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A phenomenological model of free energy is presented to demonstrate a phase transition 
from a state with supersymmetry to a state without supersymmetry.  The model is 
equivalent, in a commensurate phase, to the extended sublattice model for 
antiferroelectricity and ferrielectricity.  In a selected set of parameters, the state with 
supersymmetry (antiferroelectric state) transforms to the symmetry broken state 
(ferrielectric state), with decreasing temperature.  The transition is either first or 
second order one depending on the coefficients of the free energy. 
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1.  INTRODUCTION 

 
It has been widely recognized that incommensurate phases are represented by 3+d 

dimensional space groups.[1]  The phase relations in the modulation wave are the 
additional degree of freedom.  If the modulation period locks-into a multiple of the 
basic cell, the commensurate phase is realized, which should be one of the 230 space 
groups.  The symmetry of a structure is reflected in the diffraction pattern, especially 
in the systematic absence of diffraction. 

However, the diffraction pattern sometimes has a higher symmetry than that expected 
from the symmetry of the unit cell of the crystal.  Such phenomena have been 
understood in terms of diffraction enhancement of symmetry.[2]  When the unit cell 
consists of subunits with which the scattered wave interferes, there is a definite relation 
between the subunits.  Even if the relation is not a symmetry operation of space group, 
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the unit cell is invariant under symmetry operations of so called groupoid.[3] 
In our previous report, the additional symmetry, which relates subunits with each 

other within a superstructure (a commensurate structure induced from a high symmetry 
prototype phase), was called as supersymmetry.[4]  This symmetry operation was one 
of the element of the prototype phase.  Generally the symmetry is lost at the 
protptype-to-superstructure transition (the incommensurate-to-commensurate transition).  
But it may exist in the commensurate phase, and exhibit higher symmetry of the 
diffraction pattern. 

In this paper we propose a phenomenological model of free energy to describe 
supersymmetry.  This model represents both incommensurate and commensurate 
phases.  In the commensurate phase, the model is equivalent to the extended sublattice 
model for antiferroelectricity and ferrielectricity.[5]  By the use of the model, we 
conclude that a transition can take place between a structure with supersymmetry and a 
structure without supersymmetry.  If we take no account of the supersymmetry and 
assign a usual space group, then the transition seems to accompany no symmetry 
change; a transition between structures with the same space group. 

We describe briefly supersymmetry in the following section.  Then the 
phenomenological free energy is introduced in sec. 3.  The extreme of the free energy 
is calculated to discuss the phase transition.  A discussion is given in sec. 4. 
 
 
2.  SUPERSYMMETRY IN A MODULATED STRUCTURE 

 
Let’s consider a commensurate structure whose cell dimension is double along the 

c-axis of the prototype phase.  The prototype space group is assumed to be Pmcn 
(Z=4) in order to discuss concretely.  The modulated structure can be represented by 
modulation waves as shown in Fig. 1, where four chains of modulation exist 
corresponding to the number of formula unit. 

In the incommensurate phase with 3+1 dimensional space group Pmcn(ss-1), the 
following diffraction conditions exist; 

 
     0 k l m: l+m=even,  h 0 l m: l+m=even  and  h k 0 0: h+k=even.     (1) 
 

Then the four chains in Fig.1 are related with each other by 3+1 dimensional operations.   
In the commensurate phase, we refer Miller indexes hs ks ls to the superlattice whose c 
axis is double the prototype cell.  Then the above conditions are written as 
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     0 ks ls: ls=even,  hs 0 ls: ls=4n, 4n±1  and  hs ks 0: hs+ks=even.      (2) 
 

Really these conditions are recognized in some A2BX4-type crystals.  Although the first 
and third relations indicate the c- and n-glides, respectively, there is no space group that 
satisfies the second relation inevitably.  The candidate of 3-dimensional space group 
for the superstructure is P21/c11 or Pc21n.  In Fig. 1, the former space group relates 
chain 1 and 3 (2 and 4) by the proper symmetry operation.  But there should not be any 
strict relation between 1 and 2 or 4.  On the other hand chain 1 and 4 (2 and 3) are 
related in the latter space group.  And no relation exists between 1 and 2 or 3. 
  It will be convinced that chain 1 and 2 are related with each other to satisfy the 
second reflection condition by an operation {σy|b/2+c/4}; an supersymmetry operation.  
Such symmetry is allowed within 3+d dimensional space group if the modulation is 
incommensurate.  However, the symmetry of the superstructure should belong one of 
230 space groups.  Then such a supersymmetry operation would be considered as an 
accidental relation.  In order to demonstrate that supersymmetry can exist as a stable 
state, we examine a phenomenological model of free energy in the next section. 
 
 
3.  SUBLATTICE MODEL OF SUPERSYMMETRY 

 
We start from the following free energy density describing the 

incommensurate-commensurate transition in A2BX4-type crystals[6] 
 

   f=α/2|Q|2+β/4|Q|4+γ/6|Q|6+δ/4(Q4+Q*4)+iσ(QdzQ*-Q*dzQ)+κ/2|dzQ|2,       (3) 
 

where Q is a complex order parameter and dz is a differential operator with respect to 
the spatial coordinate z.  The last two terms in (3) are the Lifshitz invariant and the 
elastic energy term, respectively. 
  In the incommensurate phase, |Q|≠0 is a representative of the modulation amplitude.  
As noted in the previous section, all four waves from 1 to 4 in Fig. 1 have the same 
amplitude and each phase of the wave is related with others.  In the commensurate 
phase, the phase of Q locks-in a definite values.  The coupling between Q and 
polarization, strain or some other physical quantities works to lower the crystal system. 
Then two of four waves are related with each other.  In other words, there are two 
subunits in the superstructure of Fig. 1; one unit is composed of chain 1 and 3, and other 
unit of chain 2 and 4, for example.  These two units are independent in general. 

In order to take the supersymmetry between subunits into account, a sublattice model 
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is considered with an extension from the Kittel’s model for antiferroelectricity.[7]  To 
describe two subunits, let’s introduce two complex-order parameters Q1 and Q2, zone 
boundary modes in A2BX4-type incommensurate crystals.  The free energy per unit 
volume is written as 
 

  F=α/2(|Q1|2+|Q2|2)+ ξ/2(Q1Q2
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The Lifshitz invariant and the elastic energy can be included in α.  Here both Q1 and 
Q2 belong to the same irreducible representation. 

The free energy (4) has several extremes; a normal phase: Q1=Q2=0, a commensurate 
phase: |Q1|2=|Q2|2≠0, and another commensurate phase: |Q1|2≠|Q2|2≠0.  Though 
these two superstructures may belong to the same space group, the phase transition can 
take place with breaking supersymmetry. 

Since we discuss about the commensurate structure, the free energy can also be 
written by two real order-parameters: P1 and P2.  Then the free energy is identical with 
the extended sublattice model for antiferroelectricity introduced three decades ago;[8] 

 
   F=α/2(P1

2+P2
2)+ξP1P2+β/4(P1

4+P2
4)+η(P1

2+P2
2)P1P2 

          +ζ/2P1
2P2

2+γ/6(P1
6+P2

6).                         (5) 
 
Here the coefficients β, η and ζ are redefined for the sake of simplicity. 

Suzuki and Okada[5] have discussed the case of β<0, ξ>0 and γ>0, and shown that the 
following sequence of transition takes place: paraelectric(non-polar P1=P2=0) phase  
ferrielectric(semi-polar P1≠P2≠0) phase  antiferroelectric(anti-polar P1=－P2≠0) 
phase. On the other hand, we select other set of parameters.  Then the transition 
sequence is the following: 
   1) normal phase: P1=P2=0, 
   2) commensurate phase with supersymmetry(antiferroelectric):  P1=－P2≠0, 
   3) commensurate phase without supersymmetry(ferrielectric):  P1≠－P2≠0. 
An example is shown in Fig. 2 for a set of selected parameters:  
 
        β=2 or -4, γ=12, ξ=1, η=0, ζ=16   .                    (6) 
 
With decreasing temperature, normal phase 1 transforms at α=ξ into phase 2 with 
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supersymmetry.  The transition is a second order one, so far as the incommensurate 
phase is ignored.  At lower temperature, phase 3 without supersymmetry is the 
minimum free energy state. The 2-to-3 transition is of second order (β=2) or of first 
order (β=-4).  In the case of second-order transition, the free energy of phase 2 
becomes a saddle point at 
 
        α=3ξ/2+(β+3ζ-10η) /8γ･{β-ζ+2η+ [(β-ζ+2η)2-8γξ]1/2 },         (7) 
 
below which phase 3 appears.  One of the principle values of the susceptibility matrix 
diverges at the transition.  For other choice of parameters, other sequence of transition 
appears, e.g. P1=-P2≠0  P1≠P2≠0  P1=-P2≠0 and  P1≠P2≠0  P1=P2≠0, 
even if ξ>0. 
 
 
4.  DISCUSSION 
 
  The phenomenological free energy (5) has explained that the state with 
supersymmetry is stable in a temperature range and that the transition takes place to the 
state without supersymmetry.  So far a lock-in energy of Q4+Q*4 has been considered 
in (3).  But there may be a coupling between the primary order parameter Q and the 
macroscopic polarization P or strain S; (Q2+Q*2)P or (Q2-Q*2)S.  These terms can 
stabilize a ferroelectric phase or a ferroelastic phase without supersymmetry.  

In the commensurate phase 3 of LiRbSO4, the extra extinction rule has been 
recognized.[9]  If such an extinction rule holds exactly, then there should exist the 
symmetry operation in addition to the symmetry of space group.  The phase 3 of 
LiRbSO4, in which the reflection conditions (2) hold, can be explained either 
monoclinic or orthorhombic space group as summarized below; 
  1)  The space group is monoclinic P21/c and the supersymmetry {σy|b/2±c/4} 
exists.  
  2)  The space group is orthorhombic Pc21n and the supersymmetry {σy|b/2±c/4} 
exists.  
  3)  The extra extinction holds only approximately and the supersymmetry is not a 
strict relation.  The crystal is ferroelectric Pc21n or ferroelastic P21/c . 

From the experimental point of view, the phase 3 of LiRbSO4 is considered to be 
ferroelastic P21/c.[10]  However, the model free energy (4) indicates that the 
supersymmetry can be allowed in the phenomenological theory.  And there is a 
possibility that the phase with supersymmetry transforms into the usual space group 
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phase with breaking the supersymmetry.  In other commensurate phase, there is a 
possibility that supersymmetry exists potentially.[4,11] 
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Figure captions 
 
FIGURE. 1  The modulation waves in the commensurate phase.  The cell dimension 
along z is double the normal phase.  Dark and light gray circles represent the same 
kind of atoms.  The y- and z- coordinates are also modulated, though they are not 
shown explicitly. 
 
FIGURE. 2  Temperature (α) dependence of order parameters for the extended  
sublattice model.   Two order parameters P1 and P2 appears if α<ξ=1.  For β=-4, the 
transition at α=0.3404 is of first order, which is indicated by arrows.  If β=2, the 
second-order transition takes place at α=-7/12, where other coefficients are γ=12, η=0 
and ζ=16. 
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FIGURE. 2  Temperature (α) dependence of order parameters for the extended  
sublattice model.   Two order parameters P1 and P2 appears if α<ξ=1.  For β=-4, the 
transition at α=0.3404 is of first order, which is indicated by arrows.  If β=2, the 
second-order transition takes place at α=-7/12, where other coefficients are γ=12, η=0 
and ζ=16. 
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