times 0.48 \times 0.04 \mathrm{~mm}$. Data were measured on a Rigaku AFC5S radiation diffractometer with graphite monochromated $\mathrm{MoK} \alpha$ radiation. Total 3215 reflections (2940 unique) were collected using $\omega-2 \theta$ scan technique with in a 2θ range of 55.0°. The structure was solved by direct methods (SIR92), ${ }^{19}$ and refined a full-matrix least squares methods with 225 variables and 1879 observed reflections $[I>2 \sigma(I)]$. The final refinement converged to $R=0.0496$ and $R w=0.0358$. All calculations were performed using the CrystalStracture crystallographic software package. ${ }^{20,21}$
Crystal data of 22c: yellow block, $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{~S}, \mathrm{M}=321.28$, orthorhombic, space group Pbca, $a=$ $13.32671(13) \AA, b=7.37808(13) \AA, c=24.4650(7) \AA, V=2405.53(8) \AA^{3}, \mathrm{Z}=8, \mathrm{D}_{\text {cale }}=1.774 \mathrm{~g} / \mathrm{cm}^{3}$, crystal dimensions $0.12 \times 0.10 \times 0.08 \mathrm{~mm}$. Data were measured on a Rigaku RAXIS-RAPID radiation diffractometer with graphite monochromated $\mathrm{CuK} \alpha$ radiation. Total 15184 reflections (2194 unique) were collected using $\omega-2 \theta$ scan technique with in a 2θ range of 136.4°. The structure was solved by direct methods (SHELX97) ${ }^{22}$ and expanded using Fourier techniques ${ }^{23}$, and refined a full-matrix least squares methods with 200 variables and 2194 observed reflections [I>2.00 (I)]. The final refinement converged to $R=0.0304$ and $R w=0.0844$. All calculations were performed using the CrystalStructure crystallographic software package. ${ }^{20,21}$

Biological assay

HeLa S3 cells were obtained from AIST and used after cultivation. The cultivated HeLa S3 cells were cell counted and the culture fluid was prepared to the cell consistency of $2 \times 10^{4} \mathrm{clles} / \mathrm{mL}$. The compounds added to the medium in DMSO solutions. To the aliquot of the culture fluid, which was incubated for 3 h at $37^{\circ} \mathrm{C}$, the test sample was added and then the culture fluid was incubated for 72 h . To the culture fluid, MTT (3-[4,5-dimethylthiazol]-2-yl-2,5-diphenyltetrazolium bromide) solution was added, and incubated for 4 h . Then the sample was centrifuged at 3000 rpm for 10 min at $4^{\circ} \mathrm{C}$, and the solvent was evaporated. Then DMSO was added to the obtained mixture. The MTT-foemazan was
dissolved by plate-mixing and OD540 was measured. The rate of outlive determined to refer with un-dosed control. Dose-response curve was drawn up and IC_{50} was pursued. Every experiment in the cycotoxic assay was replicated twice in order to define the IC values.

REFERENCES AND NOTE

1. W. A. Craigo, B. W. LeSueur, and E. B. Skibo, J. Med. Chem., 1999, 42, 3324.
2. K. S. Gudmudssson, J. Tidwell, N. Lippa, G. W. Koszalka, N. van Draanen, R. G. Ptak, J. C. Drach, and L. B. Townsend, J. Med. Chem., 2000, 43, 2464.
3. J. J. Chen, Y. Wei, J. C. Drach, and L. B. Townsend, J. Med. Chem., 2000, 43, 2449.
4. T. C. Kuhlerm M. Swanson, B. Christenson, A.-C. Klintenberg, B. Lamm, J. Fagerhag, R. Gatti, M. Olewegard-Halvarsson, V. Shcherbuchin, T. Elebring, and J.-E. Sjostrom, J. Med. Chem., 2002, 45, 4282.
5. E. Aki-Sener, K. K. Bingol, R. Tem Paramashivappa, P. Phani kumar, P. Subba Rao, and A. Srivasa Rao, Bioorg. Med. Chem. Lett., 2003, 13, 657.
6. D.-F. Shi, T. D. Bradshaw, S. Wrigley, C. J. McCall, P. Lelieveldm I. Fichtner, and M. F. G. Stevens, J. Mol. Chem., 1996, 39, 3375.
7. T. D. Bradshaw, D.-F. Shi, R. J. Schultz, H. H. Fiebig, S. Wrgley, and M. F. G. Stevens, J. Cancer, 1998, 78, 421.
8. O. T. Arpaci, E. A. Sener, I. Yalcin, and N. Altanlar, Arch. Pharm. Phar. Med. Chem., 2002, 6, 283.
9. C. W. Phoon, P. Y. Ng, A. F. Ting, S. L. Yeo, and M. M. Sim, Bioorg. Med. Chem. Lett., 2001, 11, 1647.
10. I. Hutchinson, S. A. Jennings, B. Rao Vishnuvajjala, A. D. Westwell, and M. F. G. Stevens, J. Med. Chem., 2002, 45, 744.
11. For reviews see, N. Abe, 'Recent Research Developments in Organic and Bioorganic Chemistry' 2001, 4, 14, Transworld Research Network.; T. Nishiwaki and N. Abe, Heterocycles, 1981, 15, 547; M. Kimura, Yuki Gosei Kagaku Kyokai Shi, 1981, 39, 690.
12. T. Ishikawa and A. Zeimoto, Jpn. Kokai Tokkyo Koho, JP 1999, 11,255,746.
13. M. Nagahara, J. Nakano, M. Miura, T. Nakamura, and K. Uchida, Chem. Pharm. Bull., 1994, 42, 2491.
14. N. Abe and Y. Emoto, Bull. Chem. Soc. Jpn., 1990, 63, 1543.
15. C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
16. J. Chang, K. Zhao, and S. Pan, Tetrahedron Lett., 2002, 43, 951.
17. S. Lin and L. Yang, Tetrahedron Lett., 2005, 46, 4315.
18. T. Itoh, K. Nagata, H. Ishikawa, and A. Ohsawa, Heterocycles, 2004, 63, 2769.
19. A. Altomare, M. Cascarano, C. Giacovazzo, and A. Guagliard, J. Appl. Cryst., 1994, 26, 343.
20. CRYSTALLS Issue 10: D. J. Watkin, C. K.Prout, J. R. Carruthers, and P. W. Betteridge, Chemical Crystallography Laboratory, Oxford, UK (1996).
21. CrystalStructure3.8: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2007), 9009 New Trails Dr. The Woodlands TX 77381 USA.
22. SHELX97: G. M. Schidik (1997).
23. DIRDIF99: P. T. Beurkens, G. Admiraal, G. Beurskens, W. P. Bosman, R. De Gelder, R. Israel, and J. M. M. Smits (1999). The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

[^0]: ${ }^{\dagger}$ Dedicated to Professor Dr. Ryoji Noyori on occasion of his 70th birthday.

